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ABSTRACT

Proteins are ubiquitous molecules whose function in biological processes is deter-
mined by their 3D structure. Experimental identification of a protein’s structure
can be time-consuming, prohibitively expensive, and not always possible. Al-
ternatively, protein folding can be modeled using computational methods, which
however are not guaranteed to always produce optimal results.

GRAPHQA is a graph-based method to estimate the quality of protein models,
that possesses favorable properties such as representation learning, explicit mod-
eling of both sequential and 3D structure, geometric invariance and computational
efficiency. In this work, we demonstrate significant improvements of the state-of-
the-art for both hand-engineered and representation-learning approaches, as well
as carefully evaluating the individual contributions of GRAPHQA.

1 INTRODUCTION

Protein molecules are predominantly present in biological forms, responsible for their cellular func-
tions. Therefore, understanding, predicting and modifying proteins in biological processes are essen-
tial for medical, pharmaceutical and genetic research. Such study is mainly focused on discovering
proteins’ mechanical and chemical properties through the determination of their structure.

At the high level, a protein molecule is a chain of hundreds of smaller molecules called amino acids.
Identifying a protein’s amino-acid sequence is nowadays straightforward. However, the function of
a protein is primarily determined by its 3D structure. Spatial folding can be experimentally deter-
mined, but the existing procedures are time-consuming, prohibitively expensive and not always pos-
sible. Thus, several computational techniques are developed for protein structure prediction (Arnold
et al., 2006} | Xu, [2019). So far, no single method is always best, i.e. different proteins are best mod-
eled by different methods. Moreover, many methods produce multiple models. Therefore, there is a
need to evaluate the models after their generation. This work focuses on Quality Assessment (QA)
of computationally-derived models of a protein to identify the best one.

QA, also referred to as model accuracy estimation (MAE), estimates the quality of computational
protein models in terms of their divergence from the native structure. The downstream goal of QA is
two-fold; to find the best model in a pool of models and to refine a model based on its local quality.

While computational protein folding has recently received attention from the machine learning com-
munity (Ingraham et al., 2019b; |Anand & Huang, 2018}; [Evans et al., 2018), QA has not. This
is despite the importance of QA for structural biology and the availability of standard datasets to
benchmark machine learning techniques, such as the biannual CASP event (Won et al.,2019). The
field of bioinformatics, on the other hand, has witnessed noticeable progress in QA for more than a
decade. With earlier works using support vector machines (Ray et al., 2012) and recently adopting
deep learning methods such as LSTM (Conover et al.,|2019), 1D CNN (Hurtado Menendez et al.,
submitted), and 3D CNNs (Derevyanko et al., [2018}; [Pages et al., 2018).

In this work, we apply Graph Convolutional Networks to QA, which bring several desirable proper-
ties over previous methods and, through extensive set of experiments, we show significant improve-
ments over the state-of-the-art, and offer informative qualitative and quantitative analyses.
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Figure 1: Protein Quality Assessment. GRAPHQA predicts local and global scores from a protein’s
graph using message passing among residues with chemical bond or spatial proximity. CASP QA
algorithms score protein models by comparison with experimentally-determined conformations.

e

1.1 RELATED WORKS

Protein Quality Assessment (QA) methods are evaluated in CASP (Moult et al, [1993) since
CASP7 (Cozzetto et al}[2007). Current techniques can be divided into two categories, single-model
methods (Wallner & Elofsson, 2003) which operate on a single protein model to estimate its qual-
ity and consensus methods (Lundstrom et al [2001)) that use consistency of several protein models
to estimate the quality of each model. Single-model methods are applicable to a single protein in
isolation and in the recent CASP13, performed comparable to or better than consensus methods
for the first time (Cheng et all [2019). Recent single-model QA works are based on deep learning
except VoroMQA that takes a statistical approach on atom-level contact area (Olechnovic & Ven-|
2017). 3D-CNN (Derevyanko et al., [2018) adopts a volumetric representation of proteins.
Ornate improves 3D-CNN by defining a canonical orientation (Pagés et al.} [2018). ProQ3D (Uziela
et al.l[2017) uses a multi-layer perceptron on fixed-length protein descriptors. ProQ4 (Hurtado et al.,
2018a)) adopts a pre-trained 1D CNN that is fine-tuned in a siamese configuration with a rank loss.

VoroMQA and ProQ3D are among the top performers of CASP13 2019).

Graph Convolutional Networks (GCNs) bring the representation learning power of CNNs to graph
data, and have been recently applied with success to multiple domains, e.g. physics
[2018), visual scene understanding (Narasimhan et al., 2018)) and natural language under-
standing (Kipf & Welling, 2017). Molecules can be naturally represented as graphs and GCNs have
been proven effective in several related tasks including molecular representation learning (Duvenaud|
et al., 2015), protein interface prediction (Fout et al.| [2017), chemical property prediction (Niepert
et al.} [2016; [Gilmer et all, 2017} [Li et all, 2018al)), drug-drug interaction (Zitnik et al., [2018), drug-
target interaction (Gao et all [2018) molecular optimization (Jin et al., 2019), and generation of
proteins, molecules and drugs (Ingraham et al.l 20194; [You et al., 2018} [Liu et al., 2018} [Li et al}
2018b}[Simonovsky & Komodakis,[2018). However, to the best of our knowledge, GCNs have never
been applied to the problem of protein quality assessment.

1.2 CONTRIBUTIONS

e This work is the first to tackle QA with GCN which bring several desirable properties including
representation learning (3DCNN, Ornate), geometric invariance (VoroMQA, Ornate), sequence
learning (ProQ4, AngularQA), explicit modeling of 3D structure (3DCNN, Ornate, VoroMQA)
and computational efficiency.

e Thanks to these desirable properties, a simple GCN setup achieves improved results compared
to the more sophisticated state-of-the-art methods such as ProQ4. This is demonstrated through
extensive experiments on multiple datasets and scoring regimes.

e Novel representation techniques are employed to explicitly reflect the sequential (residue sepa-
ration) and 3D structure (angles, spatial distance and secondary structure) of proteins.

e Enabled by the use of GCN, we combine the optimization of local and global score for QA
improving over the performance of a global-only scoring method.

e Through an extensive set of ablation studies, the significance of different components of the
method, including architecture, loss, and features, are carefully analyzed.
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2 METHOD

We start describing our method by arguing for representation of protein molecules as graphs in
learning tasks, then we define the problem of protein quality assessment (QA), and finally we present
the proposed GRAPHQA architecture.

2.1 PROTEIN REPRESENTATION AS GRAPHS

Proteins are large molecular structures that perform vital functions in all living organisms. At the
chemical level, a protein consists of one or more chains of smaller molecules, which we interchange-
ably refer to as residues for their role in the chain, or as amino acids for their chemical composi-
tion. The sequence of residues S = { a; } that composes a protein represents its primary structure,
where a; is one of the 22 amino acid types. The interactions between neighboring residues and with
the environment dictate how the chain will fold into complex structures that represent the protein’s
secondary structure and tertiary structure.

Therefore, for learning tasks involving proteins, a suitable representation should reflect both the
identity and sequence of the residues, i.e. the primary structure, and geometric information about
the protein’s arrangement in space, i.e. its tertiary structure. Some works (Hurtado et al.| [2018bj
Conover et al.,[2019) use RNN or 1D-CNN to model proteins as sequence with the spatial structure
potentially embedded in the handcrafted residue features. Other recent works (Derevyanko et al.|
2018 [Pages et al., [2018)) explicitly model proteins’ spatial structure using 3D-CNN but ignore its
sequential nature. We argue that a graph-based learning can explicitly model both the sequential
and geometric structures of proteins. Moreover, it accommodates proteins of different lengths and
spatial extent, and is invariant to rotations and translations.

In the simplest form, a protein can be represented as a linear graph, where nodes represent amino
acids and edges connect consecutive residues according to the primary structure. This set of edges,
which represent the covalent bonds that form the protein backbone, can be extended to include
the interactions between non-consecutive residues, e.g. through Van der Waals forces or hydrogen
bonds, commonly denoted as contacts. By forming an edge between all pairs of residues that are
within a chemically reasonable distance of each other, the graph becomes a rich representation of
both the primary and tertiary structure of the protein (figure 2). We refer to this representation,
composed of residues, bonds and contacts, as the protein graph:

P=({vi}, {em[li-jl=1}u{eq™|li—jl>1LICi—Cill <dmu}), O

1,] 1,7

where conformation C' = {(x,y, z); } is the spatial arrangement of the residues, i.e. its tertiary
structure, i, j = 1, ..., |S| represent residue indices and d, is a cutoff distance for contacts.

With the protein’s structure encoded in the graph, residue and relationship features can be repre-
sented as nodes and edges attributes, v; and e; ; respectively. Section describes, in detail, an
attribution that preserves the sequence information and 3D geometry while remaining invariant to
rotation.
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Figure 2: Protein representations for learning. Sequential representations for LSTM or 1D-CNN
fail to represent spatial proximity of non-consecutive residues. Volumetric representations for 3D-
CNN fail instead to capture sequence information and is not rotation invariant. Protein graphs ex-
plicitly represent both sequential and spatial structure, and are geometrically invariant by design.
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2.2 PROTEIN QUALITY ASSESSMENT

Experimental identification of a protein’s native structure can be time consuming and prohibitively
expensive. Alternatively, computational folding methods are used to generate decoy conformations
for a specific target protein. Since no single method is consistently best, a Quality Assessment step
is used to identify the decoys that most correctly represent the native structure

If the native structure Ciave is experimentally determined, the quality of a decoy can be measured
by comparison (Uziela et al., 2018)), e.g., in the CASP challenge, decoys submitted for a target are
scored against the unreleased native structure. Some comparative algorithms compute global (per
decoy) scores, which can be used for ranking and represent the principal factor for CASP, while
others produce local (per residue) scores which help identify incorrect parts of a decoy.

In most scenarios, however, the native structure is not available and quality must be estimated based
on decoy properties of the decoy, e.g., in drug development, it would be unpractical to synthesize
samples of novel proteins and researchers rely on folding and quality assessment instead.

Here we introduce GRAPHQA, a graph-based QA neural network that learns to predict local and
global scores, with minimal feature and model engineering, using existing datasets of scored pro-
teins. In this paper, we train GRAPHQA on two widely-used scoring algorithms: the Global Distance
Test Total Score (Zemla, 2003), which is the official CASP score for decoy-level quality assessment,
and the Local Distance Difference Test (Mariani et al.| 2013)), a residue-level score. We denote them
as ¢9 := GDT_TS(C?, C"¢) and { ¢¢ } := LDDT(C?, Crative),
With GRAPHQA! (P) and GRAPHQAY (P) denoting the network’s local and global predictions, the
learning objective is to minimize the following two Mean Squared Error (MSE) losses for each
decoy:
S| 9

Lo=> [GRAPHQAf(P) - qf} L, = [GRAPHQAY(P) — ¢*]°. 2)
Note that, for the sole purpose of sorting decoy according to ground-truth quality, training with a
ranking loss would be sufficient (e.g.|Derevyanko et al.|(2018)). Instead, MSE forces output to match
the quality score, which is a harder objective, but results in a network can be more easily inspected
and possibly used to improve existing folding methods in an end-to-end fashion (section[4.2).

2.3 GRAPHQA ARCHITECTURE

GRAPHQA is a graph convolutional network that operates on protein graphs using the message-
passing algorithm described in [Battaglia et al.[| (2018). The building block of GRAPHQA, a graph
layer, takes a protein graph as input (with an additional global feature ), and performs the following
propagation steps to output a graph with updated node/edge/global features and unchanged structure:

e;,j = ¢° (4,5, Vi, vj, ) Update edges e =p ({ eij }) Aggregate all edges
e =p7"({el . Aggregate edges v =p' 7" ({v) Aggregate all nodes
i=P i g8reg g p gereg
vl = ¢ (e, v, u) Update nodes u = ¢" (&,v,u) Update global features

where ¢ represent three update functions that transform nodes/edges/global features, and p represent
three aggregation functions that aggregate features at various levels.

Similarly to convolutional layers, multiple graph layers are stacked allowing local information to
propagate to increasingly larger neighborhood (i.e. receptive field), thus enabling the network to
learn quality-related features at multiple scales: secondary structures in the first layers, e.g. a-helices
and (3-sheets, and larger structures in deeper layers e.g. domain structures and arrangements.

Layers in GRAPHQA are conceptually divided into three groups, see figure[I] Encoder increases the
node and edge features’ dimensions through 2 x (Linear-Dropout-ReLU) transformation and adds a
global bias. Then, at the core of GRAPHQA, L message-passing layers operate on the encoded
graph leveraging its structure to propagate and aggregate information. The update functions ¢ con-
sist of Linear-Dropout-ReL.U transformations, with the size of the linear layers progressively de-
creasing. We use average pooling for the aggregation functions p, since preliminary experiments
with max/sum pooling performed poorly. Finally, the readout layer outputs local and global quality
scores by applying a Linear-Sigmoid operation to the latest node and global features, respectively.
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Following the common practice in Quality Assessment, we use the data from past years’ editions of
CASP, encompassing several targets with multiple scored decoys each. Removing all sequences with
|S| < 50 from CASP 7-10 results in a dataset of ~ 100k scored decoys (P, { ¢!}, ¢?)"?, which we
randomly split into a training set (402 targets) and a validation set for hyper-parameter optimization
(35 targets). CASP 11 and 12 are set aside for testing against top-scoring methods (table [3).

We evaluate GRAPHQA against state-of-the-art QA methods on the following metrics. At the global
level, we compare the predicted and ground-truth GDT_TS scores and report Root Mean Squared
Error (RMSE), Pearson correlation coefficient computed across all decoys of all targets (1), Pearson
correlation coefficient computed on a per-target basis and then averaged over all targets (Rrger)-

At the local level, we compare the predicted and ground-truth LDDT scores and report: RMSE, the
Pearson correlation coefficient computed across all residues of all decoys of all targets (R), and the
Pearson correlation coefficient computed on a per-decoy basis and then averaged over all decoys of
all targets (Rpoge1). Of these, we focus on Ry, that measures the ability to and Ryeqel, since they
respectively measure the ability to distinguish the correctly-predicted parts of a model from those
that need improvement. A description of these and other metrics can be found in appendix [F}

3.2 FEATURES

Node features The node attributes v; of a protein graph P represent the identity, statistical, and
structural features of the ¢-th residue. We encode the residue identity by a one-of-22 encoding of the
corresponding amino acid. Following Hurtado et al.|(2018b)), we also add two residue-level statistics
computed using Multiple Sequence Alignment (MSA) (Rost et al.,[1994), namely self-information
and partial entropy, each described by a 23-dimensional vector. Finally, we add a 14-dimensional
vector of 3D spatial information including the dihedral angles, surface accessibility and secondary
structure type as determined by DSSP (Kabsch & Sander, |1983).

Edge features An edge e; ; represents either a contact or a bond between two residues ¢ and j w.r.t.
to the conformation C' = { (z,y, 2z); }. An edge always exists between two consecutive residues,
while non-consecutive residues are only connected if ||C; — C;|| < dmax With dax Optimized on the
validation set. We further enrich this connectivity structure by an 8D edge feature vector encoding
spatial and sequential distances. Spatial distance is encoded by a radial basis function exp(—di /o)
with ¢ determined on the validation set. Sequential distance is defined as the number of amino acids
between the two residues in the sequence and expressed using a separation encoding, i.e. a one-hot
encoding of the separation |¢ — j| according to the classes { 0,1,2,3,4,5:10,> 10 }.

3.3 OPTIMIZATION AND HYPERPARAMETER SEARCH

The MSE losses in equation [2| are weighted as L., = ALy + AgL, and minimized using Adam
Optimizer (Kingma & Bal |2014) with Lo regularization. GRAPHQA is significantly faster to train
than LSTM or 3D-CNN methods, e.g. 35 epochs takes ~ 2 hours on one NVIDIA 2080Ti GPU with
batches of 200 graphs. This allows us to perform extensive hyper-parameter search. Table [ reports
the search space, as well as the parameters of the model with highest Ry.ge On the validation set.

4 EVALUATION

We compare GRAPHQA with the following methods, either for their state-of-the-art performances or
because they represent a class of approaches for Quality Assessment. ProQ3D (Uziela et al., 2017)
computes fixed-size statistical descriptions of the decoys in CASP 9-10, including Rosetta energy
terms, which are then used to train a Multi Layer Perceptron on quality scores. In ProQ4 (Hur-
tado Menendez et al., [submitted), a 1D-CNN is trained to predict residue-level LDDT scores from
a vectorized representation of protein sequences, a global score is then obtained by averaging over
all residues. The CNN is pretrained on a large dataset of protein secondary structures and then fine
tuned on CASP 9-10 using a siamese configuration to improve ranking performances. Their results
are reported on both CASP 11, which is used as a validation set, and CASP 12. 3DCNN (Derevyanko



Under review as a conference paper at ICLR 2020

Table 1: Comparison of state-of-the-art QA methods. At the residue level we compare LDDT
scores and report Pearson correlation and Pearson correlation per model. At the global level we
compare GDT_TS scores and report Pearson correlation and Pearson correlation per target.

CASP 11 CASP 12
GDT-TS LDDT GDT-TS LDDT
R Rtarget R Rmodel R Rlarget R Rmodel

ProQ3D 72 452 .84 .61 806 .609

ProQ4 77 .56 172 516
VoroMQA .651 457 .605 559

Rwplus 206 -.096 417

AngularQA .651 439

3D CNN 629 421 .607

Ornate .637  .386 .670 491

GRAPHQA 910 740 855  .610 843 745 843 573
GRAPHQAggs | -836  .609 799 529 816 .673 796 - .507

et al.l 2018)) trains a CNN on a three-dimensional representation of atomic densities to rank the de-
coys in CASP 7-10 according to their GDT_TS scores. The fixed-size volumetric representation of
this method is sensitive to rotations and does not scale well with protein size, but has the benefit of
using no additional feature other than the atomic coordinates. Ornate (Pages et al., 2018)) applies
a similar 3D approach to predict to predict local CAD-scores (Olechnovic & Venclovas, [2017) and
achieves rotation invariance by specifying a canonical residue-centered orientation. Although opti-
mized for local scoring, the average of the predicted scores is shown to correlate well with GDT_TS.
AngularQA (Conover et al.l [2019) feeds a sequence-like representation of the protein structure to
an LSTM to predict GDT_TS scores. The LSTM network is trained on decoys from 3DRobot and
CASP 9-11, while CASP 12 is used for model selection and testing. VoroMQA and RWplus (Olech-
novi¢ & Venclovas, 2017;/Zhang & Zhang} |2010) are two statistical potential methods that represent
an alternative to the other machine-learning based methods.

Table [T] compares the performances of GRAPHQA and other state-of-the-art methods on CASP 11
and 12, while figure[3|contains a graphical representation of true vs. predicted scores for all target in
CASP 12, and an example funnel plot for the decoys of a single target. A more in-depth breakdown
of the evaluation on the stage 1 and stage 2 splits of CASP 11 and 12 can be found in appendix [F

Of all methods, only GRAPHQA and ProQ4 co-optimize for local and global predictions, the former
thanks to the graph-based architecture, the latter thanks to its siamese training configuration (the
results reported for ProQ3D refer to two separate models trained for either local or global scores).
At the local level, our method proves to be on par or better than ProQ3D and ProQ4, demonstrating
the ability to evaluate quality at the residue level and distinguishing correctly predicted parts of the
protein chain. At the global level, significantly higher I and Ry,ee metrics indicate than GRAPHQA
is more capable than other state-of-the-art methods at ranking decoys based on their overall quality.

As itis common, GRAPHQA relies on hand-engineered features like MSA and DSSP (section E]), yet
we further prove that our method can learn directly from raw data. GRAPHQARg,,, is a variant that
relies uniquely on the one-hot encoding of amino acid identity, similarly to how 3D-CNN and Ornate
employ atom identities only. The results for GRAPHQAR,,, show that, even without additional
features, our method outperforms purely representation learning methods.

4.1 ABLATION STUDIES

In this section we analyse how various components of our method contribute to the final perfor-
mance, ranging from optimization and architectural choices to protein feature selection. Unless
stated otherwise, all ablation studies follow the training procedure described in section for a
lower number of epochs. We report results on CASP 11 as mean and standard deviation of 10 runs.

Local and global co-optimization We investigate the interplay between local and global predic-
tions, specifically whether co-optimizing for both is beneficial or detrimental. At the global level,
models trained to predict only global scores achieve a global RMSE of 0.129£.007, whereas models
trained to predict both local and global scores obtain 0.117+.006, suggesting that local scores can
provide additional information and help the assessment of global quality. At the local level instead,
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co-optimization does not seem to improve performances: models trained uniquely on local scores
achieve a local RMSE of 0.1214-.002, while models trained to predict both obtain 0.123+.004.

Connectivity and Architecture In this study, we test the combined effects of the depth of the
network L and the cutoff value dp,x. On the one hand, every additional message-passing layer allows
to aggregate information from a neighborhood that is one hop larger than the previous, effectively
extending the receptive field at the readout. On the other hand, the number of contacts included in
the graph affects its connectivity and the propagation of messages, e.g. low dp,x correspond to a
low average degree and long shortest paths between any two residues, and vice versa. Therefore, to
make predictions based on an holistic view of the protein, an architecture that operates on sparsely
connected graphs will require more message-passing layers, while fewer layers are needed for denser
representations. We noticed however, that this trade off is only properly exposed if u, ¢p*, p* are
removed from the architecture. In fact, this global pathway represents a propagation shortcut that
connects all nodes in the graph and sidesteps the limitations of shallow networks. With the global
pathway disabled, global predictions are computed in the readout layer by aggregating node features
from the last MP layer.

Figure [] reports the RMSE obtained by networks of different depth with no global path, operating
on graphs constructed with different cutoff values. As expected, the shallow 3-layer architecture
requires denser graphs to achieve the same performances of the 9-layer network. Surprisingly, local
predictions seem to be more affected by these factors than global predictions, suggesting that a large
receptive field is important even for local scores.

Node and Edge Features We evaluate the impact of node and edge features on the overall predic-
tion performances (figure[5). For the nodes, we use the amino acid identity as a minimal represen-
tation and combine it with: a) DSSP features, b) partial entropy, c) self information, d) both DSSP
and MSA features. All features improve both local and global scoring, with DSSP features being
marginally more relevant for LDDT. For the edges, we evaluate the effect of having either: a) a
binary indicator of bond/contact, b) geometric features, i.e. the euclidean distance between residues,
¢) sequential features, i.e. the categorical encoding of the separation between residues, d) both dis-
tance and separation encoding. If the addition of edge features seem to be benefit LDDT predictions,
little improvement can be seen at the global level.

4.2 VISUALIZATION AND EXPLAINABILITY

The design of GRAPHQA makes it suitable not only for scoring, but also to identify refinement
opportunities for computationally created decoys. Figure[6]shows a decoy that correctly models the
native structure of its target, but contains imperfections at one extremity, to which both GRAPHQA
and LDDT assign low local scores. Unlike LDDT, however, GRAPHQA is fully differentiable and
the trained model can be used to explain the factors that influenced a low score and provide useful
feedback for computational structure prediction.

A simple approach for explaining predictions of a differentiable function f(x) is Sensitivity Anal-
ysis (Baehrens et al., 2010; |Simonyan et al., 2014}, which uses ||V f|| to measure how variations
in the input affect the output. In figure[6] we consider the scores predicted for two different residues
and compute the magnitude of the gradients w.r.t. the edges of the graph. Assuming that large mag-

GDT-TS LDDT
. T0944 164 177 Layers
154 .16 4 — 3
9
. . w 144 154
N
B B Hooa 12 2l
& ’ 1 124
°% True 1 ° gutoff o ° guto?f 0
(b) (©
Figure 3: Histograms of true vs. predicted LDDT Figure 4: Trade-off between number of
(a) and GDT_TS (b) scores on CASP 12, (¢) funnel message-passing layers and connectivity
plot of the decoys of target T0944 (PDB 5ko9). of the protein graph.
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Figure 5: Ablation study of node (left) and edge (right) feature representation.

nitudes correspond to large errors in the input, it is interesting to note how the network is able to
capture dependencies not only in the neighborhood of the selected residues, but also further away in
the sequence.

Furthermore, we wanted to measure whether the global predictions of GRAPHQA could be used to
improve the contact maps used by computational methods to build protein models. If the networks
has learned a meaningful scoring function, then the gradient of the score w.r.t. the contact distances
should aim in the direction of the native structure, indicating how the decoy contacts should be
updated to improve its score. Considering all decoys of all targets in CASP 11, we obtain an average
cosine similarity cos (OGRAPHQAY /0d, dgecoy — Anative) Of 0.14+.08, which, represents a step in
the direction of end-to-end protein model prediction.

||VeGraphQAS,|| [[VeGraphQAG||
20 - 20
40 40
60 60 +g
20 40 60 20 40 60
(a) Predicted (b) True (c) Native (d) (e)

Figure 6: One decoy of T0773 in CASP11. Both GRAPHQA (a) and LDDT (b) assign low local
scores to a segment of the decoy, highlighting a discrepancy w.r.t. the native structure (c). The
gradient magnitude w.r.t. the edges of the predicted LDDT score for residues 20 and 60 reveal long
range dependencies inside the protein graph.

5 CONCLUSION

For the first time we applied graph convolutional networks to the important problem of protein qual-
ity assessment (QA). Since proteins are naturally represented as graphs, GCN allowed us to collect
the individual benefits of the previous QA methods including representation learning, geometric in-
variance, explicit modeling of sequential and 3D structure, simultaneous local and global scoring,
and computational efficiency. Thanks to these benefits, and through an extensive set of experiments,
we demonstrated significant improvements upon the state-of-the-art results on various metrics and
datasets and further analyzed the results via thorough ablation and qualitative studies.

Finally, we wish that Quality Assessment will gain popularity in the machine learning community,
that could benefit from several curated datasets and ongoing regular challenges. We believe that
richer geometric representations, e.g. including relative rotations, and raw atomic representations
could represent an interesting future direction for learning-based Quality Assessment.



Under review as a conference paper at ICLR 2020

REFERENCES

Namrata Anand and Possu Huang. Generative modeling for protein structures. In Advances in
Neural Information Processing Systems, pp. 7494-7505, 2018.

Konstantin Arnold, Lorenza Bordoli, Jirgen Kopp, and Torsten Schwede. The swiss-model
workspace: a web-based environment for protein structure homology modelling. Bioinformat-
ics, 22(2):195-201, 2006.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Miiller. How to explain individual classification decisions. Journal of Machine Learning
Research, 11(Jun):1803-1831, 2010.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

J. Cheng, M.H. Choe, A. Elofsson, K.S. Han, J. Hou, A.H.A. Maghrabi, L.J. McGuffin,
D. Menendez-Hurtado, K. Olechnovic, T. Schwede, G. Studer, K. Uziela, C. Venclovas, and
B. Wallner. Estimation of model accuracy in CASP13. Proteins, Jul 2019. doi: 10.1002/prot.
25767.

Matthew Conover, Max Staples, Dong Si, Miao Sun, and Renzhi Cao. Angularqa: protein model
quality assessment with Istm networks. Computational and Mathematical Biophysics, 7(1):1-9,
2019.

D. Cozzetto, A. Kryshtafovych, M. Ceriani, and A. Tramontano. Assessment of predictions in the
model quality assessment category. Proteins, 69 Suppl 8:175-183, 2007. doi: 10.1002/prot.
21669.

G Derevyanko, S Grudinin, Y Bengio, and G Lamoureux. Deep convolutional networks for quality
assessment of protein folds. Bioinformatics (Oxford, England), 34(23):4046-4053, 2018.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224-2232, 2015.

R Evans, J Jumper, J Kirkpatrick, L Sifre, T Green, C Qin, A Zidek, A Nelson, A Bridgland,
H Penedones, et al. De novo structure prediction with deeplearning based scoring. Annu Rev
Biochem, 77:363-382, 2018.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. In Advances in Neural Information Processing Systems, pp. 6530-6539,
2017.

Kyle Yingkai Gao, Achille Fokoue, Heng Luo, Arun Iyengar, Sanjoy Dey, and Ping Zhang. In-
terpretable drug target prediction using deep neural representation. In IJCAIL, pp. 3371-3377,
2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263—1272. JMLR. org, 2017.

Alvaro Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia
Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In International Conference on Machine Learning (ICML), pp. 4467-4476, 2018.

David Menéndez Hurtado, Karolis Uziela, and Arne Elofsson. Deep transfer learning in the assess-
ment of the quality of protein models. arXiv preprint arXiv:1804.06281, 2018a.

David Menéndez Hurtado, Karolis Uziela, and Arne Elofsson. Deep transfer learning in the assess-
ment of the quality of protein models. arXiv preprint arXiv:1804.06281, 2018b.



Under review as a conference paper at ICLR 2020

David Hurtado Menendez, Karolis Uziela, and Arne Elofsson. Transfer learning for quality assess-
ment of protein models. Bioinformatics, submitted.

John Ingraham, Vikas K Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
based protein design. NeurIPS, 2019a.

John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. Learning protein structure
with a differentiable simulator. /CLR, 2019b.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecular optimization. /CLR, 2019.

Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: pattern recog-
nition of hydrogen-bonded and geometrical features. Biopolymers: Original Research on
Biomolecules, 22(12):2577-2637, 1983.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR, Toulon, France,
April 24-26, 2017, Conference Track Proceedings,2017. URL https://openreview.net/
forum?id=SJU4ayYqgl.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural
networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018a.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018b.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph varia-
tional autoencoders for molecule design. In Advances in Neural Information Processing Systems,
pp- 7795-7804, 2018.

J. Lundstrom, L. Rychlewski, J. Bujnicki, and A. Elofsson. Pcons: a neural-network-based consen-
sus predictor that improves fold recognition. Protein Sci, 10(11):2354-2362, Nov 2001.

Valerio Mariani, Marco Biasini, Alessandro Barbato, and Torsten Schwede. 1ddt: a local
superposition-free score for comparing protein structures and models using distance difference
tests. Bioinformatics, 29(21):2722-2728, 2013.

J. Moult, J.T. Pedersen, R. Judson, and K. Fidelis. A large-scale experiment to assess protein struc-
ture prediction methods. Proteins, 23(3):ii—v, Nov 1995. doi: 10.1002/prot.340230303.

Medhini Narasimhan, Svetlana Lazebnik, and Alexander Schwing. Out of the box: Reasoning with
graph convolution nets for factual visual question answering. In Advances in Neural Information
Processing Systems NIPS, pp. 2654-2665, 2018.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014-2023, 2016.

K. Olechnovic and C. Venclovas. VoroMQA: Assessment of protein structure quality using inter-
atomic contact areas. Proteins, 85(6):1131-1145, Jun 2017. doi: 10.1002/prot.25278.

Kliment Olechnovi¢ and Ceslovas Venclovas. Voromqa: Assessment of protein structure quality
using interatomic contact areas. Proteins: Structure, Function, and Bioinformatics, 85(6):1131—
1145, 2017.

Guillaume Pages, Benoit Charmettant, and Sergei Grudinin. Protein model quality assessment using
3d oriented convolutional neural networks. bioRxiv, pp. 432146, 2018.

Arjun Ray, Erik Lindahl, and Bjorn Wallner. Improved model quality assessment using proq2. BMC
Bioinformatics, 13(1):224, 2012.

10


https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Under review as a conference paper at ICLR 2020

Burkhard Rost, Chris Sander, and Reinhard Schneider. Redefining the goals of protein secondary
structure prediction. Journal of molecular biology, 235(1):13-26, 1994.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks, pp. 412—
422. Springer, 2018.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track
Proceedings, 2014. URL http://arxiv.org/abs/1312.6034.

K Uziela, Hurtado D Menéndez, N Shu, B Wallner, and A Elofsson. Prog3d: improved model
quality assessments using deep learning. Bioinformatics (Oxford, England), 33(10):1578, 2017.

Karolis Uziela, David Menéndez Hurtado, Nanjiang Shu, Bjorn Wallner, and Arne Elofsson. Im-
proved protein model quality assessments by changing the target function. Proteins: Structure,
Function, and Bioinformatics, 86(6):654-663, 2018.

B. Wallner and A. Elofsson. Can correct protein models be identified? Protein Sci, 12(5):1073—
1086, May 2003. doi: 10.1110/ps.0236803.

Jonghun Won, Minkyung Baek, Bohdan Monastyrskyy, Andriy Kryshtafovych, and Chaok Seok.
Assessment of protein model structure accuracy estimation in caspl3: Challenges in the era of
deep learning. Proteins: Structure, Function, and Bioinformatics, 2019.

Jinbo Xu. Distance-based protein folding powered by deep learning. Proceedings of the National
Academy of Sciences, 116(34):16856—16865, 2019.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems (NeurIPS) 31, 2018.

Adam Zemla. Lga: a method for finding 3d similarities in protein structures. Nucleic acids research,
31(13):3370-3374, 2003.

Jian Zhang and Yang Zhang. A novel side-chain orientation dependent potential derived from
random-walk reference state for protein fold selection and structure prediction. PloS one, 5(10):
e15386, 2010.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):1457-i466, 2018.

11


http://arxiv.org/abs/1312.6034

Under review as a conference paper at ICLR 2020

A PROTEIN QUALITY ASSESSMENT

For the interested reader, we describe here in more detail how the Global Distance Test Total Score
(Zemla, |2003) and the Local Distance Difference Test (Mariani et al.,[2013) are computed. Further-
more, we provide an intuition over what the benefits and downsides of each method are and motivate
why a better quality assessment should consider both a global measure and a local measure.

Global Distance Test Total Score (GDT_TS) Global Distance Test Total Score (GDT_TS) is a
global-level score obtained by first superimposing the structure of a decoy to the experimental struc-
ture using an alignment heuristic, and then computing the fraction of residues whose position is
within a certain distance from the corresponding residue in the native structure (figure [7). This
percentage is computed at different thresholds and then averaged to produce a score in the range
[0, 100], which we normalize between 0 and 1 (table[2).

N 3
Figure 7: GDT_TS

Table 2

i||cd—comtive| | <1 <2 <5 <10

1 0.6 A X X X X

2 12A X X X

3 19A X X

4 25A X X

5 63 A X
20% 60% 80% 100%

Local Distance Difference Test (LDDT) Local Distance Difference Test (LDDT), is a residue-level
score that does not require alignment of the structures and compares instead the local neighborhood
of every residue, in the decoy and in the native structure. If we define the neighborhood of a residue
as the set of its contacts, i.e. the set of other residues that lie within a certain distance from it, we can
express the quality of that residue as the percentage of contacts that it shares with the corresponding
residue in the native structure.

Figure 8: Example of LDDT scoring for residue 7: the residues within a radius R; are {6,8,10 }

the native structure (left) and { 6, 8 } for the decoy (right); at a radius Ry we have { 3,6,8,9,10,11 }
the native structure (left) and { 3,6,8,9, 10 } for the decoy (right).
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B PROTEIN GRAPHS STATISTICS

C DATASETS

We consider all decoys of all target included in CASP 7-12, excluding proteins whose sequence is
shorter than 50 residues and targets that have been canceled by the organizers.

Table 3: Datasets from previous CASP editions

Dataset | Targets Models | Usage
CASP7 95 19591

CASP 8 122 34789 .
CASP9 | 117 34946 | Train/Val
CASP 10 | 103 26254

CASP 11 | 83 16094

CASP 12 | 40 6924 Test
CAMEO | 676 20891

D HYPERPARAMETER OPTIMIZATION

We perform a guided grid search over the following hyper parameter space. The final model is
chosen to be the one with the highest Ry.ee¢ on the validation set. The following considerations were
made:

e The values for dpay are chosen on the base that the typical bond length is ~ 5A and residue-
residue interactions are negligible after ~ 10A.

e The values for o are chosen so that the RBF encoding of the edge length is approximately
linear around ~ 5A.

e The values for L are chosen to approximately match the average length of the shortest paths
in the protein graphs at different cutoffs.

e In addition to what described in section[2.3] we also tested an architecture with BatchNorm
layers between the Dropout and ReLLU operations, but apart from a significant slowdown
we did not notice any improvement.

Table 4: Hyper parameter space and best values

Hyper parameter Values Best
MP Layers L 3,4,5,6,7,8,9 6
MP input size e 32,64, 128 128
MP input size v 64, 128,256,512 512
MP input size u 64, 128,256,512 512
MP output size e 8,12, 16, 32 16
MP output size v 8, 16, 32, 64 64
MP output size u 8,12, 16, 32 32
Cutoff dpax 6,8,10,12 8
Sigma o 10, 15, 20 15
Dropout rate 0,0.102,03,04 0.2
Learning rate 1072,1073 1073
Weight decay 1074,107° 105
Local weight \* 1,5, 10 1
Global weight \9 1,5,10 1
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E ADDITIONAL METRICS

The Quality Assessment literature is rich of metrics to measure the performances of a scoring
method. In the main text we tried to keep the exposition uncluttered by only reporting figures for
the most important metrics. Here we present a more extensive set of metrics, that further describe
our method and can serve as future benchmark.

In the following, we use:

t=1,...,T .
Target proteins
d=1,...,D!
, Decoys of a target
ij=1,...,|5 Residue indexes of a target
¢@t? = GDT_TS(CH4, otnative) Global quality score (true)
qf,t»d _ LDDT(Ct’d7 CtmatiVE) Local quality scores (true)
GRAPHQAY (Pt,d) Global quality score (predicted)
GRAPHQAf P ‘ d) Local quality scores (predicted)

Root Mean Squared Error (RMSE) We compute RMSE between all true and predicted scores, for
both LDDT and GDT_TS.

For LDDT, it it the square root of:

1 1 & B 5
MSE = — _ —_— ( ?’t’d — GRAPH AZ t,d )
T;Dt;mizl o QAP

For GDT_TS, it it the square root of:
1 £l 1 D' 2
MSE=—-) — 9:td _ GRAPHQAY (PH?

Correlation coefficients We compute the Pearson (R), Spearman (p) and Kendall (7) correlation
coefficients between all true and predicted scores. Since all scores are treated equally, with no dis-
tinction between different decoys or different targets, a high value for these scores can be misleading.
Thus, their per-model and per-target versions should be also checked.

For LDDT:
R = PEARSON ({ ¢t} { GRAPHQA! (PH) }>
p = SPEARMAN ({ ¢t} { GRAPHQA! (P) })
r = KenpaLL ({ g/}, { GRAPHQA((P') })
For GDT_TS:

R = PEARSON ({¢%"%} { GRAPHQAY(P"%) })
p = SPEARMAN ({ g1}, { GRAPHQAY(P") })
7 = KENDALL ({¢?"*}, { GRAPHQAY(P"?) })

Correlation coefficients per-model For every decoy of every target, we compute the Pearson
(Rmodel), Spearman (pmodel) and Kendall (7y04e1) correlation coefficients between true and predicted
residue-level scores (LDDT). We then report the average correlation coefficients across all decoys
of all targets. The per-model correlation coefficients estimate the performance of the network to
rank individual residues by their quality and distinguish correctly vs. incorrectly folded segments.
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Per-model correlation coefficients are computed only for LDDT:

T Dt
1 1
Rmodel = T E ﬁ E PEARSON ({ qf’t’d } , { GRAPHQAf('Pt’d) })
t=1 d=1

T Dt

1 1
Pmodel = T Z ﬁ Z SPEARMAN ({ qf’t’d } , { GRAPHQAf(’Ptvd) })
t=1 d=1
1 T 1 Dt
Tmodel = T Z ﬁ Z KENDALL ({ qf’t’d } , { GRAPHQAf(’Ptvd) })
t=1 d=1

Correlation coefficients per-target For every target, we compute the Pearson (Fiyge), Spearman
(Prarger) and Kendall (Tiarger) correlation coefficients between true and predicted decoy-level scores
(GDT_TS). We then report the average correlation coefficients across all targets. With reference to
the funnel plots, this would be the correlation between the markers in every plot, averaged across
all plots. The per-target correlation coefficients estimate the performance of the network to rank the
decoys of a target by their quality and select the ones with highest global quality.

Per-target correlation coefficients are computed only for GDT_TS:

T
1
Rlarget = T E PEARSON ({ qg’t’d } , { GRAPHQAg (fPt.,d) })
t=1

T
1
Prarget = T Z SPEARMAN ({ gt A GRAPHQA‘(](Pt’d) })

t=1

T
1
Ttarget — T Z KENDALL ({ qg,t,d, } 7 { GRAPHQAg (pt,d) })
t=1

First Rank Loss (FRL) For every target, we compute the difference in GDT_TS between the best
decoy according to ground-truth scores and best decoy according to the predicted scores. We then
report the average FRL across all targets. This represents the loss in (true) quality we would suffer
if we were to choose a decoy according to our rankings and can is represented in the funnel plots by
the gap between the two vertical lines indicating the true best (green) and predicted best (red).

FRL measures the ability to select a single best decoy for a given target. In our experiments, however,
we noticed that FRL is extremely subject to noise, as it only considers top-1 decoys. Therefore, we
consider NDCG to be a superior metric for this purpose, though we have not seen it used in the QA
literature.

FRL is only computed for GDT_TS:

T

1 ,t,d Jt,d*
FRL:T;|max{qg P —¢ ,

where d* = arg max, { GRAPHQAY(P%?) } for every target ¢.

Recall at £ (RECQFL) We can describe Quality Assessment as an information retrieval task, where
every target represents a query and its decoys are the documents available for retrieval. If we con-
sider the best decoy to have a score of 1 and all others to have zero score, we can compute the
average RECQF as the percentage of queries for which the best decoy is retrieved among the top-k
results.

This metric, however, is subject to the same pitfalls of FRL, since it only considers the best decoy
of every target and ignores the relevance of the others. As described below, NDCG offers a better
perspective over the decoys retieved by a QA method.

Normalized Discounted Cumulative Gain at £ (NDCG@QkF) For a given query we consider the
top-k decoys ranked according to their predicted global scores. Discounted Cumulative Gain at k
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(DCGQE) is computed as the cumulative sum of their ground-truth GDT_TS scores (gain), dis-
counted however according to the position in the list. A high DCGQE is obtained therefore by
a) selecting the k-best decoys to be part of the top-k predictions, and b) sorting them in order of
decreasing quality (the higher in the list, the lower the discount).

Dividing DCG@k by DCG'**@f (obtained by ranking according to the ground-truth scores), yields
the Normalized Discounted Cumulative Gain NDCGQ¥ € [0, 1], which can be compared and aver-
aged across targets.

F ADDITIONAL RESULTS

The CASP 11 and 12 datasets are conventionally divided into: stage I, containing 20 randomly-
selected decoys per target, and stage 2, containing the top-150 decoys of each target. In the QA
literature we found papers that only report results on either the dataset as a whole, or on stage 1 and
stage 2. Furthermore, some papers report metrics on other methods whose values differ from the
original papers for some unspecified reason. In the main text, we adhere to the following rules to
summarize the metrics we collected:

e Metrics computed on stage 1 are considered noisy and ignored, since stage 1 splits contain
only 20 randomly-selected decoys per target

e Metrics computed on stage 2 and on the whole dataset are considered equally valid, allow-
ing to "merge” results from papers with different scoring strategies

o If multiple values are reported from multiple sources for the same (method, dataset) pair,
only the best one is reported
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F.1 CASPI11
GDT_TS LDDT
TestSet Method Source FRL R Riarget RMSE P Prarget T Ttarget R Rodel RMSE
ProQ3D ProQ4 0.84 0.61 0.125
CASP 11 ProQ4 ProQ4 0.77 0.56 0.147
GRAPHQAR zw Ours 0.082 0.836 0.609 0.146 0.837 0.49 0.637 0.354 0.799 0.516 0.14
GRAPHQA Ours 0.071 0.91 0.74 0.117 0.918 0.622 0.747 0.461 0.852 0.602 0.122
ProQ3D 3D CNN 0.046 0.755 0.673 0.529
Ornate 0.066 0.795 0.691 0.782 0.606 0.58 0.462
VoroMQA 3D CNN 0.087 0.637 0.521 0.394
Ornate 0.085 0.689 0.617 0.682 0.482 0.483 0.361
RWplus 3D CNN 0.122 0.512 0.402 0.303
stage 1 Ornate 0.128 0.08 0.467 0.003 0.371 -0.016 0.274
3D CNN 3D CNN 0.064 0.535 0.425 0.325
N Ornate 0.104 0.532 0.442 0.614 0.369 0.437 0.28
Ornate Ornate 0.077 0.635 0.465 0.634 0.372 0.44 0.275
GRAPHQAR »w Ours 0.09 0.829 0.63 0.135 0.81 0.514 0.609 0.393 0.79 0.475 0.131
GRAPHQA Ours 0.035 0.923 0.788 0.09 0.924 0.647 0.755 0.515 0.861 0.57 0.108
ProQ3D 3D CNN 0.066 0.452 0.433 0.307
Ornate 0.053 0.772 0.444 0.796 0.432 0.594 0.304
VoroMQA 3D CNN 0.063 0.457 0.499 0.321
Ornate 0.066 0.651 0.419 0.688 0.412 0.505 0.291
RWplus 3D CNN 0.089 0.206 0.248 0.176
stage 2 Ornate 0.088 0.056 0.167 0.033 0.192 0.011 0.137
3D CNN 3D CNN 0.064 0.421 0.409 0.288
Ornate 0.074 0.629 0.375 0.655 0.363 0.433 0.254
Ornate Ornate 0.055 0.637 0.386 0.673 0.371 0.475 0.259
GRAPHQAR zw Ours 0.071 0.82 0.379 0.149 0.82 0.357 0.618 0.251 0.787 0.529 0.142
GRAPHQA Ours 0.063 0.899 0.539 0.123 0.905 0.507 0.729 0.363 0.839 0.61 0.126
1 1
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Figure 9: CASP 11: Histograms of true vs. predicted LDDT and GDT_TS scores, average recall @
k, average NDCG @ k
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F.2 CASP 12
GDT-TS LDDT ‘
TestSet Method Source FRL R Riarget RMSE P Prarget T Ttarget R Rodel RMSE P Pmodel
ProQ3D 3D CNN 0.164 0.609 0.602 0.451
ProQ4 Ours 0.772 0.516 0.776 0.498
VoroMQA 3D CNN 0.161 0.557 0.515 0.38
CASP 12 RWplus 3D CNN 0.192 0.313 0.355 0.257
3D CNN 3D CNN 0.146 0.607 0.521 0.381
AngularQA AngularQA 0.138 0.651 0.439
GRAPHQAR zw Ours 0.092 0.816 0.673 0.149 0.814 0.606 0.624 0.448 0.796 0.501 0.139
GRAPHQA Ours 0.089 0.843 0.745 0.137 0.834 0.66 0.684 0.503 0.843 0.565 0.124
ProQ3D Ornate 0.086 0.671 0.705 0.478 0.636 0.335 0.482
VoroMQA Ornate 0.085 0.456 0.611 0.381 0.554 0.263 0.414
RWplus Ornate 0.132 -0.272 0.479 -0.538 0.465 -0.381 0.344
stage 1 Ornate Ornate 0.113 0.551 0.566 0.484 0.504 0.339 0.374
AngularQA AngularQA 0.148 0.502
GRAPHQAR zw Ours 0.068 0.721 0.679 0.127 0.623 0.596 0.451 0.448 0.661 0.413 0.118
GRAPHQA Ours 0.043 0.814 0.789 0.085 0.755 0.684 0.589 0.541 0.718 0.474 0.105
ProQ3D Ornate 0.06 0.806 0.6 0.8 0.54 0.601 0.388
VoroMQA Ornate 0.106 0.605 0.559 0.604 0.501 0.445 0.362
RWplus Ornate 0.103 -0.096 0.417 -0.096 0.378 -0.067 0.265
stage 2 Ornate Ornate 0.072 0.67 0.491 0.657 0.458 0.472 0.322
AngularQA AngularQA 0.128 0.377
GRAPHQAR zw Ours 0.094 0.807 0.614 0.151 0.807 0.545 0.618 0.395 0.793 0.507 0.141
GRAPHQA Ours 0.08 0.832 0.707 0.141 0.828 0.61 0.679 0.456 0.842 0.573 0.125
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Figure 12: CASP 12: Histograms of true vs. predicted LDDT and GDT_TS scores, average recall

@ k, average NDCG @ k
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Figure 13: CASP 12: funnels
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