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ABSTRACT

Decentralized stochastic gradient descent (SGD), where parallel workers are con-
nected to form a graph and communicate adjacently, has shown promising results
both theoretically and empirically. In this paper we propose Moniqua, a technique
that allows decentralized SGD to use quantized communication. We prove in
theory that Moniqua communicates a provably bounded number of bits per itera-
tion, while converging at the same asymptotic rate as the original algorithm does
with full-precision communication. Moniqua improves upon prior works in that it
(1) requires no additional memory, (2) applies to non-convex objectives, and (3)
supports biased or linear quantizers. We demonstrate empirically that Moniqua
converges faster with respect to wall clock time than other quantized decentralized
algorithms. We also show that Moniqua is robust to very low bit-budgets, allowing
less than 4-bits-per-parameter communication without affecting convergence when
training VGG16 on CIFAR10.

1 INTRODUCTION

Stochastic gradient descent (SGD), as a widely adopted optimization algorithm for machine learning,
has shown promising performance when running at large scale (Zhang, 2004; Bottou, 2010; Dean
et al., 2012; Goyal et al., 2017). However, the communication bottleneck among workers1 when
running distributed SGD presents a non-trivial challenge (Alistarh, 2018). State-of-the-art frameworks
such as TensorFlow (Abadi et al., 2016), CNTK (Seide and Agarwal, 2016) and MXNet (Chen et al.,
2015) are built in a centralized fashion, where workers exchange gradients either via a centralized
parameter server (Li et al., 2014a;b) or the MPI AllReduce operation (Gropp et al., 1999). Such a
design, however, puts heavy pressure on the central server and strict requirements on the underlying
network. In other words, when the underlying network is poorly constructed, i.e. high latency or low
bandwidth, it can easily cause degradation of training performance due to communication congestion
in the central server or stragglers (slow workers) in the system.

There are two general approaches to deal with these problems: (1) decentralized training (Lian
et al., 2017a;b; Tang et al., 2018a; Hendrikx et al., 2018) and (2) quantized communication2 (Zhang
et al., 2017; Alistarh et al., 2017; Wen et al., 2017). In decentralized training, all the workers are
connected to form a graph and each worker communicates only with adjacent workers by averaging
model parameters. This balances load and is robust to scenarios where workers can only be partially
connected or the communication latency is high. On the other hand, quantized communication
reduces the amount of data exchanged among workers, which leads to faster convergence with respect
to wall clock time (Alistarh et al., 2017; Seide et al., 2014; Doan et al., 2018; Zhang et al., 2017;
Wang et al., 2018). This is especially useful when the communication bandwidth is restricted.

At this point, a natural question is: Can we apply quantized communication to decentralized training,
and thus benefit from both of them? Unfortunately, directly combining them together negatively affects
the convergence rate (Tang et al., 2018b). This happens because existing quantization techniques
are mostly designed for centralized SGD, where workers communicate via exchanging gradients
(Alistarh et al., 2017; Seide et al., 2014; Wangni et al., 2018). Gradients are robust to quantization
since they get smaller in magnitude near local optimum and in some sense carry less information,
causing quantization error to approach zero (De Sa et al., 2018). In contrast, decentralized workers
are communicating model parameters, which do not necessarily approach zero, and so quantization
error does not diminish unless precision is explicitly increased (Tang et al., 2018c). Previous work

1A worker could refer to any computing unit that is capable of computing, communicating and has local
memory such as CPU, GPU, or even a single thread, etc.

2These approaches include low-precision, sparsification, and compression techniques more generally.
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solved this problem by adding an error tracker to compensate quantization errors (Tang et al., 2019)
or adding replicas of neighboring models and focusing on quantizing model difference which does
approach zero (Koloskova et al., 2019; Tang et al., 2018b). However, these methods suffer from
trade-offs and limitations in that: (1) the extra replicas or error tracking incurs substantial memory
overhead that is proportional to model size (more details in Section 2); and (2) these methods are
statistically restricted, in the sense that they are either limited to convex problems (Koloskova et al.,
2019) or require unbiased or non-linear quantizers (Koloskova et al., 2019; Tang et al., 2018b; 2019).

To address these problems, in this paper we propose Moniqua, an extra-memory-free (details in
Section 2) method for decentralized training to use quantized communication. Moniqua supports
both biased and linear quantizers, as well as non-convex objectives.

Intuition behind Moniqua. In a communication step of decentralized training, a worker w1 updates
its model parameter m1 by averaging with a neighboring worker w2’s model parameter m2: m1 ←
1
2 (m1 +m2). Note that 1

2 (m1 +m2) = m1 + 1
2 (m2 −m1), so averaging is equivalent to letting w1

obtain m2 −m1 (same logic for w2). Since m1 and m2 will approach the same local optimum as the
algorithm converges, we can expect the higher-order bits of m1 and m2 to get close. Then we can
save communication by having w2 not communicate those higher-order bits to w1. More explicitly, if
we know that ‖m1−m2‖∞ ≤ θ for some known parameter θ (later we will show it can be derived in
theory), then instead of sending the entire model m2 which might cause overhead, w2 can just send
its j-th coordinate (m2)j as (m2)j mod θ (∀j ∈ [d]). Note that given ‖m1 −m2‖∞ ≤ θ:

(m2)j mod θ − (m1)j mod θ = ((m2)j − (m2)j) mod θ = (m2)j − (m2)j

so w1 can obtain the j-th coordinate ofm2−m1 by locally computing (m2)j mod θ− (m1)j mod θ
with (m2)j mod θ received from w2. Since (m2)j mod θ is generally a smaller number than (m2)j ,
w2 can send fewer bits with the same level of absolute error.

In this paper, we make the following contributions.

• We show by example that directly quantizing communication in decentralized training, even
with an unbiased quantizer, can fail to converge asymptotically. (Section 3)
• We propose Moniqua, a general algorithm that uses modular arithmetic for communication

quantization in decentralized training. We prove applying Moniqua achieves the same
asymptotic convergence rate as the baseline full-precision algorithm (D-PSGD) while
requiring at most O(log log n) number of bits per parameter communicated, where n is the
number of parallel workers. (Section 4)
• We apply Moniqua to decentralized algorithms with variance reduction and asynchronous

communication (D2 and AD-PSGD) and prove Moniqua enjoys the same asymptotic rate as
with full-precision communication when applied to these cases. (Section 5)
• We empirically evaluate Moniqua and show it outperforms all the related algorithms given

an identical quantizer. We also show Moniqua is scalable and robust to very low bit-
budgets, and we introduce techniques we found empirically useful to run Moniqua even
more efficiently. (Section 6)

2 RELATED WORK

Decentralized Stochastic Gradient Descent (SGD) Decentralized algorithms (Mokhtari and
Ribeiro, 2015; Sirb and Ye, 2016; Lan et al., 2017; Wu et al., 2018a) have been widely studied
with consideration of communication efficiency, privacy and scalability. In the domain of large-
scale machine learning, D-PSGD was the first Decentralized SGD algorithm that enjoys the same
asymptotic convergence rate O(1/

√
Kn) (where K is the number of total iterations and n is the

number of workers) as centralized algorithms (Lian et al., 2017a). After D-PSGD came D2, which
improves D-PSGD and is applicable to the case where workers are not sampling from identical data
sources (Tang et al., 2018a). Another extension was AD-PSGD, which lets workers communicate
asynchronously and has a convergence rate of O(1/

√
K) (Lian et al., 2017b). In this paper we

prove that Moniqua is applicable to all of these three algorithms. Other relevant work includes: He
et al. (2018), which investigates decentralized learning on linear models; Nazari et al. (2019), which
introduces decentralized algorithms with online learning; Zhang and You (2019), which analyzes
the case when workers cannot mutually communicate; and Assran et al. (2018), which investigates
Decentralized SGD specifically for deep learning.
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Quantized Communication in Centralized SGD Prior research on quantized communication is
often focused on centralized algorithms, such as randomized quantization (Doan et al., 2018; Suresh
et al., 2017; Zhang et al., 2017) and randomized sparsification (Wangni et al., 2018; Stich et al., 2018;
Wang et al., 2018; Alistarh et al., 2018). Many examples of prior work focus on studying quantization
in the communication of deep learning tasks specifically (Han et al., 2015; Wen et al., 2017; Grubic
et al., 2018). Alistarh et al. (2017) proposes QSGD, which uses an encoding-efficient scheme, and
discusses its communication complexity. Another method, 1bitSGD, quantizes exchanged gradients
with one bit and shows great empirical success on speech recognition (Seide et al., 2014). Other work
discusses the convergence rate under sparsified or quantized communication (Jiang and Agrawal,
2018; Stich et al., 2018). Acharya et al. (2019) theoretically analyzes sublinear communication for
distributed training.
Quantized Communication in Decentralized SGD Quantized communication for decentralized
algorithms is a rising topic in the optimization community. Previous work has proposed decentralized
algorithms with quantized communication for strongly convex objectives (Reisizadeh et al., 2018;
Koloskova et al., 2019). Following that, Tang et al. (2018b) proposes DCD/ECD-PSGD, which
quantizes communication via estimating model difference. Furthermore, Tang et al. (2019) proposes
DeepSqueeze, which applies an error-compensation method (Wu et al., 2018b) to decentralized
setting. From a systems perspective, Koloskova et al. (2019) and Tang et al. (2018b) require O(d · l)
and Tang et al. (2019) requires O(d) extra memory compared to D-PSGD to implement quantized
communication, where d denotes the dimension of the model and l denotes the number of connections
in the network. In comparison, Moniqua is extra-memory-free.

3 SETTING AND NOTATION
In this section, we introduce our notation and the general assumptions we will make about the
quantizers for our results to hold. Then we describe D-PSGD (Lian et al., 2017a), the basic algorithm
for Decentralized SGD, and we show how naive quantization can fail in decentralized training.

Quantizers. Throughout this paper, we assume that we use a quantizer Qδ that has bounded error

‖Qδ(x)− x‖∞ ≤ δ, ∀x ∈ [−1, 1]d (1)

where δ is some constant. In general, a smaller δ denotes more fine-grained quantization requiring
more bits. For example, a biased linear quantizer can achieve (1) by rounding x to the nearest number
in the set {2δn | n ∈ Z}; this will require about δ−1 quantization points to cover the interval [−1, 1],
so such a linear quantizer can satisfy (1) using only

⌈
log2

(
1
δ + 1

)⌉
bits (Li et al., 2017; Gupta et al.,

2015). Note that (1) can be satisfied (for appropriate values of δ) by both linear (Gupta et al., 2015;
De Sa et al., 2017) and non-linear (Stich, 2018; Alistarh et al., 2017) quantizers, and thus it is more
general than assumptions used in previous works where only non-linear quantizers are considered
(Koloskova et al., 2019; Tang et al., 2018c; 2019).

Decentralized parallel SGD (D-PSGD). D-PSGD (Lian et al., 2017a) is the first and most basic
Decentralized SGD algorithm. In D-PSGD, n workers are connected to form a graph. Each worker i
stores a copy of model x ∈ Rd and a local dataset Di and collaborates to optimize

min
x∈Rd

f(x) =
1

n

n∑
i=1

Eξ∼Difi(x; ξ)︸ ︷︷ ︸
fi(x)

(2)

where ξ is data sample from Di. In each iteration of D-PSGD, worker i computes a local gradient
sample using Di. Then it averages its model parameters with its neighbors according to a symmetric
and doubly stochastic matrix W , where Wij denotes the ratio worker j averages from worker i.
Formally: Let xk,i and g̃k,i denote local model and sampled gradient on worker i at k-th iteration,
respectively. Let α denote the step size. The update rule of D-PSGD can be expressed as:

xk+1,i =
∑n

j=1
xk,jWji − αg̃k,i = xk,i−

∑n

j=1
(xk,i − xk,j)Wji︸ ︷︷ ︸

communicate to reduce difference

−αg̃k,i︸ ︷︷ ︸
gradient step

(3)

From (3) we can see the update of a single local model contains two parts: communication to reduce
model difference and a gradient step. Lian et al. (2017a) shows that all local models in D-PSGD are
able to reach the same stationary point.
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Failure with direct quantization. Here, we illustrate why directly quantizing communication in
decentralized training —naively quantizing the exchanged data—can fail to converge asymptotically
even on a simple problem. This naive approach with quantizer Qδ can be represented by

xk+1,i = xk,iWii +
∑

j 6=i
Qδ(xk,j)Wji − αg̃k,i (4)

Based on Equation 4, we obtain the following theorem.
Theorem 1 For some constant δ, suppose that we use an unbiased linear quantizer Q with repre-
sentable points {δn | n ∈ Z} to learn on the quadratic objective function f(x) = (x− δ/2)>(x−
δ/2)/2 with the direct quantization approach (4). Let φ denote the smallest value of a non-zero
entry in W . Regardless of what step size we adopt, it will always hold for all iterations k and local
model indices i that E ‖∇f(xk,i)‖2 ≥ φ2δ2

8(1+φ2) . That is, the local iterates will fail to asymptotically
converge to a region of small gradient magnitude in expectation.

4 MONIQUA
Theorem 1 shows that when directly quantizing communication in decentralized SGD, even with
an unbiased quantizer, any local model can fail to converge on a simple quadratic objective. In
this seciton, we propose a technique, Moniqua, that solves this problem. Moniqua works under the
following common assumptions for analyzing decentralized optimization algorithms (Lian et al.,
2017a; Tang et al., 2018b; Koloskova et al., 2019).

(A1) Lipschitzian gradient. All the functions fi have L-Lipschitzian gradients.

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,∀x, y ∈ Rd

(A2) Spectral gap. The communication matrix W is a symmetric doubly stochastic matrix and
max{|λ2(W )|, |λn(W )|} = ρ < 1, where λi(W ) denotes the ith eigenvalue of W .

(A3) Bounded variance. There exist non-negative σ and ς such that

Eξi∼Di
∥∥∥∇f̃i(x; ξi)−∇fi(x)

∥∥∥2

≤ σ2, Ei∼{1,··· ,n} ‖∇fi(x)−∇f(x)‖2 ≤ ς2

where∇f̃i(x; ξi) denotes gradient sample on worker i computed via data sample ξi.
(A4) Initialization. All the local models are initialized by the same weight: x0,i = x0, for all i

and without loss of generality x0 = 0.
(A5) Bounded gradient magnitude. The norm of a sampled gradient is bounded by ‖g̃k,i‖∞ ≤

G∞, for all i and k with some constant G∞.

In Section 1, we described how a modulo operation can be used to avoid sending redundant bits if a
bound θ on model difference is known. Here we outline how we can obtain such a bound. We do so
by leveraging the following insight: in decentralized training, all the workers initialize local models
at same point and average with each other periodically. The only difference among their models is
caused by the sampled gradients (updated with the step size), and this difference is reduced each time
they communicate. Since we have an upper bound on the magnitude of the gradients (A5) as well as
a bound characterizing how quickly the communication process converges (A2), we can combine
these to get an a priori bound θ on how much the models can differ. We can then pass this bound θ
as a parameter to the algorithm, which can proceed to modulo-quantize the communication via the
process described in Section 1. We formalize this approach as Moniqua (Algorithm 1).

Algorithm 1 Pseudo-code of Moniqua on worker i
Input: initial point x0,i = x0, step size α, the priori bound θ, communication matrix W , number of

iterations K, quantizer Qδ , neighbor list Ni
1: for k = 0, 1, 2, · · · ,K − 1 do
2: Compute a local stochastic gradient g̃k,i with data sample ξk,i and current weight xk,i
3: Compute modulo-ed model: qk,i ← θ · Qδ

(xk,i
θ mod 1

)
(element-wise division and mod)

4: Average with neighboring workers: xk+ 1
2 ,i
← xk,i +

∑
j∈Ni(qk,j − qk,i)Wji

5: Update the local weight with local gradient: xk+1,i ← xk+ 1
2 ,i
− αg̃k,i

6: end for
Output: Averaged model XK = 1

n

∑n
i=1 xK,i

4
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In line 3 we rescale each coordinate so that the number to be quantized falls in the region of [−1, 1],
which is required for (1) to apply. Note that with quantization, the priori bound θ could increase since
local models may move further apart due to quantization error. However, with appropriately chosen
δ, we can still obtain a bound θ and apply modulo-quantized communication that allows Moniqua to
converge. We present these parameter choices in Theorem 2, along with the resulting convergence
rate for Moniqua.
Theorem 2 If we run Algorithm 1 in a setting where

θ =
2 log(16n)αG∞

1− ρ
, δ =

1− ρ
4 log(16n)

, and α =
1

ς2/3K1/3 + σ
√
K/n+ 2L

,

then the output of Algorithm 1 converges at the asymptotic rate

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
.

1

K
+

σ√
nK

+
ς

2
3

K
2
3

+
σ2n

σ2K + n
+

G2
∞dn

σ2K + n
.

where ρ, f(0)− f∗ and L are omitted as constants.
Consistent with D-PSGD. Note that D-PSGD converges at the asymptotic rate of O(σ/

√
nK +

ς
2
3 /K

2
3 + n/K), and thus Moniqua has the same asymptotic rate as D-PSGD (Lian et al., 2017a). In

other words, the asymptotic convergence rate is not negatively impacted by the quantization.

Robust to large d. In Assumptions (A3) and (A5), we use l2-norm and l∞-norm to bound sample
variance and gradient magnitude, respectively. Note that, when d gets larger, the variance σ2 will
also grow proportionally. So, the last term will tend to remain n/K asymptotically with large d.

How many bits does Moniqua need? The specific number of bits required by Moniqua depends on
the underlying quantizer (Qδ). If we use nearest rounding (Gupta et al., 2015) as Qδ in Theorem 2, it
suffices to use at each step a number of bits B for each parameter sent, where

B =
⌈
log2

(
1
δ + 1

)⌉
=
⌈
log2

(
4 log2(16n)

1−ρ + 1
)⌉

Note that this bound is independent of model dimension d. When the system scales up, the number
of required bits grows at a rate of O (log log n).

5 SCALABLE MONIQUA
Previous work has extended D-PSGD to D2 (Tang et al., 2018a) (to make Decentralized SGD
applicable to workers sampling from different data sources) and AD-PSGD (Lian et al., 2017b) (an
asynchronous version of D-PSGD). In this section, we theoretically prove Moniqua is applicable to
both of these algorithms.

Moniqua with Decentralized Data Decentralized data refers to the case where all the local
datasets Di are not identically distributed (Tang et al., 2018a). More explicitly, the outer variance
Ei∼{1,··· ,n} ‖∇fi(x)−∇f(x)‖2 is no longer bounded by ς2 as assumed in D-PSGD (Assump-
tion (A3)). This update rule presented can be explicitly expressed in two steps3:

Xk+ 1
2

= 2Xk −Xk−1 − αG̃k + αG̃k−1

Xk+1 = Xk+ 1
2
W + (Qk −Xk+ 1

2
)(W − I)

where Xk, G̃k and Qk are matrix in the shape of Rd×n, where their i-th column are xk,i, g̃k,i and
qk,i respectively. And X−1 and G̃−1 are 0d×n by convention. Based on this, we obtain the following
convergence theorem.
Theorem 3 If we run D2 with Monqiua in a setting where

θ = (6D1n+ 8)αG∞, δ =
1

6nD2
, and α =

1

σ
√
K/n+ 2L

,

where D1 and D2 are two constants that only depend on the eigenvalues of W (definition can be
found in supplementary material), the output has the following asymptotic convergence rate:

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
.

1

K
+

σ√
nK

+
σ2n

σ2K + n
+

G2
∞dn

σ2K + n
.

3Detailed pseudo-code in the supplementary material.
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Note that D2 (Tang et al., 2018a) with full-precision communication has the asymptotic convergence
rate of O

(
1/K + σ/

√
nK + n/K

)
, Moniqua on D2 has the same asymptotic rate.

Moniqua with Asychronous Communication. Both D-PSGD and D2 are synchronous algorithms
as they require global synchronization at the end of each iteration, which can become a bottleneck
when such synchronization is not cheap. Another algorithm, AD-PSGD, avoids this overhead by
letting workers communicate asynchronously (Lian et al., 2017b). In the analysis of AD-PSGD, an it-
eration represents a single gradient update on one randomly-chosen worker, rather than a synchronous
bulk update of all the workers. This single-worker-update analysis models the asynchronous nature
of the algorithm. We apply Moniqua to AD-PSGD and obtain the following update rule4:

Xk+1 = XkWk + (Qk −Xk)(Wk − I)− αG̃k−τk
where Wk describes the communication behaviour between the kth and (k + 1)th gradient update,
and τk denotes the delay (measured as a number of iterations) between when the gradient is computed
and updated to the model. Note that unlike D-PSGD, here Wk can be different at each update step
and usually each individually has ρ = 1, so we can’t expect to get a bound in terms of a bound on the
spectral gap, as we did in Theorems 2 and 3. Instead, we require the following condition, which is
inspired by the literature on Markov chain Monte Carlo methods: for some constant tmix,

∀µ ∈ Rn, ∀k ∈ N, if µi ≥ 0 and 1>µ = 1, it must hold that
∥∥∥(∏tmix

i=1 Wk+i

)
µ− 1

n

∥∥∥
1
≤ 1

2 .

We call this constant tmix because it is effectively the mixing time of the time-inhomogeneous Markov
chain with transition probability matrixWk at time k (Levin and Peres, 2017). Note that this condition
is more general than those used in previous work on AD-PSGD because it does not require that
the Wk are sampled independently or in an unbiased manner. Using this, we obtain the following
convergence theorem.
Theorem 4 If we run AD-PSGD with Moniqua in a setting where

θ = 16tmixαG∞, δ =
1

32tmix
, and α =

n

2L+
√
K(σ2 + 6ς2)

,

the output has the following asymptotic convergence rate:

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
.

1

K
+

√
σ2 + 6ς2√

K
+

(σ2 + 6ς2)t2mixn
2

(σ2 + 6ς2)K + 1
+

n2t2mixG
2
∞d

(σ2 + 6ς2)K + 1

Note that AD-PSGD (Lian et al., 2017b) with full-precision communication has the asymptotic
convergence rate of O

(
1/K +

√
σ2 + 6ς2/

√
K + n2/K

)
, Moniqua converges at the same rate.

6 EXPERIMENTS
In this section, we evaluate Moniqua empirically. First, we compare Moniqua and other quantized
decentralized training algorithms’ convergence under different network configurations. Second, we
evaluate Moniqua’s scalability on D2 and AD-PSGD. Third, we introduce two additional techniques
to run Moniqua more efficiently and empirically investigate the limits of Moniqua.

Configuration. All the models and training scripts in this section are implemented in PyTorch and
run on Google Cloud Platform. We launch an instance as one worker, each configured with a 2-core
CPU with 4 GB memory and an NVIDIA Tesla P100 GPU. We use MPICH as the communication
backend. All the instances are running Ubuntu 16.04, and latency and bandwidth on the underlying
network are configured using the tc command in Linux. In all the experiments, we use the following
hyperparameters by default: batch size = 128, weight decay = 1e−4, and momentum = 0.9, which
are default values adopted in previous works (Lian et al., 2017b; Grubic et al., 2018). We tune the
step size from set {0.5, 0.1, 0.05, 0.01} for each algorithm. Throughout our experiments, we adopt
the commonly used (Gupta et al., 2015; Li et al., 2017) stochastic rounding5 with quantization step δ.

4Details in the supplementary material.
5Since several baselines are not applicable to biased quantizers, for fair comparison we consistently use

stochastic rounding (unbiased). More experiments using different quantizers including biased and non-linear
quantizers on Moniqua can be found in supplementary material.
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0 1000 2000 3000
Time(s)

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Centralized
D-PSGD
ECD-PSGD
DCD-PSGD
ChocoSGD
DeepSqueeze
Moniqua

(b) Bandwidth=100Mbps,
Latency=0.15ms

0 1000 2000 3000
Time(s)

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Centralized
D-PSGD
ECD-PSGD
DCD-PSGD
ChocoSGD
DeepSqueeze
Moniqua

(c) Bandwidth=20Mbps,
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Figure 1: Performance of different algorithms under different network configurations
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(a) 3-Bit Training Loss
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(b) 2-Bit Training Loss
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(c) 3-Bit Test Accuracy
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(d) 2-Bit Test Accuracy

Figure 2: Performance of Moniqua and other quantization algorithms under extreme bit-budget.

Wall-clock Time Evaluation. We start by evaluating the performance of Moniqua and other
baseline algorithms under different network configurations. We launch 8 workers connected in a ring
topology and train a ResNet110 (He et al., 2016) model on CIFAR10 (Krizhevsky et al., 2014). We
compare Moniqua with the following baselines:6 Centralized (implemented as a standard AllReduce
operation), D-PSGD (Lian et al., 2017a) with full-precision communication, DCD/ECD-PSGD (Tang
et al., 2018b), ChocoSGD (Koloskova et al., 2019) and DeepSqueeze (Tang et al., 2019). We set
δ = 0.01 for stochastic rounding across all algorithms that use quantization. To prevent overflow, we
use 16-bit integers7 torch.int16 as the floored output on the sender side. For Moniqua, we set
θ = 3.0.

We plot our results in Figure 1. As can be seen in Figure 1(a), with respect to epochs, All the
algorithms have similar convergence curve while DCD/ECD-PSGD have slightly slower convergence
curves. We can see from Figures 1(b) and 1(c) that when the network bandwidth decreases, the
curves begin to separate. AllReduce and full-precision D-PSGD suffer the most, since they require
a large volume of high-precision exchanged data. And from Figure 1(b) to Figure 1(d), when the
network latency increases, we observe similar behavior. On the other hand, from Figure 1(b) to
Figure 1(c) and Figure 1(d), curves of all the quantized baselines (DCD/ECD-PSGD, ChocoSGD
and DeepSqueeze) are getting closer to Moniqua. This is because, as shown in Figure 1(b), the
extra updating of the replicas in DCD/ECD-PSGD and ChocoSGD as well as the error tracking in
DeepSqueeze counteract the benefits from accelerated communication. However, when network
bandwidth decreases or latency increases, communication becomes the bottleneck and makes these
algorithms diverge from centralized SGD and D-PSGD. Delay between Moniqua and quantized
baselines does not vary with the network since that only depends on the their extra local computation
(error tracking and replica update). We observe that compared to Moniqua, DCD/ECD-PSGD is
approximately 13 seconds slower while ChocoSGD and DeepSqueeze being 10 and 8 seconds slower
repectively. From Figure 1 we can see that Moniqua outperforms all these other algorithms.

Aggressive Quantization Now we investigate how Moniqua and baselines behave under aggressive
quantization. We enforce two strict bit-budget: 2bit and 3bit (per parameter). We plot the results
in Figure 2. We can see that DCD-PSGD fails to converge in both cases and ECD-PSGD fails to
converge with 2bit. This is consistent with results in previous work (Tang et al., 2018c; 2019). On the
other hand, Moniqua converges faster than any other baselines. We observe at the end of 150 epoch,
with 3-bit communication Moniqua achieves 85% training accuracy while other baselines are below

6Other algorithms are not applicable to non-convex DNN problems, so we are not comparing them here.
7Since we are measuring the system performance, the specific number of bits is not the focus here. In later

section we will discuss statistical performance with small number of bits.
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Figure 3: Performance of applying Moniqua on
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Figure 4: Performance of Moniqua on VGG16 and
ResNet110 under different θ

70% (full precision achieves 97%). Compared to the theoretical results in Section 4, we show that
Moniqua is much more robust to low-bits budget in practice.

Scalability of Moniqua. We evaluate how Moniqua can be applied to D2 (Tang et al., 2018a) and
AD-PSGD (Lian et al., 2017b). First, we demonstrate how applying Moniqua to D2 can handle
decentralized data. We launch 10 workers, collaborating to train a VGG16 (Simonyan and Zisserman,
2014) model on CIFAR10. Similar to the setting of D2 (Tang et al., 2018a), we let each worker have
exclusive access to 1 labels (of the 10 labels total in CIFAR10). In this way, the data variance among
workers is maximized. We plot the results in Figure 3(a). We observe that applying Moniqua on
D2 does not affect the convergence rate while D-PSGD can no longer converge because of the outer
variance. Here we omit the wall clock time comparison since the communication volume is the same
in comparison of Moniqua and Centralized algorithm in Figure 1.

Next, we evaluate Moniqua on AD-PSGD. We launch 6 workers organized in a ring topology,
collaborating to train a ResNet110 model on CIFAR10. We set the network bandwidth to be 20Mbps
and latency to be 0.15ms. We plot the results in Figure 3(b). We can see that both AD-PSGD and
asynchronous Moniqua outperform D-PSGD. Besides, Moniqua outperforms AD-PSGD in that
communication is reduced, which is aligned with the intuition and theory.

Efficient Moniqua. There are two techniques we have observed to improve the performance of
Moniqua when using stochastic rounding: Qδ(x) = δbxδ + uc (where u is uniformly sampled from
[0, 1]), ∀x ∈ Rd. The first is to use shared randomness, in which the same random seed is used
for stochastic rounding on all the workers. That is, if two workers are exchanging tensors x and y
respectively, then the floored tensors bxδ + uc and byδ + uc they send use the same randomly sampled
value u. This provably reduces the error due to quantization (more details are in the supplementary
material). The second technique is to use a standard entropy compressor like bzip to further
compress the communicated tensors. This can help further reduce the number of bits because the
modulo operation in Moniqua can introduce some redundancy in the higher-order bits, which a
traditional compression algorithm can easily remove.

To evaluate these methods, we train both ResNet110 and VGG16 on CIFAR10 using 8 ring-connected
workers. We plot the training loss under different θ in Figure 4 (with δ = 0.01 for stochastic rounding).
Note that for VGG16, it can tolerate small θ = 0.08 while still preserving the convergence rate. On
the other hand, for ResNet110, it begins to diverge when θ decreases to 0.5. This is because VGG16
has more fully connected layers than ResNet110, and these layers are less sensitive to quantization,
as claimed in (Grubic et al., 2018). We observed that the fewest number of bits per number needed
to communicate by Moniqua for VGG16 and ResNet110 to guarantee convergence (accuracy loss
< 0.3%, criterion adopted by (Grubic et al., 2018)) are 3.64 and 5.67, respectively (details in the
supplementary material).

7 CONCLUSIONS
In this paper we propose Moniqua, a simple unified method of quantizing the communication in
decentralized training algorithms. Theoretically, Moniqua supports biased quantizer and non-convex
problems, while enjoying the same asymptotic convergence rate as full-precision-communication
algorithms without incurring storage or computation overhead. Empirically, we observe Moniqua
converges faster than other related algorithms with respect to wall clock time. Additionally, Moniqua
is robust to very low bits-budget.
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Supplementary Material
A OVERVIEW

This supplementary material contains proofs of all the theoretical results and extra experimental
results of Moniqua. It is organized as follows: In Section B, we provably explain why using shared
randomness in communication with stochastic rounding can improve performance (theoretical expla-
nation for technique 1 in Experiment Efficient Moniqua). Then we demonstrate more experimental
results in Section C. In Section D, we illustrate why naively quantizing communication in D-PSGD
fails to converge asymptotically, as a proof to Theorem 1. In Section E, we introduce some useful
tools of modeling communication as a Markov Chain for the rest of the proof (part of the intuition is
illustrated in the paper). We recommend to go through this before getting into Section F to H. Finally
we will provide proof to Theorem 2, 3 and 4 from Section F to H, with corollaries contained in the
corresponding sections. Detailed algorithm statements for applying Moniqua on D2 and AD-PSGD
can be found in Section G Algorithm 2 and Section H Algorithm 3, respectively.

B SHARED RANDOMNESS (EXPERIMENT OF Efficient Moniqua)

In this section, we provide a theoretical explanation why using shared randomness in the stochastic
rounding is able to improve the performance. Without the loss of generality, in the following analysis,
we let the quantization step associated with stochastic rounding quantizer Q be δ = 1. For any z
quantized using Q, let zf = z − bzc, the variance of quantization error can be expressed as

E ‖Q(z)− z‖2 = (1− zf )(−zf )2 + zf (1− zf )2 = zf (1− zf ) (5)

Note that in Moniqua, the term asssociate with quantization error is

E ‖(qk,j − xk,j)− (qk,i − xk,i)‖2

We now show for ∀x, y ∈ Rd

E ‖(Q(x)− x)− (Q(y)− y)‖2 = E ‖Q(y − x)− (y − x)‖2

With out the loss of generality, let x− bxc ≤ y − byc. Let xf = x− bxc and yf = y − byc, then

bx+ uc = bxc and by + uc = byc,with probability dye − y
bx+ uc = dxe and by + uc = dye,with probability x− bxc
bx+ uc = bxc and by + uc = dye,with probability (dxe − x)− (dye − y)

Then we have

E ‖(Q(x)− x)− (Q(y)− y)‖2

=E
∥∥∥(δ ⌊x

δ
+ u
⌋
− x
)
−
(
δ
⌊y
δ

+ u
⌋
− y
)∥∥∥2

=(dye − y)((bxc − x)− (byc − y))2 + (x− bxc)((dxe − x)− (dye − y))2

+((dxe − x)− (dye − y))((bxc − x)− (dye − y))2

=(1− yf )(xf − yf )2 + (xf )(xf − yf ) + (yf − xf )(yf − xf − 1)2

=(1− yf + xf )(yf − xf )2 + (yf − xf )(yf − xf − 1)2

=(1− yf + xf )(yf − xf )

=E ‖Q(y − x)− (y − x)‖2

The last equality holds due to equation 5. Next, let

∆ = y − x
r = Q(∆)−∆

And let rh denote h-th entry of r, let ∆h denote h-th entry of ∆. We obtain

rh =Q(∆h)−∆h
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=δ

{
−∆h

δ +
⌊

∆h

δ

⌋
+ 1, pt ≤ ∆h

δ −
⌊

∆h

δ

⌋
−∆h

δ +
⌊

∆h

δ

⌋
, otherwise

=δ

{
−q + 1, pt ≤ q
−q, otherwise

where

q =
∆h

δ
−
⌊

∆h

δ

⌋
, q ∈ [0, 1]

Based on that, we have

E
[
r2
h

]
≤δ2((−q + 1)2q + (−q)2(1− q))
=δ2q(1− q)
≤δ2 min{q, 1− q}

Since min{q, 1− q} ≤
∣∣xh
δ

∣∣, we have

E
[
r2
h

]
≤ δ2

∣∣∣∣∆h

δ

∣∣∣∣ ≤ δ |∆h|

Summing over the index h yields,

E ‖r‖22 ≤ δE ‖∆‖1 ≤
√
dδE ‖∆‖2

Pushing back x and r, we have

E ‖Q(y − x)− (y − x)‖2 ≤
√
dδE ‖y − x‖ =

√
dδE ‖x− y‖

Putting it back we have

E ‖(Q(x)− x)− (Q(y)− y)‖2 ≤
√
dδE ‖x− y‖

Now we can see that the error term is bounded by the distance of two quantized tensor, which, in
decentralized training, refers to the distance between two models on adjacent workers. In such a way,
the error bound can be reduced since the workers are getting close to each other.

C MORE EXPERIMENTAL RESULTS

C.1 COMPUTE NUMBER OF BITS

In Experiment of Efficient Moniqua, we calculate the number of bits in the following way: First,
we calculate the total number of bits each worker send out, sum them up and divided by number of
epochs, and we get the average bandwidth consumption BW of the whole system in each epoch.
Then we compute the number of bits required for each number in the following way (note that every
worker has 2 neighbors in a ring topology):

#bits =
BW

#neighbors · #workers · #params of model
In our experiments, #neighbors=2, #workers=8. For VGG16, #params of model= 15,245,130 while
for ResNet110, #params of model=1,146,842. We formalize the results in Table C.1 8.

C.2 VARIOUS QUANTIZERS

In this section, we will verify Moniqua is applicable to other quantizers aside from linear quantizer as
shown in the paper. We test it on two more quantizers:

1. Nearest Rounding (Biased)

Q(x) = δ
⌊x
δ

+ 0.5
⌋

where δ is the quantization step as defined in the linear quantizer. In this experiment, we set
δ = 0.01, the same value as we used in the paper with stochastic rounding.

8Note that we only put results that’s ’close to the limit of Moniqua’ here
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Table 1: Wall Clock Time consumption (Seconds)/Epoch in average under different network in
Experiment of Evaluation of Moniqua.

100mbps/0.15ms 20mbps/0.15ms 100mbps/10ms Extra Memory

Centralized 38.92 206.14 343.28 N/A

D-PSGD 36.25 189.48 310.98 N/A

DCD-PSGD 32.99 105.40 202.42 20.4 MB

ECD-PSGD 31.96 105.26 202.04 20.4 MB

ChocoSGD 32.03 105.18 201.18 20.4 MB

DeepSqueeze 30.01 103.67 193.92 13.6 MB

Moniqua 22.42 95.08 184.86 0 B

Table 2: Bandwidth consumption under different θ and δ when applying linear quantizer in Moniqua

MODEL MOD PARAM θ QUANT STEP BYTES/EPOCH AVG BITS

VGG16
NONE NONE 45594MB 32
1.0 0.01 5206MB 3.65
0.08 0.01 5192MB 3.64

RESNET110
NONE NONE 3430MB 32
2.0 0.01 609MB 5.67
1.3 0.01 608MB 5.67

2. Randomized Gossip (Non-linear)

Q(x) =

{
x, with probability p

0, with probability 1− p

In this experiment, we set p = 0.7.

We train ResNet110 on CIFAR10, and plot the results in Figure 5(c). We can see that the training
curves of using three quantizers are all aligned with D-PSGD with full-precision communication.
Note that in the paper we show that previous work cannot perserve the aligned curve even with
stochastic rounding (unbiased), thus we are not comparing them here.

C.3 MORE RESULTS ON DIFFERENT HYPERPARAMETERS

In this experiment, we plot more result of training ResNet110 and VGG16 on CIFAR10 under
different δ and θ in the experiment of aggressive quantization. And we plot the results in Figure 5(a)
and Figure 5(b).
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C.4 PERFORMANCE ON THE TESTSET UNDER AGGRESSIVE QUANTIZATION

We report the results in experiment of ”Aggressive Quantization” and report the test error and test
accuracy in the Figure 5 and Figure 6.
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(f) Test Loss under different algo-
rithms with 3-bit communication

Figure 5: More statistics from Experiment of Aggressive Quantization under 3-bit communication
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ent algorithms with 2-bit communi-
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(b) Test Accuracy under different
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(c) Test Loss under different algo-
rithms with 2-bit communication

Figure 6: More statistics from Experiment of Aggressive Quantization under 2-bit communication

D WHY NAIVE QUANTIZATION FAILS IN D-PSGD (PROOF TO THEOREM 1)

The update rule of naive quantization on D-PSGD is

xk+1,i = xk,iWii +

n∑
j=1,j 6=i

Q(xk,j)Wji − αkg̃k,i = xk,i +

n∑
j=1,j 6=i

(Q(xk,j)− xk,i)Wji − αkg̃k,i

where αk is allowed to vary with any policy. Let

Xk = [xk,1, · · · , xk,n] ∈ Rd×n

Ωk =

∑
j 6=1

Wj1 (Q(xk,j)− xk,1) , · · · ,
∑
j 6=n

Wjn (Q(xk,j)− xk,n)

 ∈ Rd×n

G̃k = [g̃k,1, · · · , g̃k,n] ∈ Rd×n

by rewritting the update rule, we obtain

Xk+1 = Xk + Ωk − αkG̃k

Let Yk = Xk − x∗1>n , and considering the fact that∇f(x) = x− δ/2 = x− x∗, we can rewrite the
update rule as

Yk+1ei = Ykei + Ωkei − αkYkei + αk

(
G̃k −Gk

)
ei

15
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where
(
G̃k −Gk

)
denotes variance in the gradient sampling.

Suppose that by using the update rule of naive quantization, worker i converges to x∗. Then there
must exist a K such that ∀k ≥ K,

E ‖Yk+1ei‖2 ≤ E ‖Ykei‖2 <
φ2δ2

8(1 + φ2)
(6)

Next we show that this assumption lets us derive a contradiction. Firstly, considering the property of
linear quantizer,

δ2

4
≤ E ‖Q(xk,i)− x∗‖2 ≤ 2E ‖Q(xk,i)− xk,i‖2 + 2E ‖xk,i − x∗‖2

As a result

E ‖Q(xk,i)− xk,i‖2 ≥
δ2

8
− φ2δ2

8(1 + φ2)
=

δ2

8(1 + φ2)

Since Q is unbiased, that means E[Q(x)− x] = 0, then we have

E ‖Ωkei‖2

=E

∥∥∥∥∥∥
∑
j 6=i

Wji (Q(xk,j)− xk,i)

∥∥∥∥∥∥
2

=
∑
j∈Ni

W 2
jiE ‖(Q(xk,j)− xk,i)‖2 +

∑
m 6=n6=i

E 〈(Q(xk,m)− xk,i)Wmi, (Q(xk,n)− xk,i)Wni〉

≥φ2
∑
j∈Ni

E ‖(Q(xk,j)− xk,i)‖2 +
∑

m6=n 6=i

E 〈(Q(xk,m)− xk,i)Wmi, (Q(xk,n)− xk,i)Wni〉

(∗)
=φ2

∑
j∈Ni

E ‖Q(xk,j)− xk,i‖2

≥ φ2δ2

8(1 + φ2)

where step (∗) holds due to unbiased quantizer. Putting it back to the update rule, we obtain

E ‖Yk+1ei‖2 =E
∥∥∥(Yk + Ωk − αkYk + αk

(
G̃k −Gk

))
ei

∥∥∥2

(∗)
=E ‖(1− αk)Ykei‖2 + E ‖Ωkei‖2 + E

∥∥∥αk (G̃k −Gk) ei∥∥∥2

≥E ‖Ωkei‖2

≥ φ2δ2

8(1 + φ2)

where cross terms in the (∗) step are all 0 due to the unbiased quantizer and unbiased sampling of the
gradient. Her we obtain the contradictory that φ2δ2

8(1+φ2) ≤ E ‖xk+1 − x∗‖2 < φ2δ2

8(1+φ2) . That being
said, for ∀k, i

E ‖xk,i − x∗‖2 = E ‖∇f(xk,i)‖2 ≥
φ2δ2

8(1 + φ2)

Thus we complete the proof.

E A MARKOV CHAIN ANALYSIS ON THE COMMUNICATION

To better understand how the parallel workers reach consensus over a communication matrix, in this
section we use theory from the analysis of Markov Chains to obtain some useful lemmas for proof of
Moniqua on D-PSGD and AD-PSGD.
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Since the communication matrix W is doubly stochastic (each row and column sum to 1), it has the
same structure as the transition matrix of a Markov Chain with 1n

n as its the stationary distribution(
W 1n

n = 1n

n

)
. Now let tmix and d(t) denote the mixing time and maximal distance between initial

state and stationary distribution as defined in Markov Chain theory.9

E.1 D-PSGD

In D-PSGD, the communication matrix is fixed during the training. That makes it perfectly aligned
with the structure of a Markov Chain. As a result, we obtain the following lemma:
Lemma 1 ∥∥∥∥W t

(
I − 1n1

>
n

n

)∥∥∥∥
1

≤ 2 · 2−
⌊

t
tmix

⌋

Proof For ∀x ∈ Rd, let u ∈ Rd be such a vector that every entry of u is the positive entry of x and 0
otherwise. Let v ∈ Rd be such a vector that every entry of v is the absolute value of negative entry of
x and 0 otherwise. The setting above means x = u− v. For example,

x = [2,−1]>

u = [2, 0]>

v = [0, 1]>

And we have ∥∥∥∥W t

(
I − 1n1

>
n

n

)
x

∥∥∥∥
1

=

∥∥∥∥W t

(
I − 1n1

>
n

n

)
(u− v)

∥∥∥∥
1

≤
∥∥∥∥W t

(
I − 1n1

>
n

n

)
u

∥∥∥∥
1

+

∥∥∥∥W t

(
I − 1n1

>
n

n

)
v

∥∥∥∥
1

=1>n u

∥∥∥∥W t u

1>n u
− 1n

n

∥∥∥∥
1

+ 1
>
n v

∥∥∥∥W t v

1>n v
− 1n

n

∥∥∥∥
1

≤2(1>n u+ 1
>
n v)d(t)

≤2d(t) ‖x‖1

Considering the definition of L1-norm, we have∥∥∥∥W t

(
I − 1n1

>
n

n

)∥∥∥∥
1

= max

∥∥∥W t
(
I − 1n1

>
n

n

)
x
∥∥∥

1

‖x‖1
≤ 2d(t)

According to a well-known results on the theory of Markov Chains,10 d(ltmix) ≤ 2−l holds for any
non-negative integer l, so we have∥∥∥∥W t

(
I − 1n1

>
n

n

)∥∥∥∥
1

≤ 2d(t) ≤ 2d

(
t

tmix
· tmix

)
≤ 2d

(⌊
t

tmix

⌋
tmix

)
≤ 2 · 2−

⌊
t

tmix

⌋

That completes the proof.

Additionally, based on standard results in the theory of reversible Markov Chains, we also have11

tmix ≤ log

(
1

1
4 ·

1
n

)
1

1− ρ
≤ log(4n)

1− ρ
.

9Here we are using notation from Chapter 4.5 of Markov Chains and Mixing Times (Levin 2009), available
at https://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf

10Again, see Markov Chains and Mixing Times for more details.
11Detailed analysis and proofs of this result can be found in chapter 12.2 of Markov Chains and Mixing Times.
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E.2 AD-PSGD

Note that unlike D-PSGD, here Wk can be different at each update step and usually each individually
have spectral radius ρ = 1, so we can’t expect to get a bound in terms of a bound on the spectral gap
as we did in Theorems 2 and 3. Instead, we require the following condition, which is inspired by the
literature on Markov chain Monte Carlo methods: for some constant tmix (here tmix is the same as
tmix in the paper) and for any k and any non-negative vector µ ∈ Rd such that 1>nµ = 1, it must hold
that ∥∥∥∥∥

(
tmix∏
i=1

Wk+i

)
µ− 1n

n

∥∥∥∥∥
1

≤ 1

2
.

We call this constant tmix because it is effectively the mixing time of the time-inhomogeneous Markov
chain with transition probability matrix Wk at time k. Note that this condition is more general than
those used in previous work on AD-PSGD because it does not require that the Wk are sampled
independently or in an unbiased manner. Based on the above analysis, we can prove the following
lemma, which is analogous to the lemma used in the synchronous case.
Lemma 2 For any k ≥ 0 and for any b ≥ a ≥ 0, there exists tmix such that∥∥∥∥∥

b∏
q=a

Wq

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

≤ 2 · 2−
⌊
b−a+1
tmix

⌋

Proof Note that for any x ∈ Rd, and let u and v be two vectors having same definition as in Lemma 1
with respect to x, then we have for any k∥∥∥∥∥
tmix∏
q=1

Wq+k

(
I − 1n1

>
n

n

)
x

∥∥∥∥∥
1

=

∥∥∥∥∥
tmix∏
q=1

Wq+k

(
I − 1n1

>
n

n

)
(u− v)

∥∥∥∥∥
1

≤

∥∥∥∥∥
tmix∏
q=1

Wq+k

(
I − 1n1

>
n

n

)
u

∥∥∥∥∥
1

+

∥∥∥∥∥
tmix∏
q=1

Wq+k

(
I − 1n1

>
n

n

)
v

∥∥∥∥∥
1

=1>n u

∥∥∥∥∥
tmix∏
q=1

Wq+k
u

1>n u
− 1n

n

∥∥∥∥∥
1

+ 1
>
n v

∥∥∥∥∥
tmix∏
q=1

Wq+k
v

1>n v
− 1n

n

∥∥∥∥∥
1

≤1

2
(1>n u+ 1

>
n v)

≤1

2
‖x‖1

Considering the definition of the induced `1 operator norm, we have∥∥∥∥∥
tmix∏
q=1

Wq+k

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

= max
x

∥∥∥∏tmix

q=1 Wq+k

(
I − 1n1

>
n

n

)
x
∥∥∥

1

‖x‖1
≤ 1

2

As a result, from the submultiplicativity of the matrix induced norm, we obtain∥∥∥∥∥
b∏

q=a

Wq

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

≤

∥∥∥∥∥
tmix∏
q=1

Wa−1+q

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

· · ·

∥∥∥∥∥
tmix∏
q=1

W···+q

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

·

∥∥∥∥∥
tr∏
q=1

W···+q

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

≤2
−
⌊
b−a+1
tmix

⌋ ∥∥∥∥∥
tr∏
q=1

W···+q

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

where tr = (b− a+ 1) mod tmix. Note that∥∥∥∥∥
tr∏
q=1

Wq

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

≤ 1− 1

n
+ (n− 1)

1

n
= 2− 2

n
≤ 2
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Putting it back we obtain ∥∥∥∥∥
b∏

q=a

W···+q

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

≤ 2 · 2−
⌊
b−a+1
tmix

⌋

That completes the proof.

Note that in the analysis of Moniqua on AD-PSGD (Section H), we will use this lemma as an
assumption.

F MONIQUA ON D-PSGD (PROOF TO THEOREM 2)

Consistent with linear and non-linear quantizer Here we briefly explain why using θ ·
Qδ
(
x
θ mod 1

)
instead of Qδ (x mod θ) for theoretical analysis and how it covers both linear and

non-linear quantizers. Note that typically, a linear quantizer has:

‖Qδ(x)− x‖∞ ≤ δ, ∀x ∈ Rd

while a non-linear quantizer has

‖Qδ(x)− x‖∞ ≤ δ‖x‖∞, ∀x ∈ Rd

so that for linear quantizer, with a given x ≤ θ:∥∥∥θ · Qδ (x
θ

mod 1
)
− x
∥∥∥
∞

= θ
∥∥∥Qδ (x

θ
mod 1

)
−
(x
θ

mod 1
)∥∥∥
∞
≤ θδ = θδ

And for non-linear quantizer, with a given x ≤ θ:∥∥∥θ · Qδ (x
θ

mod 1
)
− x
∥∥∥
∞

= θ
∥∥∥Qδ (x

θ
mod 1

)
−
(x
θ

mod 1
)∥∥∥
∞
≤ θδ · 1 = θδ

As a result, we can use the same bound θδ for quantizers with both of the properties, which we will
show in the rest of the proof.

F.1 PROOF TO THEOREM 2

Proof For convenience, we define the following notation

Xk = [xk,1, · · · , xk,n] , Qk = [qk,1, · · · , qk,n]

G̃k = [g̃k,1, · · · , g̃k,n] , Gk = [gk,1, · · · , gk,n]

X = X
1n

n
,∀X ∈ Rd×n, Ωk = (Qk −Xk)(W − I)

where gk,i denotes gradient computed via the whole dataset Di and xk,i

From a local view, the update rule of Algorithm 1 on worker i at iteration k can be written as

xk+1,i ← xk,i +
∑

j∈Ni
(qk,j − qk,i)Wji − αg̃k,i

which is equivalent to

xk+1,i = xk,i +

n∑
j=1

(xk,j − xk,i)Wji − αg̃k,i +

n∑
j=1

((qk,j − xk,j)− (qk,i − xk,i))Wji (7)

From a global view, the update rule can be written as

Xk+1 = Xk +Qk(W − I)− αG̃k = XkW − αG̃k + (Qk −Xk)(W − I) (8)

From Lemma 5 we have

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 ≤4(f(0)− f∗)
αK

+
2αL

n
σ2 +

8α2L2
(
σ2 + 3ς2

)
(1− ρ)2
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+
8L2

nK(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

Note that

K−1∑
k=0

E ‖Ωk‖2F =

K−1∑
k=0

n∑
i=1

E

∥∥∥∥∥∥
n∑
j=1

((qk,j − xk,j)− (qk,i − xk,i))Wji

∥∥∥∥∥∥
2

Lemma 3
≤ 4

K−1∑
k=0

n∑
i=1

δ2θ2d ≤ α2G2
∞dnK

The last step holds because δθ = 1
2αG∞. Pushing it back we obtain

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 ≤ 4(f(0)− f∗)
αK

+
2αL

n
σ2 +

8α2L2
(
σ2 + 3ς2

)
(1− ρ)2

+
8α2G2

∞dL
2

(1− ρ)2

By setting α = 1

ς
2
3K

1
3 +σ
√

K
n +2L

, we have

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 ≤8(f(0)− f∗)L
K

+
4σ(f(0)− f∗ + L/2)√

nK
+

4ς
2
3 (f(0)− f∗)

K
2
3

+
8L2σ2n

(1− ρ)2(σ2K + 4nL2)
+

24L2ς
2
3

(1− ρ)2K
2
3

+
8L2G2

∞dn

(1− ρ)2(σ2K + 4nL2)

.
1

K
+

σ√
nK

+
ς

2
3

K
2
3

+
σ2n

σ2K + n
+

G2
∞dn

σ2K + n

That completes the proof of Theorem 2.

F.2 LEMMA FOR MONIQUA ON D-PSGD

Lemma 3 If ‖xt,i − xt,j‖∞ ≤ θ, ∀i, j holds at iteration t, then∥∥∥∥∥∥
n∑
j=1

((qt,j − xt,j)− (qt,i − xt,i))Wji

∥∥∥∥∥∥
∞

≤ 2δθ

Proof∥∥∥∥∥∥
n∑
j=1

((qt,j − xt,j)− (qt,i − xt,i))Wji

∥∥∥∥∥∥
∞

≤
n∑
j=1

Wji ‖(qt,j − xt,j)− (qt,i − xt,i)‖∞

=

n∑
j=1

Wji

∥∥∥θQ(xt,j
θ

mod 1
)
− θQ

(xt,i
θ

mod 1
)
− (xt,j − xt,i)

∥∥∥
∞

=

n∑
j=1

Wji

∥∥∥∥θQ(xt,jθ mod 1
)
− θQ

(xt,j
θ

mod 1
)
− θ

(
xt,j − xt,i

θ
mod 1

)∥∥∥∥
∞

=

n∑
j=1

Wji

∥∥∥θQ(xt,j
θ

mod 1
)
− θ

(xt,j
θ

mod 1
)
−
(
θQ
(xt,i
θ

mod 1
)
− θ

(xt,i
θ

mod 1
))∥∥∥

∞

≤
n∑
j=1

Wji

∥∥∥θQ(xt,j
θ

mod 1
)
− θ

(xt,j
θ

mod 1
)∥∥∥
∞
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+

n∑
j=1

Wji

∥∥∥θQ(xt,i
θ

mod 1
)
− θ

(xt,i
θ

mod 1
)∥∥∥
∞

≤2δθ

Lemma 4 In any iteration k ≥ 0, and for any two worker i and j, we have:

‖Xk(ei − ej)‖∞ ≤ θ =
2 log(16n)

1− ρ
αG∞

Proof We use mathematical induction to prove this:

I. When k = 0, ‖X0(ei − ej)‖∞ = 0 ≤ θ,∀i, j
II. Suppose for ‖Xk(ei − ej)‖∞ ≤ θ, k ≥ 0,∀i, j, we have

‖Xk+1(ei − ej)‖∞ =
∥∥∥(XkW − αG̃k + Ωk

)
(ei − ej)

∥∥∥
∞

X0=0
=

∥∥∥∥∥
k∑
t=0

(
−αG̃t + Ωt

)
W k−t(ei − ej)

∥∥∥∥∥
∞

≤
k∑
t=0

∥∥∥(−αG̃t + Ωt

)
W k−t(ei − ej)

∥∥∥
∞

≤
k∑
t=0

∥∥∥−αG̃t + Ωt

∥∥∥
1,∞

∥∥W k−t(ei − ej)
∥∥

1

≤
k∑
t=0

(
α
∥∥∥G̃t∥∥∥

1,∞
+ ‖Ωt‖1,∞

)∥∥W k−t(ei − ej)
∥∥

1

induction hypothesis
≤ (αG∞ + 2δθ)

k∑
t=0

∥∥W k−t(ei − ej)
∥∥

1

≤ (αG∞ + 2δθ)

∞∑
t=0

∥∥W t(ei − ej)
∥∥

1

For any t ≥ 0, on one hand∥∥W t(ei − ej)
∥∥

1
≤
√
n
∥∥W t(ei − ej)

∥∥
2
≤
√
n

∥∥∥∥W tei −
1n

n

∥∥∥∥+
√
n

∥∥∥∥W tej −
1n

n

∥∥∥∥ ≤ 2
√
nρt

where the last step holds due to the diagonalizability of W . On the other hand,∥∥W t(ei − ej)
∥∥

1
≤ 1

>
nW

tei + 1
>
nW

tei = 1
>
n ei + 1

>
n ej = 2

So ∥∥W t(ei − ej)
∥∥

1
≤ min{2

√
nρt, 2}

Let T0 =
⌈
− log(

√
n)

log(ρ)

⌉
, so that nρT0 ≤ 1, then we have

∞∑
t=0

∥∥W t(ei − ej)
∥∥

1
=

T0−1∑
t=0

∥∥W t(ei − ej)
∥∥

1
+

∞∑
t=T0

∥∥W t(ei − ej)
∥∥

1

≤
T0−1∑
t=0

2 +

∞∑
t=0

2
√
nρt+T0

≤2

⌈
− log(

√
n)

log(ρ)

⌉
+

∞∑
t=0

2
(√
nρT0

)
ρt

≤2 log(
√
n)

1− ρ
+ 2 +

2

1− ρ
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≤ log(16n)

1− ρ
As a result, we have

‖Xk+1(ei − ej)‖∞ ≤ (αG∞ + 2δθ)
log(16n)

1− ρ

Since δ = 1−ρ
4 log(16n) , we have

‖Xk+1(ei − ej)‖∞ ≤ (αG∞ + 2δθ)
log(16n)

1− ρ
≤ 2 log(16n)

1− ρ
αG∞ = θ

Combining I and II, we complete the proof.

Lemma 5 The output of Algorithm 1 has the following bound:

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 ≤4(f(0)− f∗)
αK

+
2αL

n
σ2 +

8α2L2
(
σ2 + 3ς2

)
(1− ρ)2

+
8L2

nK(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

Proof From Lemma 8, we have

1− αL
K

K−1∑
k=0

E
∥∥Gk∥∥2

+
1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

L2

nK

K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2

Lemma 6
≤ 2(f(0)− f∗)

αK
+
αL

n
σ2 +

2α2L2

M1(1− ρ)2

(
σ2 + 3ς2 +

3

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

)

+
2L2

M1nK(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

where

M1 = 1− 6α2L2

(1− ρ)2

Rearrange the terms, we get

1− αL
K

K−1∑
k=0

E
∥∥Gk∥∥2

+

(
1− 6α2L2

M1(1− ρ)2

)
1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

2α2L2
(
σ2 + 3ς2

)
M1(1− ρ)2

+
2L2

M1nK(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

Let

M2 = 1− 6α2L2

M1(1− ρ)2

we get

1− αL
K

K−1∑
k=0

E
∥∥Gk∥∥2

+
M2

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

2α2L2
(
σ2 + 3ς2

)
M1(1− ρ)2

+
2L2

M1nK(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F
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Let M1,M2 ≥ 1
2 and rearrange the terms, we have

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 ≤4(f(0)− f∗)
αK

+
2αL

n
σ2 +

8α2L2
(
σ2 + 3ς2

)
(1− ρ)2

+
8L2

nK(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

and that completes the proof

Lemma 6 Let M1 = 1− 6α2L2

(1−ρ)2 > 0, we have

L2

nK

K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2 ≤ 2α2L2

M1(1− ρ)2

(
σ2 + 3ς2 +

3

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

)

+
2L2

M1nK(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

Proof
K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2

=

K−1∑
k=1

n∑
i=1

E
∥∥∥∥Xk

(
1n

n
− ei

)∥∥∥∥2

=

K−1∑
k=1

n∑
i=1

E
∥∥∥∥(Xk−1W − αG̃k−1 + Ωk−1

)(
1n

n
− ei

)∥∥∥∥2

x0,i=0
=

K−1∑
k=1

n∑
i=1

E

∥∥∥∥∥
k−1∑
t=0

(
−αG̃t + Ωt

)(
1n

n
−W k−t−1ei

)∥∥∥∥∥
2

≤2α2
K−1∑
k=1

n∑
i=1

E

∥∥∥∥∥
k−1∑
t=0

G̃t

(
1n

n
−W k−t−1ei

)∥∥∥∥∥
2

+ 2

K−1∑
k=1

n∑
i=1

E

∥∥∥∥∥
k−1∑
t=0

Ωt

(
1n

n
−W k−t−1ei

)∥∥∥∥∥
2

=2α2
K−1∑
k=1

E

∥∥∥∥∥
k−1∑
t=0

G̃t

(
1n1

>
n

n
−W k−t−1

)∥∥∥∥∥
2

F

+ 2

K−1∑
k=1

E

∥∥∥∥∥
k−1∑
t=0

Ωt

(
1n1

>
n

n
−W k−t−1

)∥∥∥∥∥
2

F

Lemma 10
≤ 2α2

K−1∑
k=1

E

(
k−1∑
t=0

ρk−t−1
∥∥∥G̃t∥∥∥

F

)2

+ 2

K−1∑
k=1

E

(
k−1∑
t=0

ρk−t−1 ‖Ωt‖F

)2

Lemma 9
≤ 2α2

(1− ρ)2

K−1∑
k=1

E
∥∥∥G̃k∥∥∥2

F
+

2

(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

Lemma 7
≤ 2α2

(1− ρ)2

(
nσ2K + 3L2

K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2
+ 3nς2K + 3n

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

)

+
2

(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

Rearrange the terms, we have(
1− 6α2L2

(1− ρ)2

)K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2
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≤ 2α2

(1− ρ)2

(
nσ2K + 3nς2K + 3n

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

)
+

2

(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

Let M1 = 1− 6α2L2

(1−ρ)2 > 0, we have

L2

nK

K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2 ≤ 2α2L2

M1(1− ρ)2

(
σ2 + 3ς2 +

3

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

)

+
2L2

M1nK(1− ρ)2

K−1∑
k=1

E ‖Ωk‖2F

Lemma 7
K−1∑
k=0

E
∥∥∥G̃k∥∥∥2

F
≤ nσ2K + 3L2

K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2
+ 3nς2K + 3n

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

Proof From the property of Frobenius norm, we have

E
∥∥∥G̃k∥∥∥2

F
=

n∑
i=1

E ‖g̃k,i‖2

Next, we derive the upper bound of E ‖g̃k,i‖2

E ‖g̃k,i‖2

=E ‖g̃k,i − gk,i + gk,i‖2

=E ‖g̃k,i − gk,i‖2 + E ‖gk,i‖2 + 2E 〈g̃k,i − gk,i, gk,i〉
=E ‖g̃k,i − gk,i‖2 + E ‖gk,i‖2

≤σ2 + 3E
∥∥gk,i −∇fi(Xk)

∥∥2
+ 3E

∥∥∇fi(Xk)−∇f(Xk)
∥∥2

+ 3E
∥∥∇f(Xk)

∥∥2

≤σ2 + 3L2E
∥∥Xk − xk,i

∥∥2
+ 3ς2 + 3E

∥∥∇f(Xk)
∥∥2

Summing from k = 0 to K − 1, we obtain
K−1∑
k=0

E
∥∥∥G̃k∥∥∥2

F

=

K−1∑
k=0

n∑
i=1

E ‖g̃k,i‖2

≤
K−1∑
k=0

n∑
i=1

σ2 + 3L2
K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2
+ 3

K−1∑
k=0

n∑
i=1

ς2 + 3

K−1∑
k=0

n∑
i=1

E
∥∥∇f(Xk)

∥∥2

=nσ2K + 3L2
K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2
+ 3nς2K + 3n

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

That completes the proof

Lemma 8

1− αL
K

K−1∑
k=0

E
∥∥Gk∥∥2

+
1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

L2

nK

K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2

Proof Let 1n denote a n-dimensional vector with all the entries be 1. And we have

Xk+1 = (XkW − αG̃k + Ωk)
1n

n
= Xk − αG̃k + (Qk −Xk)(W − I)

1n

n
= Xk − αG̃k
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And by Taylor Expansion, we have

Ef(Xk+1) = Ef

(
(XkW − αG̃k + Ωk)1n

n

)
= Ef

(
Xk − αG̃k

)
≤ Ef(Xk)− αE〈∇f(Xk), G̃k〉+

α2L

2
E
∥∥∥G̃k∥∥∥2

And for the last term, we have

E
∥∥∥G̃k∥∥∥2

= E
∥∥∥∥∑n

i=1 g̃k,i
n

∥∥∥∥2

= E
∥∥∥∥∑n

i=1 g̃k,i −
∑n
i=1 gk,i

n
+

∑n
i=1 gk,i
n

∥∥∥∥2

= E
∥∥∥∥∑n

i=1 g̃k,i −
∑n
i=1 gk,i

n

∥∥∥∥2

+ E
∥∥∥∥∑n

i=1 gk,i
n

∥∥∥∥2

+E
〈∑n

i=1 g̃k,i −
∑n
i=1 gk,i

n
+

∑n
i=1 gk,i
n

〉
= E

∥∥∥∥∑n
i=1 g̃k,i −

∑n
i=1 gk,i

n

∥∥∥∥2

+ E
∥∥∥∥∑n

i=1 gk,i
n

∥∥∥∥2

Assumption (A3)
=

1

n2

n∑
i=1

E ‖g̃k,i − gk,i‖2 + E
∥∥∥∥∑n

i=1 gk,i
n

∥∥∥∥2

Assumption (A3)

≤ σ2

n
+ E

∥∥∥∥∑n
i=1 gk,i
n

∥∥∥∥2

Putting it back, we obtain

Ef(Xk+1) ≤ Ef(Xk)− αE〈∇f(Xk), G̃k〉+
α2L

2n
σ2 +

α2L

2
E
∥∥∥∥∑n

i=1 gk,i
n

∥∥∥∥2

= Ef(Xk)− α− α2L

2
E
∥∥Gk∥∥2 − α

2
E
∥∥∇f(Xk)

∥∥2
+
α2L

2n
σ2

+
α

2
E
∥∥∇f(Xk)−Gk

∥∥2

where the last step comes from 2〈a, b〉 = ‖a‖2 + ‖b‖2 = ‖a− b‖2 And

E
∥∥∇f(Xk)−Gk

∥∥2 ≤ 1

n

n∑
i=1

E

∥∥∥∥∥∇fi
(∑n

i′=1 xk,i′

n

)
−∇fi(xk,i)

∥∥∥∥∥
2

Assumption (A1)

≤ L2

n

n∑
i=1

E

∥∥∥∥∥
∑n
i′=1 xk,i′

n
− xk,i

∥∥∥∥∥
2

=
L2

n

n∑
i=1

E
∥∥Xk − xk,i

∥∥2

putting it back, we have

α− α2L

2
E
∥∥Gk∥∥2

+
α

2
E
∥∥∇f(Xk)

∥∥2 ≤ Ef(Xk)−Ef(Xk+1)+
α2L

2n
σ2+

αL2

2n

n∑
i=1

E
∥∥Xk − xk,i

∥∥2

summing over from k = 0 to K − 1 on both sides, we have

1− αL
K

K−1∑
k=0

E
∥∥Gk∥∥2

+
1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
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≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

L2

nK

K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2

That completes the proof.

Lemma 9 Given two non-negative sequences {at}∞t=1 and {bt}∞t=1 that satisfying

at =

t∑
s=1

ρt−sbs

with 0 ≤ ρ < 1,we have

Sk =

k∑
t=1

at ≤
1

1− ρ

k∑
s=1

bs

Dk =

k∑
t=1

a2
t ≤

1

(1− ρ)2

k∑
s=1

b2s

Proof

Sk =

k∑
t=1

at =

k∑
t=1

t∑
s=1

ρt−sbs =

k∑
s=1

k∑
t=s

ρt−sbs =

k∑
s=1

k−s∑
t=0

ρtbs ≤
1

1− ρ

k∑
s=1

bs

Dk =

k∑
t=1

at =

k∑
t=1

t∑
s=1

ρt−sbs

t∑
r=1

ρt−rbr =

k∑
s=1

k∑
t=s

ρt−sbs =

k∑
t=1

t∑
s=1

t∑
r=1

ρ2t−s−rbsbr

≤
k∑
t=1

t∑
s=1

t∑
r=1

ρ2t−s−r b
2
s + b2r

2
=

k∑
t=1

t∑
s=1

t∑
r=1

ρ2t−s−rb2s

≤ 1

1− ρ

k∑
t=1

t∑
s=1

ρt−sb2s ≤
1

(1− ρ)2

k∑
s=1

b2s

Lemma 10 For any Xt ∈ Rd×n, we have∥∥∥∥∥
k−1∑
t=0

Xt

(
1n1

>
n

n
−W k−t−1

)∥∥∥∥∥
2

F

≤

(
k−1∑
t=0

ρk−t−1 ‖Xt‖F

)2

Proof ∥∥∥∥∥
k−1∑
t=0

Xt

(
1n1

>
n

n
−W k−t−1

)∥∥∥∥∥
2

F

=

(∥∥∥∥∥
k−1∑
t=0

Xt

(
1n1

>
n

n
−W k−t−1

)∥∥∥∥∥
F

)2

≤

(
k−1∑
t=0

∥∥∥∥Xt

(
1n1

>
n

n
−W k−t−1

)∥∥∥∥
F

)2

≤

(
k−1∑
t=0

‖Xt‖F

∥∥∥∥1n1>nn −W k−t−1

∥∥∥∥
)2

≤

(
k−1∑
t=0

ρk−t−1 ‖Xt‖F

)2

That completes the proof.
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G MONIQUA ON D2 (PROOF TO THEOREM 3)

G.1 ALGORITHM

Algorithm 2 Moniqua with Variance Reduction on worker i
Input: initial point x0,i = x0, step size α, the discrepency bound θ, communication matrix W ,

number of iterations K, neighbor list of worker i: Ni
1: for k = 0, 1, 2, · · · ,K − 1 do
2: Randomly sample data ξk,i from local memory
3: Compute a local stochastic gradient based on ξk,i and current weight xk,i: g̃k,i
4: if k = 0 then
5: Update local weight: xk+ 1

2 ,i
← xk,i − αg̃k,i

6: else
7: Update local weight: xk+ 1

2 ,i
← 2xk,i − xk−1,i − αg̃k,i + αg̃k−1,i

8: end if
9: Compute modulo-ed model: qk,i ← θ · Qδ

(x
k+1

2
,i

θ mod 1
)

(element-wise division and
mod)

10: Average with neighboring workers:: xk+1,i ← xk+ 1
2 ,i

+
∑
j∈Ni(qk,j − qk,i)Wji

11: end for
Output: XK = 1

n

∑n
i=1 xK,i

G.2 ASSUMPTIONS

D2 makes the following assumptions (1-4), and we add the additional assumption (5):

1. Lipschitzian Gradient: All the function fi have L-Lipschitzian gradients.
2. Communication Matrix: Communication matrix W is a symmetric doubly stochastic

matrix. Let the eigenvalues ofW ∈ Rn×n be λ1 ≥ · · · ≥ λn. We assume λ2 < 1, λn > − 1
3 .

3. Bounded Variance:

Eξi∼Di
∥∥∥∇f̃i(xi; ξi)−∇fi(x)

∥∥∥2

≤ σ2,∀i

where∇f̃i(x; ξi) denotes gradient sample on worker i computed via data sample ξi.
4. Initialization: All the models are initialized by the same parameters: x0,i = x0,∀i and

with out the loss of generality x0 = 0.
5. Gradient magnitude: The norm of a sampled gradient is bounded by ‖g̃k,i‖∞ ≤ G∞ for

some constant G∞.

G.3 PROOF TO THEOREM 3

Proof From a local view, define x−1 = g̃−1 = 0, the update rule of Moniqua on D2 on worker i in
iteration k can be written as

xk+ 1
2 ,i

= 2xk,i − xk−1,i − αg̃k,i + αg̃k−1,i

xk+1,i =

n∑
j=1

xk+ 1
2 ,j
Wji +

n∑
j=1

(
(qk,j − xk+ 1

2 ,j
)− (qk,i − xk+ 1

2 ,i
)
)
Wji

From a global view, the update rule can be written as

Xk+ 1
2

= 2Xk −Xk−1 − αG̃k + αG̃k−1

Xk+1 = Xk+ 1
2
W + (Qk −Xk+ 1

2
)(W − I)

Define

Ωk = (Qk −Xk+ 1
2
)(W − I)
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Since W is symmetric, it can be diagonalized as W = PΛP>, where the i-th column of P and Λ are
W ’s i-th eigenvector and eigenvalue, respectively. And we obtain

Xk+1 = 2XkPΛP> −Xk−1PΛP> − αG̃kPΛP> + αG̃k−1PΛP> + Ωk

and

Xk+1P = 2XkPΛ−Xk−1PΛ− αG̃kPΛ + αG̃k−1PΛ + ΩkP

Denote Yk = XkP , H(Xk; ξk) = G̃kP , and denote yk,i, hk,i and rk,i as the i-th column of Yk, Hk

and ΩkP , respectively. Then we have

yk+1,i = λi(2yk,i − yk−1,i − αhk,i + αhk−1,i) + rk,i

From Lemma 15 (Constants C1, C2, C3 andn C4 are defined in the Lemma 11. Constants D1 and D2

are defined in Lemma 15) we get(
1− 3C1α

2L2

C4

)
E ‖∇f(0)‖+

(
1− αL− 3

C2

C4
α4L4

)
1

K

K−1∑
k=1

E
∥∥Gk∥∥2

+
1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

3C1α
2L2(σ2 + ς20 )

C4K
+ 6

C2

C4
α2σ2L2 + 3

C2

nC4
α4σ2L4

+
C3L

2

C4

(
3D1n+ 4

3D2n

)2

α2G2
∞d

Let α = 1

σ
√
K/n+2L

, we have

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

3C1α
2L2(σ2 + ς20 )

C4K
+ 6

C2

C4
α2σ2L2 + 3

C2

nC4
α4σ2L4

+

(
3D1n+ 4

3D2n

)2
C3L

2

C4
G2
∞dα

2

≤4(f(0)− f∗)L
K

+
2σ(f(0)− f∗ + L/2)√

nK
+

3C1L
2(σ2 + ς20 )n

C4(σ2K2 + 4nL2K)
+

6C2L
2σ2n

C4(σ2K + 4nL2)

+
3C2nσ

2L2

C4(σ4K2 + 16n2L4)
+

(
3D1n+ 4

3D2n

)2
C3G

2
∞dL

2n

C4(σ2K + 4nL2)

.
1

K
+

σ√
nK

+
(σ2 + ς20 )n

σ2K2 + nK
+

σ2n

σ2K + n
+

σ2n

σ4K2 + n2
+

G2
∞dn

σ2K + n

.
1

K
+

σ√
nK

+
σ2n

σ2K + n
+

G2
∞dn

σ2K + n

That completes the proof.

G.4 LEMMA FOR D2

Lemma 11 Define

D1 = max

{
|vn|+

2|λn|
1− |vn|

,

√
λ2

1− λ2
+

2λ2

1− λ2

}

D2 = max

{
2

1− |vn|
,

2√
1− λ2

}
vn = λn −

√
λ2
n − λn

Let δ = 1
6nD2

, and we have for ∀i, j∥∥∥xk+ 1
2
(ei − ej)

∥∥∥
∞
≤ θ = (6D1n+ 8)αG∞
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Proof We use mathematical induction to prove this:

I. When k = 0,∥∥∥X0+ 1
2
(ei − ej)

∥∥∥
∞

=
∥∥∥−αG̃0(ei − ej)

∥∥∥
∞
≤ α

∥∥∥G̃0

∥∥∥
1,∞
‖ei − ej‖1 ≤ 2αG∞ ≤ (6D1n+ 8)αG∞

II. Suppose for k ≥ 0, ∀t ≤ k, we have
∥∥∥Xt+ 1

2
(ei − ej)

∥∥∥ ≤ (6D1n+ 8)αG∞, then for ∀i, j

‖Xk+1(ei − ej)‖∞

≤
∥∥∥∥Xk+1

(
1n

n
− ei

)∥∥∥∥
∞

+

∥∥∥∥Xk+1

(
1n

n
− ej

)∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥∥
Xk+1PP

>ei −Xk+1P


1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

P>ei
∥∥∥∥∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∥∥∥∥
Xk+1PP

>ej −Xk+1P


1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

P>ej
∥∥∥∥∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥∥∥∥
Xk+1P


0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


∥∥∥∥∥∥∥∥∥∥

1,∞

‖P>ei‖1 +

∥∥∥∥∥∥∥∥∥∥
Xk+1P


0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


∥∥∥∥∥∥∥∥∥∥

1,∞

‖P>ej‖1

≤2
√
n

∥∥∥∥∥∥∥∥∥∥
Xk+1P


0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


∥∥∥∥∥∥∥∥∥∥

1,∞

From the update rule, we have

yk+1,i = λi(2yk,i − yk−1,i − αhk,i + αhk−1,i) + rk,i = λi(2yk,i − yk−1,i) + λiβk,i + rk,i

whereβk,i = −αhk,i + αhk−1,i, for all yi with − 1
3 < λi < 0, from Lemma 13 we have

yk+1,i = y1,i

(
uk+1
i − vk+1

i

ui − vi

)
+

k∑
s=1

(λiβs,i + rs,i)
uk−s+1
i − vk−s+1

i

ui − vi

where ui = λi +
√
λ2
i − λi and vi = λi −

√
λ2
i − λi, we obtain

‖yk+1,i‖∞ ≤‖y1,i‖∞

∣∣∣∣∣uk+1
i − vk+1

i

ui − vi

∣∣∣∣∣+ |λi|
k∑
s=1

‖βs,i‖∞

∣∣∣∣∣uk−s+1
i − vk−s+1

i

ui − vi

∣∣∣∣∣
+

k∑
s=1

‖rs,i‖∞

∣∣∣∣∣uk−s+1
i − vk−s+1

i

ui − vi

∣∣∣∣∣
Since ∣∣∣∣un+1

i − vn+1
i

ui − vi

∣∣∣∣ ≤ |vi|n
∣∣∣∣∣∣
ui

(
ui
vi

)n
− vi

ui − vi

∣∣∣∣∣∣ ≤ |vi|n
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We obtain

‖yk+1,i‖∞ ≤ ‖y1,i‖∞ |vi|
k + |λi|

k∑
s=1

‖βs,i‖∞ |vi|
k−s +

k∑
s=1

‖rs,i‖∞ |vi|
k−s

For βs,i, we have

‖βs,i‖∞ = ‖−αhk,i + αhk−1,i‖∞ ≤ 2α(‖hk,i‖∞ + ‖hk−1,i‖∞)

≤2α(‖Gk‖1,∞‖Pei‖1 + ‖Gk−1‖1,∞‖Pei‖1)

≤2α
√
nG∞

For rs,i, we have

‖rk,i‖∞ = ‖ΩkPei‖∞ ≤ ‖Ωk‖1,∞ ‖Pei‖1 ≤ 2
√
nδθ

when λi < 0, we have

‖yk+1,i‖∞ ≤‖y1,i‖∞ |vi|
k + |λi|

k∑
s=1

‖βs,i‖∞ |vi|
k−s +

k∑
s=1

‖rs,i‖∞ |vi|
k−s

≤‖y1,i‖∞ |vn|
k + |λn|

k∑
s=1

‖βs,i‖∞ |vn|
k−s +

k∑
s=1

‖rs,i‖∞ |vn|
k−s

≤α
√
nG∞|vn|k + 2α

√
nG∞|λn|

∞∑
s=1

|vn|k−s + 2
√
nδθ

∞∑
s=1

|vn|k−s

≤α
√
nG∞|vn|+

2α
√
nG∞|λn|

1− |vn|
+

2
√
nδθ

1− |vn|

where vn = λn −
√
λ2
n − λn.

On the other hand, when 0 ≤ λi < 1, from Lemma 13 we have

yk+1,i sin θi =y1,iλ
k
2
i sin[(t+ 1)θi] + λi

k∑
s=1

βs,iλ
k−s
2

i sin[(k + 1− s)θi]

+

k∑
s=1

rs,iλ
k−s
2

i sin[(k + 1− s)θi]

By taking norm, we get

‖yk+1,i‖∞ | sin θi| = ‖y1,i‖∞ λ
k
2
i | sin[(t+ 1)θi]|+ λi

k∑
s=1

‖βs,i‖∞ |λ
k−s
2

i || sin[(k + 1− s)θi]|

+

k∑
s=1

‖rs,i‖∞ |λ
k−s
2

i || sin[(k + 1− s)θi]|

≤ ‖y1,i‖∞ λ
k
2
2 + 2α

√
nG∞λ2

∞∑
s=1

λ
s
2
2 + 2

√
nδθ

∞∑
s=1

λ
s
2
2

≤ α
√
nG∞

√
λ2 +

2α
√
nG∞λ2 + 2

√
nδθ√

1− λ2

Since | sin θi| ≥
√

1− λ2, putting it back, we get

‖yk+1,i‖ ≤ α
√
nG∞

√
λ2

1− λ2
+

2α
√
nG∞λ2 + 2

√
nδθ

1− λ2

So there exists D1, D2

D1 = max

{
|vn|+

2|λn|
1− |vn|

,

√
λ2

1− λ2
+

2λ2

1− λ2

}
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D2 = max

{
2

1− |vn|
,

2√
1− λ2

}
such that

‖yk+1,i‖∞ ≤ D1α
√
nG∞ +D2

√
nδθ

Putting it back we have ∀i, j

‖Xk+1(ei − ej)‖∞ ≤ D1αnG∞ +D2nδθ

As a result∥∥∥Xk+ 1
2
(ei − ej)

∥∥∥
∞

=
∥∥∥(2Xk −Xk−1 − αG̃k + αG̃k−1)(ei − ej)

∥∥∥
∞

≤2 ‖Xk(ei − ej)‖∞ + ‖Xk−1(ei − ej)‖∞ + α
∥∥∥G̃k∥∥∥

1,∞
‖ei − ej‖1 + α

∥∥∥G̃k−1

∥∥∥
1,∞
‖ei − ej‖1

≤3(D1αnG∞ +D2nδθ) + 4αG∞

≤(6D1n+ 8)αG∞

The last step is because δ = 1
6nD2

Combining I and II we complete the proof.

Lemma 12

(1− 12C2α
2L2)

n∑
i=1

K∑
k=1

E
∥∥Xk − xk,i

∥∥2

≤3C1α
2nσ2 + 3C1α

2nς20 + 3C1α
2nE ‖∇f(0)‖+ 6C2α

2nσ2K + 3C2α
4σ2L2K

+3C2α
4nL2

K−1∑
k=1

E
∥∥Gk∥∥2

+ C3

K−1∑
k=1

E ‖Ωk‖2F

Proof
n∑
i=1

∥∥Xk − xk,i
∥∥2

=

n∑
i=1

∥∥∥∥Xk

(
ei −

1n

n

)∥∥∥∥2

=

∥∥∥∥Xk

(
I − 1n1

>
n

n

)∥∥∥∥2

F

=
∥∥XkPP

> −Xkv1v
>
1

∥∥2

F

Lemma 14
=

∥∥∥∥∥∥∥∥∥∥
XkP


0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


∥∥∥∥∥∥∥∥∥∥

2

F

=

n∑
i=2

‖yk,i‖2

From the update rule, we obtain,

yk+1,i = λi(2yk,i − yk−1,i − αhk,i + αhk−1,i) + rk,i = λi(2yk,i − yk−1,i) + λiβk,i + rk,i

whereβk,i = −αhk,i + αhk−1,i, for all yi with − 1
3 < λi < 0, from Lemma 13 we have

yk+1,i = y1,i

(
uk+1
i − vk+1

i

ui − vi

)
+

k∑
s=1

(λiβs,i + rk,i)
uk−s+1
i − vk−s+1

i

ui − vi
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where ui = λi +
√
λ2
i − λi and vi = λi −

√
λ2
i − λi, we obtain

‖yk+1,i‖2 ≤ 3 ‖y1,i‖2
(
uk+1
i − vk+1

i

ui − vi

)2

+ 3λ2
i

(
k∑
s=1

‖βs,i‖

∣∣∣∣∣uk−s+1
i − vk−s+1

i

ui − vi

∣∣∣∣∣
)2

+ 3

(
k∑
s=1

‖rs,i‖

∣∣∣∣∣uk−s+1
i − vk−s+1

i

ui − vi

∣∣∣∣∣
)2

Since ∣∣∣∣un+1
i − vn+1

i

ui − vi

∣∣∣∣ ≤ |vi|n
∣∣∣∣∣∣
ui

(
ui
vi

)n
− vi

ui − vi

∣∣∣∣∣∣ ≤ |vi|n
We obtain

‖yk+1,i‖2 ≤ 3 ‖y1,i‖2 |vi|2t + 3λ2
i

(
k∑
s=1

‖βs,i‖ |vi|k−s
)2

+ 3

(
k∑
s=1

‖rs,i‖ |vi|k−s
)2

Summing over from k = 0 to t = K − 1, we obtain
K−1∑
k=0

‖yk+1,i‖2 =

K∑
k=1

‖yk,i‖2

≤3 ‖y1,i‖2
K−1∑
k=0

|vi|2k + 3λ2
i

K−1∑
k=1

(
k∑
s=1

‖βs,i‖ |vi|k−s
)2

+ 3

K−1∑
k=1

(
k∑
s=1

‖rs,i‖ |vi|k−s
)2

≤3 ‖y1,i‖2

1− |vi|2
+

3λ2
i

(1− |vi|)2

K−1∑
k=1

‖βk,i‖2 +
3

(1− |vi|)2

K−1∑
k=1

‖rk,i‖2

≤ 3 ‖y1,i‖2

1− |vn|2
+

3λ2
n

(1− |vn|)2

K−1∑
k=1

‖βk,i‖2 +
3

(1− |vn|)2

K−1∑
k=1

‖rk,i‖2

where vn = λn −
√
λ2
n − λn.

On the other hand, when 0 ≤ λi < 1, from Lemma 13 we have

yk+1,i sin θi =y1,iλ
k
2
i sin[(t+ 1)θi] + λi

k∑
s=1

βs,iλ
k−s
2

i sin[(k + 1− s)θi]

+

k∑
s=1

rs,iλ
k−s
2

i sin[(k + 1− s)θi]

And we have

‖yk+1,i‖2 sin2 θi ≤ 3 ‖y1,i‖2 λki sin2[(t+ 1)θi] + 3λ2
i

(
k∑
s=1

βs,iλ
k−s
2

i sin[(k + 1− s)θi]

)2

+ 3

(
k∑
s=1

rs,iλ
k−s
2

i sin[(k + 1− s)θi]

)2

≤ 3 ‖y1,i‖2 λki + 3λ2
i

(
k∑
s=1

βs,iλ
k−s
2

i

)2

+ 3

(
k∑
s=1

rs,iλ
k−s
2

i

)2

Summing from k = 0 to K − 1, we have
K−1∑
k=0

‖yk+1,i‖2 sin2 θi =

K∑
k=1

‖yk,i‖2 sin2 θi
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≤3 ‖y1,i‖2
K−1∑
k=0

λti + 3λ2
i

K−1∑
k=1

(
k∑
s=1

‖βs,i‖λ
t−s
2
i

)2

+ 3

K−1∑
k=1

(
k∑
s=1

rs,iλ
k−s
2

i

)2

≤3 ‖y1,i‖2

1− λi
+

3λ2
i

(1−
√
λi)2

K−1∑
k=1

‖βk,i‖2 +
3

(1−
√
λi)2

K−1∑
k=1

‖rk,i‖2

Since sin2 θi = 1− λi, we have

K∑
k=1

‖yk,i‖2 ≤
3 ‖y1,i‖2

(1− λi)2
+

3λ2
i

(1−
√
λi)2(1− λi)

K−1∑
k=1

‖βk,i‖2 +
3

(1−
√
λi)2(1− λi)

K−1∑
k=1

‖rk,i‖2

≤ 3 ‖y1,i‖2

(1− λ2)2
+

3λ2
2

(1−
√
λ2)2(1− λ2)

K−1∑
k=1

‖βk,i‖2 +
3

(1−
√
λ2)2(1− λ2)

K−1∑
k=1

‖rk,i‖2

So there exists C1, C2, C3

C1 = max

{
3

1− |vn|2
,

3

(1− λ2)2

}
C2 = max

{
3λ2

n

(1− |vn|)2
,

3λ2
2

(1−
√
λ2)2(1− λ2)

}
C3 = max

{
3

(1− |vn|)2
,

3

(1−
√
λ2)2(1− λ2)

}
K∑
k=1

‖yk,i‖2 ≤ C1 ‖y1,i‖2 + C2

K−1∑
k=1

‖βk,i‖2 + C3

K−1∑
k=1

‖rk,i‖2

By taking expectation we have

K∑
k=1

E ‖yk,i‖2 ≤ C1E ‖y1,i‖2 + C2

K−1∑
k=1

E ‖βk,i‖2 + C3

K−1∑
k=1

E ‖rk,i‖2

We next analyze βk,i:
n∑
i=2

E ‖βk,i‖2

=α2
n∑
i=2

E ‖hk,i − hk−1,i‖2

=α2
n∑
i=2

E
∥∥∥G̃kPei − G̃k−1Pei

∥∥∥2

≤α2
n∑
i=1

E
∥∥∥G̃kPei − G̃k−1Pei

∥∥∥2

≤α2E
∥∥∥G̃kP − G̃k−1P

∥∥∥2

F

Lemma 14
≤ α2E

∥∥∥G̃k − G̃k−1

∥∥∥2

F

=α2
n∑
i=1

E
∥∥∥G̃kei − G̃k−1ei

∥∥∥2

≤3α2
n∑
i=1

E
∥∥∥G̃kei −Gkei∥∥∥2

+ 3α2
n∑
i=1

E
∥∥∥G̃k−1ei −Gk−1ei

∥∥∥2

33



Under review as a conference paper at ICLR 2020

+3α2
n∑
i=1

E ‖Gkei −Gk−1ei‖2

≤6α2nσ2 + 3α2
n∑
i=1

E ‖Gkei −Gk−1ei‖2

≤6α2nσ2 + 3α2L2
n∑
i=1

E ‖xk,i − xk−1,i‖2

≤6α2nσ2 + 3α2L2
n∑
i=1

E
∥∥YkP>ei − Yk−1P

>ei
∥∥2

≤6α2nσ2 + 3α2L2E
∥∥YkP> − Yk−1P

>∥∥2

F

Lemma 14
≤ 6α2nσ2 + 3α2L2E ‖Yk − Yk−1‖2F

≤6α2nσ2 + 3α2L2
n∑
i=1

E ‖yk,i − yk−1,i‖2

And Putting it back, we have
n∑
i=2

K∑
k=1

E ‖yk,i‖2

≤C1E ‖Y1‖2F + C2

n∑
i=2

K−1∑
k=1

E ‖βk,i‖2 + C3

K−1∑
k=1

n∑
i=2

E ‖rk,i‖2

≤C1E ‖Y1‖2F + C2

K−1∑
k=1

(
6α2nσ2 + 3α2L2

n∑
i=1

E ‖yk,i − yk−1,i‖2
)

+ C3

K−1∑
k=1

n∑
i=2

E ‖rk,i‖2

Lemma 14
≤ C1E ‖Y1‖2F + 6C2α

2nσ2K + 3C2α
2L2

K−1∑
k=1

n∑
i=1

E ‖yk,i − yk−1,i‖2 + C3

K−1∑
k=1

E ‖Ωk‖2F

Since

E ‖yk,1 − yk−1,1‖2 = E ‖XkPe1 −Xk−1Pe1‖2 = E ‖Xkv1 −Xk−1v1‖2

=E
∥∥∥∥Xk

1√
n
1n −Xk−1

1√
n
1n

∥∥∥∥2

= nE
∥∥Xk −Xk−1

∥∥2
= nα2E

∥∥∥G̃k∥∥∥2

≤nα2E
∥∥∥G̃k −Gk∥∥∥2

+ nα2E
∥∥Gk∥∥2 ≤ nα2σ

2

n
+ nα2E

∥∥Gk∥∥2

=α2σ2 + nα2E
∥∥Gk∥∥2

Putting it back, and we obtain
n∑
i=2

K∑
k=1

E ‖yk,i‖2

≤C1E ‖Y1‖2F + 6C2α
2nσ2K + 3C2α

4σ2L2K + 3C2α
4nL2

K−1∑
k=1

E
∥∥Gk∥∥2

+3C2α
2L2

K−1∑
k=1

n∑
i=2

E ‖yk,i − yk−1,i‖2 + C3

K−1∑
k=1

E ‖Ωk‖2F

≤C1E ‖Y1‖2F + 6C2α
2nσ2K + 3C2α

4σ2L2K + 3C2α
4nL2

K−1∑
k=1

E
∥∥Gk∥∥2
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+6C2α
2L2

K−1∑
k=1

n∑
i=2

E
(
‖yk,i‖2 + ‖yk−1,i‖2

)
+ C3

K−1∑
k=1

E ‖Ωk‖2F

≤C1E ‖Y1‖2F + 6C2α
2nσ2K + 3C2α

4σ2L2K + 3C2α
4nL2

K−1∑
k=1

E
∥∥Gk∥∥2

+12C2α
2L2

K−1∑
k=1

n∑
i=2

E ‖yk,i‖2 + C3

K−1∑
k=1

E ‖Ωk‖2F

Rearrange the terms, we get

(1− 12C2α
2L2)

n∑
i=2

K∑
k=1

E ‖yk,i‖2

≤C1E ‖Y1‖2F + 6C2α
2nσ2K + 3C2α

4σ2L2K + 3C2α
4nL2

K−1∑
k=1

E
∥∥Gk∥∥2

+ C3

K−1∑
k=1

E ‖Ωk‖2F

≤C1E ‖X1‖2F + 6C2α
2nσ2K + 3C2α

4σ2L2K + 3C2α
4nL2

K−1∑
k=1

E
∥∥Gk∥∥2

+ C3

K−1∑
k=1

E ‖Ωk‖2F

Considering

E ‖X1‖2F = α2E
∥∥∥G̃0

∥∥∥2

F

= α2
n∑
i=1

E
∥∥∥G̃0,i −G0,i +G0,i −∇f(0) +∇f(0)

∥∥∥2

≤ 3α2
n∑
i=1

E
∥∥∥G̃0,i −G0,i

∥∥∥2

+ 3α2
n∑
i=1

E ‖G0,i −∇f(0)‖2 + 3α2
n∑
i=1

E ‖∇f(0)‖2

≤ 3α2nσ2 + 3α2nς20 + 3α2nE ‖∇f(0)‖

We finally get

(1− 12C2α
2L2)

n∑
i=2

K∑
k=1

E ‖yk,i‖2

=(1− 12C2α
2L2)

n∑
i=1

K∑
k=1

E
∥∥Xk − xk,i

∥∥2

≤3C1α
2nσ2 + 3C1α

2nς20 + 3C1α
2nE ‖∇f(0)‖+ 6C2α

2nσ2K + 3C2α
4σ2L2K

+3C2α
4nL2

K−1∑
k=1

E
∥∥Gk∥∥2

+ C3

K−1∑
k=1

E ‖Ωk‖2F

That completes the proof.

Lemma 13 Given ρ ∈
(
− 1

3 , 0
)
∪ (0, 1), for any two sequence {at}∞t=1, {bt}∞t=1 and {ct}∞t=1 that

satisfying

a0 = b0 = 0,

at+1 = ρ (2at − at−1) + bt − bt−1 + ct,∀t ≥ 1

we have

at+1 = a1

(
ut+1 − vt+1

u− v

)
+

t∑
s=1

(bs − bs−1 + cs)

(
ut−s+1 − vt−s+1

u− v

)
,∀t ≥ 0
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where
u = ρ+

√
ρ2 − ρ, v = ρ−

√
ρ2 − ρ

Moreover, if 0 < ρ < 1, we have

at+1 = a1ρ
t
2

sin[(t+ 1)θ]

sin θ
+

t∑
s=1

(bs − bs−1 + cs)ρ
t−s
2

sin[(t− s+ 1)θ]

sin θ

where
θ = arccos (

√
ρ)

Proof when t ≥ 1, we have
at+1 = 2ρat − ρat−1 + bt − bt−1 + ct

since,

u = ρ+
√
ρ2 − ρ, v = ρ−

√
ρ2 − ρ

we obtain
at+1 − uat = (at − uat−1)v + bt − bt−1 + ct

Recursively we have
at+1 − uat = (at − uat−1)v + bt − bt−1 + ct

= (at−1 − uat−2)v2 + (bt−1 − bt−2 + ct−1)v + bt − bt−1 + ct

= (a1 − ua0)vt +

t∑
s=1

(bs − bs−1 + cs)v
t−s

= a1v
t +

t∑
s=1

(bs − bs−1 + cs)v
t−s

Dividing both sides by ut+1, we have

at+1

ut+1
=
at
ut

+ u−(t+1)

(
a1v

t +

t∑
s=1

(bs − bs−1 + cs)v
t−s

)

=
at−1

ut−1
+ u−t

(
a1v

t−1 +

t−1∑
s=1

(bs − bs−1 + cs)v
t−1−s

)

+ u−(t+1)

(
a1v

t +

t∑
s=1

(bs − bs−1 + cs)v
t−s

)

=
a1

u
+

t∑
k=1

u−k−1

(
a1v

k +

k∑
s=1

(bs − bs−1 + cs)v
k−s

)
Multiplying both sides by ut+1

at+1 = a1u
t +

t∑
k=1

ut−k

(
a1v

k +

k∑
s=1

(bs − bs−1 + cs)v
t−s

)

= a1u
t

(
1 +

t∑
k=1

( v
u

)k)
+ ut

t∑
k=1

k∑
s=1

(bs − bs−1 + cs)v
−s
( v
u

)k
= a1u

t
t∑

k=0

( v
u

)k
+ ut

t∑
s=1

t∑
k=s

(bs − bs−1 + cs)v
−s
( v
u

)k
= a1u

t

(
1−

(
v
u

)t+1

1− v
u

)
+ ut

t∑
s=1

(bs − bs−1 + cs)v
−s
( v
u

)s 1−
(
v
u

)t−s−1

1− v
u

= a1

(
ut+1 − vt+1

u− v

)
+

t∑
s=1

(bs − bs−1 + cs)
ut−s+1 − vt−s+1

u− v
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Note that when 0 < ρ < 1, both u and v are complex numbers, we have

u =
√
ρeiθ, v =

√
ρe−iθ

where θ = arccos
√
ρ. And under this context, we have

at+1 = a1ρ
t
2

sin[(t+ 1)θ]

sin θ
+

t∑
s=1

(bs − bs−1 + cs)ρ
t−s
2

sin[(t− s+ 1)θ]

sin θ

That completes the proof.

Lemma 14 For any matrix X ∈ RN×n, we have
n∑
i=2

‖Xvi‖2 ≤
n∑
i=1

‖Xvi‖2 = ‖X‖2F

n∑
i=1

∥∥XP>ei∥∥2
=
∥∥XP>∥∥2

F
= ‖X‖2F

Proof
n∑
i=2

‖Xtvi‖2 ≤
n∑
i=1

‖Xtvi‖2 = ‖XtP‖2F = Tr(XtPP
>X>t ) = Tr(XtX

>
t ) = ‖Xt‖2F

And similarly,
n∑
i=1

∥∥XP>ei∥∥2
=
∥∥XP>∥∥2

F
= Tr(XtP

>PX>t ) = Tr(XtX
>
t ) = ‖Xt‖2F

That completes the proof.

Lemma 15 If we run Algorithm 2 for K iterations the following inequality holds:(
1− 3C1α

2L2

C4

)
E ‖∇f(0)‖+

(
1− αL− 3

C2

C4
α4L4

)
1

K

K−1∑
k=1

E
∥∥Gk∥∥2

+
1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

3C1α
2L2(σ2 + ς20 )

C4K
+ 6

C2

C4
α2σ2L2 + 3

C2

nC4
α4σ2L4

+
C3L

2

C4

(
3D1n+ 4

3D2n

)2

α2G2
∞d

where

C1 = max

{
3

1− |vn|2
,

3

(1− λ2)2

}
C2 = max

{
3λ2

n

(1− |vn|)2
,

3λ2
2

(1−
√
λ2)2(1− λ2)

}
C3 = max

{
3

(1− |vn|)2
,

3

(1−
√
λ2)2(1− λ2)

}
C4 = 1− 12C2α

2L2

Ωkei =

n∑
j=1

(
(qk,j − xk+ 1

2 ,j
)− (qk,i − xk+ 1

2 ,i
)
)
Wji

Proof Since

Xk+1 = (2Xk −Xk−1 − αG̃k + αG̃k−1)W
1n

n
+ (Qk −Xk+ 1

2
)(W − I)

1n

n
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= 2Xk −Xk−1 − αG̃k + αG̃k−1

and we have

Xk+1 −Xk = Xk −Xk−1 − αG̃k + αG̃k−1

= X1 −X0 − α
k∑
t=1

(G̃t − G̃t−1)

= −αG̃k
As a result, we can reuse Lemma 8 from D-PSGD, thus we have

1− αL
K

K−1∑
k=0

E
∥∥Gk∥∥2

+
1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

L2

nK

K−1∑
k=0

n∑
i=1

E
∥∥Xk − xk,i

∥∥2

From Lemma 12 we obatin

1− αL
K

K−1∑
k=0

E
∥∥Gk∥∥2

+
1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

3C1α
2L2(σ2 + ς20 + E ‖∇f(0)‖)

C4K
+ 6

C2

C4
α2σ2L2 + 3

C2

nC4
α4σ2L4

+3
C2

C4
α4L4 1

K

K−1∑
k=1

E
∥∥Gk∥∥2

+
C3L

2

C4nK

K−1∑
k=1

E ‖Ωk‖2F

Rearrange the terms, we get(
1− 3C1α

2L2

C4

)
E ‖∇f(0)‖+

(
1− αL− 3

C2

C4
α4L4

)
1

K

K−1∑
k=1

E
∥∥Gk∥∥2

+
1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2

≤2(f(0)− f∗)
αK

+
αL

n
σ2 +

3C1α
2L2(σ2 + ς20 )

C4K
+ 6

C2

C4
α2σ2L2 + 3

C2

nC4
α4σ2L4

+
C3L

2

C4nK

K−1∑
k=1

E ‖Ωk‖2F

Lemma 16
≤ 2(f(0)− f∗)

αK
+
αL

n
σ2 +

3C1α
2L2(σ2 + ς20 )

C4K
+ 6

C2

C4
α2σ2L2 + 3

C2

nC4
α4σ2L4

+
C3L

2

C4

(
3D1n+ 4

3D2n

)2

α2G2
∞d

That completes the proof.
Lemma 16

K−1∑
k=0

E ‖Ωk‖2F ≤
(

3D1n+ 4

3D2n

)2

α2G2
∞dnK

Proof Similar to the case in D-PSGD, we have

K−1∑
k=0

E ‖Ωk‖2F =

K−1∑
k=0

n∑
i=1

E

∥∥∥∥∥∥
n∑
j=1

(
(qk,j − xk+ 1

2 ,j
)− (qk,i − xk+ 1

2 ,i
)
)
Wji

∥∥∥∥∥∥
2

Lemma 3
≤ 4

K−1∑
k=0

n∑
i=1

δ2θ2d ≤
(

3D1n+ 4

3D2n

)2

α2G2
∞dnK

That completes the proof.
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H MONIQUA ON AD-PSGD (PROOF TO THEOREM 4)

H.1 ALGORITHM

Algorithm 3 Moniqua with Asynchronous Communication
Input: initial point x0,i = x0, step size α, the discrepency bound θ, number of iterations K,

quantization function Q, initial random seed
1: for k = 0, 1, 2, · · · ,K − 1 do
2: worker ik is updating the gradient while during this iteration the global communication

behaviour is written in the form of Wk.
3: Compute a local stochastic gradient with model delayed by τk: g̃k−τk,ik
4: Compute modulo-ed model: qk,ik ← θ · Qδ

(xk,ik
θ mod 1

)
(element-wise division and mod)

5: Randomly select one of the neighbors jk and average local weights with remote weights
while subtracting the biased term: xk+ 1

2 ,ik
← xk,ik + 1

2qk,jk −
1
2qk,ik

6: Update the local weight with local gradient: xk+1,ik ← xk,ik − αg̃k−τk,ik
7: end for

Output: XK = 1
n

∑n
i=1 xK,i

H.2 DEFINITION AND NOTATION

In the original analysis of AD-PSGD, to better capture the nature of workers computing at different
speed, the objective function is expressed as

f(x) =

n∑
i=1

pifi(x)

where pi is a parameter denoting the speed of i-th worker gradient updates. In the rest of the proof,
we denote p = maxi{pi}
For simplicity, we also define the following terms

∇F (Xk) = n [p1gk,1, · · · , pngk,n] ∈ Rd×n

∇F̃ (Xk) = n [p1g̃k,1, · · · , png̃k,n] ∈ Rd×n

G̃k = [· · · , g̃k,ik , · · · ]
Gk = [· · · , gk,ik , · · · ]

Λba =
1n1

>
n

n
−

b∏
q=a

Wq

H.3 ASSUMPTION

We makes the following assumptions:

1. Lipschitzian Gradient: All the function fi have L-Lipschitzian gradients.
2. Communication Matrix 12: The communication matrix Wk is doubly stochastic for any
k ≥ 0 and for any b ≥ a ≥ 0, there exists tmix such that∥∥∥∥∥

b∏
q=a

Wq

(
I − 1n1

>
n

n

)∥∥∥∥∥
1

≤ 2 · 2−
⌊
b−a+1
tmix

⌋

3. Bounded Variance:

Eξi∼Di
∥∥∥∇f̃i(xi; ξi)−∇fi(x)

∥∥∥2

≤ σ2,∀i

12Please refer to Section E for more details
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Ei∼{1,··· ,n} ‖∇fi(x)−∇f(x)‖2 ≤ ς2,∀i

where∇f̃i(x; ξi) denotes gradient sample on worker i computed via data sample ξi.
4. Bounded Staleness: There exists T such that τk ≤ T, ∀k
5. Gradient magnitude: The norm of a sampled gradient is bounded by ‖g̃k,i‖∞ ≤ G∞ for

some constant G∞.

H.4 PROOF TO THEOREM 4

Proof We start from

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
+

(
1− 2αL

n

)
1

K

K−1∑
k=0

E
∥∥∇F (Xk−τk)

∥∥2

Lemma 20
≤ 2n(f(0)− f∗)

αK
+

(σ2 + 6ς2)αL

n
+

(
2L2 +

12αL3

n

)
1

K

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+
2L2

K

K−1∑
k=0

E
∥∥∥∥ (Xk −Xk−τk)1n

n

∥∥∥∥2

Lemma 21
≤ 2n(f(0)− f∗)

αK
+

(σ2 + 6ς2)αL

n
+

2α2T 2(σ2 + 6ς2)L2

n2
+

4α2T 2L2

n2K

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

+

(
2L2 +

12αL3

n
+

24L4α2T 2

n2

)
1

K

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

Lemma 19
≤ 2n(f(0)− f∗)

αK
+

(σ2 + 6ς2)αL

n
+

2α2T 2(σ2 + 6ς2)L2

n2
+

4α2T 2L2

n2K

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

+
128α2t2mixL

2

A1

(σ2 + 6ς2)p+
2p

K

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

+G2
∞d



where A1 = 1− 192pα2t2mixL
2 as defined in Lemma 19.

Rearrange the terms, we get

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 ≤ 2n(f(0)− f∗)
αK

+
(σ2 + 6ς2)αL

n
+

2α2T 2(σ2 + 6ς2)L2

n2

+
128pα2t2mixL

2

A1
(σ2 + 6ς2) +

128α2t2mixL
2

A1
G2
∞d

By setting α = n

2L+
√
K(σ2+6ς2)

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
.

1

K
+

√
σ2 + 6ς2√

K
+

pt2mix(σ2 + 6ς2)n2

(σ2 + 6ς2)K + 4L2
+

n2t2mixG
2
∞d

(σ2 + 6ς2)K + 4L2

.
1

K
+

√
σ2 + 6ς2√

K
+

(σ2 + 6ς2)t2mixn
2

(σ2 + 6ς2)K + 1
+

n2t2mixG
2
∞d

(σ2 + 6ς2)K + 1

H.5 LEMMA FOR MONIQUA ON AD-PSGD

Lemma 17

E
∥∥∥∥G̃k−τk 1nn

∥∥∥∥2

≤ σ2

n2
+

1

n2

n∑
i=1

piE ‖gk−τk,i‖
2
,∀k ≥ 0.
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Proof

E
∥∥∥∥G̃k−τk 1nn

∥∥∥∥2

≤
n∑
i=1

piE
∥∥∥∥ g̃k−τk,in

∥∥∥∥2

=

n∑
i=1

piE
∥∥∥∥ g̃k−τk,i − gk−τk,in

∥∥∥∥2

+

n∑
i=1

piE
∥∥∥gk−τk,i

n

∥∥∥2

≤ σ2

n2
+

1

n2

n∑
i=1

piE ‖gk−τk,i‖
2

Lemma 18
n∑
i=1

piE ‖gk−τk,i‖
2 ≤ 12L2

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+ 6ς2 + 2E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

,∀k ≥ 0.

Proof
n∑
i=1

piE ‖gk−τk,i‖
2

=

n∑
i=1

piE

∥∥∥∥∥gk−τk,i −
n∑
i=1

pigk−τk,i +

n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

≤ 2

n∑
i=1

piE

∥∥∥∥∥gk−τk,i −
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

+ 2

n∑
i=1

piE

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

= 2

n∑
i=1

piE

∥∥∥∥∥gk−τk,i −
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

And

n∑
i=1

piE

∥∥∥∥∥gk−τk,i −
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

≤3

n∑
i=1

piE
∥∥gk−τk,i −∇fi(Xk−τk)

∥∥2
+ 3

n∑
i=1

piE

∥∥∥∥∥∥∇fi(Xk−τk)−
n∑
j=1

pj∇fj(Xk−τk)

∥∥∥∥∥∥
2

+3

n∑
i=1

piE

∥∥∥∥∥∥
n∑
i=1

pigk−τk,i −
n∑
j=1

pj∇fj(Xk−τk)

∥∥∥∥∥∥
2

≤3L2
n∑
i=1

piE
∥∥xk−τk,i −Xk−τk

∥∥2
+ 3

n∑
i=1

piE

∥∥∥∥∥∥∇fi(Xk−τk)−
n∑
j=1

pj∇fj(Xk−τk)

∥∥∥∥∥∥
2

+3E

∥∥∥∥∥∥
n∑
i=1

pigk−τk,i −
n∑
j=1

pj∇fj(Xk−τk)

∥∥∥∥∥∥
2

≤3L2
n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+ 3

n∑
i=1

piE
∥∥∇fi(Xk−τk)−∇f(Xk−τk)

∥∥2

+3

n∑
j=1

pjE
∥∥gk−τk,j −∇fj(Xk−τk)

∥∥2

≤6L2
n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+ 3ς2

That completes the proof.
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Lemma 19 Let A1 = 1− 192pα2t2mixL
2,

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

≤32α2t2mix

A1

(σ2 + 6ς2)pK + 2p

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

+G2
∞dK


Proof

n∑
i=1

piE
∥∥∥∥Xk

(
1n

n
− ei

)∥∥∥∥2

=

n∑
i=1

piE
∥∥∥∥(Xk−1Wk−1 − αG̃k−1−τk−1

+ Ωk−1

)(
1n

n
− ei

)∥∥∥∥2

X0 = 0
=

n∑
i=1

piE

∥∥∥∥∥
k−1∑
t=0

(
−αG̃t−τt + Ωt

)
Λk−1
t+1 ei

∥∥∥∥∥
2

≤2

n∑
i=1

piE

∥∥∥∥∥
k−1∑
t=0

αG̃t−τtΛ
k−1
t+1 ei

∥∥∥∥∥
2

+ 2

n∑
i=1

piE

∥∥∥∥∥
k−1∑
t=0

ΩtΛ
k−1
t+1 ei

∥∥∥∥∥
2

Now for the first term, we have

2

n∑
i=1

piE

∥∥∥∥∥
k−1∑
t=0

αG̃t−τtΛ
k−1
t+1 ei

∥∥∥∥∥
2

≤2pα2E

∥∥∥∥∥
k−1∑
t=0

G̃t−τtΛ
k−1
t+1

∥∥∥∥∥
2

F

≤2pα2E

(
k−1∑
t=0

∥∥∥G̃t−τt∥∥∥
F

∥∥Λk−1
t+1

∥∥)2

≤2pα2E

(
k−1∑
t=0

∥∥∥G̃t−τt∥∥∥
F

∥∥Λk−1
t+1

∥∥
1

)2

≤8pα2E

(
k−1∑
t=0

∥∥∥G̃t−τt∥∥∥
F

2
−
⌊
k−t−1
tmix

⌋)2

Now we replace k with k − τk, that is
n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

≤8pα2E

(
k−τk−1∑
t=0

∥∥∥G̃t−τt∥∥∥
F

2
−
⌊
k−τk−t−1

tmix

⌋)2

+ 2

n∑
i=1

piE

∥∥∥∥∥
k−τk−1∑
t=0

ΩtΛ
k−τk−1
t+1 ei

∥∥∥∥∥
2

Summing from k = 0 to K − 1 on both sides, we obtain
K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

≤8pα2
K−1∑
k=0

E

(
k−τk−1∑
t=0

∥∥∥G̃t−τt∥∥∥
F

2
−
⌊
k−τk−t−1

tmix

⌋)2

+ 2

n∑
i=1

pi

K−1∑
k=0

E

∥∥∥∥∥
k−τk−1∑
t=0

ΩtΛ
k−τk−1
t+1 ei

∥∥∥∥∥
2
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≤8pα2
K−1∑
k=0

E

(
k−τk−1∑
t=0

∥∥∥G̃t−τt∥∥∥
F

2
−
⌊
k−τk−t−1

tmix

⌋)2

+ 2

n∑
i=1

pi

K−1∑
k=0

E

(
k−τk−1∑
t=0

‖Ωt‖1,2
∥∥∥Λk−τk−1

t+1

∥∥∥
1
‖ei‖1

)2

≤8pα2
K−1∑
k=0

E

(
k−τk−1∑
t=0

∥∥∥G̃t−τt∥∥∥
F

2
−
⌊
k−τk−t−1

tmix

⌋)2

+ 8

n∑
i=1

pi

K−1∑
k=0

E

(
k−τk−1∑
t=0

‖Ωt‖1,2 2
−
⌊
k−τk−t−1

tmix

⌋)2

Lemma 22
≤ 8pα2

K−1∑
k=0

E

(
k−τk−1∑
t=0

∥∥∥G̃t−τt∥∥∥
F

2
−
⌊
k−τk−t−1

tmix

⌋)2

+ 32t2mix

n∑
i=1

pi

K−1∑
k=0

E ‖Ωk‖21,2

≤8pα2
K−1∑
k=0

E

(
k−τk−1∑
t=0

∥∥∥G̃t−τt∥∥∥
F

2
−
⌊
k−τk−t−1

tmix

⌋)2

+ 128δ2θ2dt2mixK

Lemma 22
≤ 32pα2t2mix

K−1∑
k=0

E
∥∥∥G̃k−τk∥∥∥2

F
+ 128δ2θ2dt2mixK

Note that for the first term, we have
K−1∑
k=0

E
∥∥∥G̃k−τk∥∥∥2

F

=

K−1∑
k=0

E ‖g̃k−τk,ik‖
2

=

K−1∑
k=0

E ‖g̃k−τk,ik − gk−τk,ik‖
2

+

K−1∑
k=0

E ‖gk−τk,ik‖
2

≤σ2K +

K−1∑
k=0

n∑
i=1

piE ‖gt−τt,i‖
2

≤(σ2 + 6ς2)K + 12L2
K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+ 2

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

Putting these two terms back, we obtain
K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

≤32pα2t2mix

(σ2 + 6ς2)K + 12L2
K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+ 2

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2


+128δ2θ2dt2mixK

Rearrange the terms, we obtain

(
1− 192pα2t2mixL

2
)K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

≤32pα2t2mix

(σ2 + 6ς2)K + 2

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2
+ 128δ2θ2t2mixK
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Lemma 23
≤ 32α2t2mix

(σ2 + 6ς2)pK + 2p

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

+G2
∞dK


Let A1 = 1− 192pα2t2mixL

2, we obtain

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

≤32α2t2mix

A1

(σ2 + 6ς2)pK + 2p

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

+G2
∞dK


Lemma 20

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
+

(
1− 2αL

n

)
1

K

K−1∑
k=0

E
∥∥∇F (Xk−τk)

∥∥2

≤2n(f(0)− f∗)
αK

+
2L2

K

K−1∑
k=0

E
∥∥∥∥ (Xk −Xk−τk)1n

n

∥∥∥∥2

+

(
2L2 +

12αL3

n

)
1

K

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+
(σ2 + 6ς2)αL

n

Proof We start from f(Xk+1) Since

Xk+1 = XkWk
1n

n
+ (Qk −Xk)(Wk − I)

1n

n
− αG̃k−τk = Xk − αG̃k−τk

Then from Taylor Expansion, we have

Ef(Xk+1)

=Ef
(
Xk − αG̃k−τk

)
≤Ef(Xk)− αE〈∇f(Xk), G̃k−τk〉+

α2L

2
E
∥∥∥G̃k−τk∥∥∥2

=Ef(Xk)− αE〈∇f(Xk), Gk−τk〉 − αE〈∇f(Xk), G̃k−τk −Gk−τk〉+
α2L

2
E
∥∥∥G̃k−τk∥∥∥2

=Ef(Xk)− α

n
E〈∇f(Xk),∇F (Xk−τk)〉+

α2L

2
E
∥∥∥∥ g̃k−τk,ikn

∥∥∥∥2

≤Ef(Xk)− α

n
E〈∇f(Xk),∇F (Xk−τk)〉

+
α2L

2

n∑
i=1

piE
∥∥∥∥ g̃k−τk,ik − gk−τk,ikn

∥∥∥∥2

+
α2L

2

n∑
i=1

piE
∥∥∥gk−τk,i

n

∥∥∥2

≤Ef(Xk)− α

n
E〈∇f(Xk),∇F (Xk−τk)〉+

α2Lσ2

2n2
+
α2L

2n2

n∑
i=1

piE‖gk−τk,i‖2

=Ef(Xk) +
α

2n
E
∥∥∇f(Xk)−∇F (Xk−τk)

∥∥2 − α

2n
E
∥∥∇f(Xk)

∥∥2 − α

2n
E
∥∥∇F (Xk−τk)

∥∥2

+
α2Lσ2

2n2
+
α2L

2n2

n∑
i=1

piE‖gk−τk,i‖2

Rearrange these terms, we can get
α

2n
E
∥∥∇f(Xk)

∥∥2
+

α

2n
E
∥∥∇F (Xk−τk)

∥∥2

≤ Ef(Xk)− Ef(Xk+1) +
α

2n
E
∥∥∇f(Xk)−∇F (Xk−τk)

∥∥2
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+
α2Lσ2

2n2
+
α2L

2n2

n∑
i=1

piE‖gk−τk,i‖2

Summing over k = 0 to K − 1 on both sides, we can get

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
+

1

K

K−1∑
k=0

E
∥∥∇F (Xk−τk)

∥∥2

≤ 2n(f(0)− f∗)
αK

+
1

K

K−1∑
k=0

E
∥∥∇f(Xk)−∇F (Xk−τk)

∥∥2
+
αLσ2

n
+
αL

nK

K−1∑
k=0

n∑
i=1

piE‖gk−τk,i‖2

For
∑K−1
k=0 E

∥∥∇f(Xk)−∇F (Xk−τk)
∥∥2

, we have

K−1∑
k=0

E
∥∥∇f(Xk)−∇F (Xk−τk)

∥∥2

≤2

K−1∑
k=0

E
∥∥∇f(Xk)−∇f(Xk−τk)

∥∥2
+ 2

K−1∑
k=0

E
∥∥∇f(Xk−τk)−∇F (Xk−τk)

∥∥2

=2

K−1∑
k=0

E
∥∥∇f(Xk)−∇f(Xk−τk)

∥∥2
+ 2

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pi
(
∇fi(Xk−τk)− gk−τk,i

)∥∥∥∥∥
2

≤2

K−1∑
k=0

E
∥∥∇f(Xk)−∇f(Xk−τk)

∥∥2
+ 2

K−1∑
k=0

E
n∑
i=1

pi
∥∥∇fi(Xk−τk)− gk−τk,i

∥∥2

≤2L2
K−1∑
k=0

E
∥∥∥∥ (Xk −Xk−τk)1n

n

∥∥∥∥2

+ 2L2
K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

Putting it back, we have

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
+

1

K

K−1∑
k=0

E
∥∥∇F (Xk−τk)

∥∥2

≤2n(f(0)− f∗)
αK

+
2L2

K

K−1∑
k=0

E
∥∥∥∥ (Xk −Xk−τk)1n

n

∥∥∥∥2

+
2L2

K

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+
αLσ2

n
+
αL

nK

K−1∑
k=0

n∑
i=1

piE‖gk−τk,i‖2

Lemma 18
≤ 2n(f(0)− f∗)

αK
+

2L2

K

K−1∑
k=0

E
∥∥∥∥ (Xk −Xk−τk)1n

n

∥∥∥∥2

+
2L2

K

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+
αLσ2

n

+
αL

nK

K−1∑
k=0

12L2
n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+ 6ς2 + 2E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2


=
2n(f(0)− f∗)

αK
+

2L2

K

K−1∑
k=0

E
∥∥∥∥ (Xk −Xk−τk)1n

n

∥∥∥∥2

+

(
2L2 +

12αL3

n

)
1

K

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2
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+
(σ2 + 6ς2)αL

n
+

2αL

nK

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

Note that

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

= E
∥∥∇F (Xk−τk)

∥∥2

Moving it to the left side, we finally get

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2
+

(
1− 2αL

n

)
1

K

K−1∑
k=0

E
∥∥∇F (Xk−τk)

∥∥2

≤2n(f(0)− f∗)
αK

+
2L2

K

K−1∑
k=0

E
∥∥∥∥ (Xk −Xk−τk)1n

n

∥∥∥∥2

+

(
2L2 +

12αL3

n

)
1

K

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+
(σ2 + 6ς2)αL

n

That completes the proof.
Lemma 21 For all k ≥ 0, we have

2L2

K

K−1∑
k=0

E
∥∥∥∥(Xk −Xk−τk)

1n

n

∥∥∥∥2

≤2α2T 2(σ2 + 6ς2)L2

n2
+

24L4α2T 2

n2K

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+
4α2T 2L2

n2K

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

Proof From Lemma 20, we know the fact

Xk+1 = XkWk
1n

n
+ (Qk −Xk)(Wk − I)

1n

n
− αG̃k−τk = Xk − αG̃k−τk

As a result
K−1∑
k=0

E
∥∥∥∥(Xk −Xk−τk)

1n

n

∥∥∥∥2

=

K−1∑
k=0

E

∥∥∥∥∥
τk∑
t=1

αG̃k−t
1n

n

∥∥∥∥∥
2

≤α2
K−1∑
k=0

τk

τk∑
t=1

E
∥∥∥∥G̃k−t1nn

∥∥∥∥2

≤α2
K−1∑
k=0

τk

τk∑
t=1

(
σ2

n2
+

1

n2

n∑
i=1

piE ‖gk−t,i‖2
)

≤α
2T 2σ2K

n2
+
α2T

n2

K−1∑
k=0

τk∑
t=1

n∑
i=1

piE ‖gk−t,i‖2

≤α
2T 2σ2K

n2
+
α2T

n2

K−1∑
k=0

τk∑
t=1

12L2
n∑
i=1

piE
∥∥∥∥Xk−t

(
1n

n
− ei

)∥∥∥∥2

+ 6ς2 + 2E

∥∥∥∥∥
n∑
i=1

pigk−t,i

∥∥∥∥∥
2


≤α
2T 2σ2K

n2
+
α2T 2

n2

K−1∑
k=0

12L2
n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+ 6ς2 + 2E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2
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=
α2T 2(σ2 + 6ς2)K

n2
+

12L2α2T 2

n2

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+
2α2T 2

n2

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

And we get

2L2

K

K−1∑
k=0

E
∥∥∥∥(Xk −Xk−τk)

1n

n

∥∥∥∥2

≤2α2T 2(σ2 + 6ς2)L2

n2
+

24L4α2T 2

n2K

K−1∑
k=0

n∑
i=1

piE
∥∥∥∥Xk−τk

(
1n

n
− ei

)∥∥∥∥2

+
4α2T 2L2

n2K

K−1∑
k=0

E

∥∥∥∥∥
n∑
i=1

pigk−τk,i

∥∥∥∥∥
2

That completes the proof.

Lemma 22 Given non-negative sequences {at}∞t=1, {bt}∞t=1 and {τt}∞t=1 and a positive number T
that satisfying

at =

t−τt∑
s=1

ρb
t−τt−s

T cbs

with 0 ≤ ρ < 1,we have

Sk =

k∑
t=1

at ≤
(2− ρ)T

1− ρ

k∑
s=1

bs

Dk =

k∑
t=1

a2
t ≤

(2− ρ)T 2

(1− ρ)2

k∑
s=1

b2s

Proof

Sk =

k∑
t=1

at =

k∑
t=1

t−τt∑
s=1

ρb
t−τt−s

T cbs ≤
k∑
t=1

t∑
s=1

ρmax(b t−τt−sT c,0)bs =

k∑
s=1

k∑
t=s

ρmax(b t−τt−sT c,0)bs

=

k∑
s=1

k−τk−s∑
t=0

ρb
t
T cbs +

k∑
s=1

τk∑
t=1

ρ0bs ≤
k∑
s=1

(
T−1∑
t=0

∞∑
m=0

ρm

)
bs + τk

k∑
s=1

bs ≤
(
T +

T

1− ρ

) k∑
s=1

bs

Dk =

k∑
t=1

a2
t =

k∑
t=1

t−τt∑
s=1

ρb
t−τt−s

T cbs
t−τt∑
r=1

ρb
t−τt−r

T cbr =

k∑
t=1

t−τt∑
s=1

t−τt∑
r=1

ρb
t−τt−s

T c+b t−τt−rT cbsbr

≤
k∑
t=1

t−τt∑
s=1

t−τt∑
r=1

ρb
t−τt−s

T c+b t−τt−rT c b2s + b2r
2

=

k∑
t=1

t−τt∑
s=1

t−τt∑
r=1

ρb
t−τt−s

T c+b t−τt−rT cb2s

≤
k∑
t=1

t−τt∑
s=1

b2sρ
b t−τt−sT c

t−τt∑
r=1

ρb
t−τt−r

T c ≤
k∑
t=1

t−τt∑
s=1

b2sρ
b t−τt−sT c

T−1∑
r=0

∞∑
m=0

ρm

cs6 ≤ T

1− ρ

k∑
t=1

t−τt∑
s=1

ρb
t−τt−s

T cb2s
UsingSk
≤ (2− ρ)T 2

(1− ρ)2

k∑
s=1

b2s

Lemma 23 for ∀i, j and ∀k ≥ 0, we have

‖Xk(ei − ej)‖∞ ≤ θ = 16tmixαG∞
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Proof Similar to Section F and Section G, we use mathmatical induction to prove this.

I. First, for k = 0, we have

‖Xk(ei − ej)‖∞ = 0 ≤ θ = 16tmixαG∞

II. Suppose for k ≥ 0, we have ‖Xt(ei − ej)‖∞ ≤ θ, ∀t ≤ k, then we have

‖Xk+1(ei − ej)‖∞

≤
∥∥∥∥Xk+1

(
1n

n
− ei

)∥∥∥∥
∞

+

∥∥∥∥Xk+1

(
1n

n
− ej

)∥∥∥∥
∞

≤
∥∥∥∥Xk+1

(
I − 1n1

>
n

n

)∥∥∥∥
1,∞
‖ei‖1 +

∥∥∥∥Xk+1

(
I − 1n1

>
n

n

)∥∥∥∥
1,∞
‖ej‖1

=2

∥∥∥∥Xk+1

(
I − 1n1

>
n

n

)∥∥∥∥
1,∞

≤2

∥∥∥∥(XkWk − αG̃k−τk + Ωk

)(
1n

n
− ei

)∥∥∥∥
1,∞

=2

∥∥∥∥∥
k∑
t=0

(
−αG̃t−τt + Ωt

)( k∏
q=t+1

Wq −
1n1

>
n

n

)∥∥∥∥∥
1,∞

≤2

k∑
t=0

∥∥∥∥∥(−αG̃t−τt + Ωt

)( k∏
q=t+1

Wq −
1n1

>
n

n

)∥∥∥∥∥
1,∞

≤2

k∑
t=0

∥∥∥−αG̃t−τt + Ωt

∥∥∥
1,∞

∥∥∥∥∥
k∏

q=t+1

Wq −
1n1

>
n

n

∥∥∥∥∥
1

≤4(αG∞ + 2δθ)

k∑
t=0

2−b(k−t)/tmixc

≤4(αG∞ + 2δθ)

tmix−1∑
t=0

∞∑
r=0

2−r

≤8(αG∞ + 2δθ)tmix

Put in δ = 1
32tmix

, we obtain

‖Xk+1(ei − ej)‖2 ≤ 8(αG∞ + 2δθ)tmix = 8tmixαG∞ + 8tmixαG∞ = 16tmixαG∞

Combining I and II and we complete the proof.
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