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ABSTRACT

Understanding three-dimensional (3D) geometries from two-dimensional (2D)
images without any labeled information is promising for understanding the real
world without incurring annotation cost. We herein propose a novel generative
model, RGBD-GAN, which achieves unsupervised 3D representation learning
from 2D images. The proposed method enables camera parameter conditional
image generation and depth image generation without any 3D annotations such as
camera poses or depth. We used an explicit 3D consistency loss for two RGBD
images generated from different camera parameters in addition to the ordinal GAN
objective. The loss is simple yet effective for any type of image generator such
as the DCGAN and StyleGAN to be conditioned on camera parameters. We con-
ducted experiments and demonstrated that the proposed method could learn 3D
representations from 2D images with various generator architectures.

1 INTRODUCTION

Figure 1: Generated RGBD images conditioned on camera parameters from StyleGAN. Gray images
are generated depth images. The proposed method enables the joint distribution of RGB and depth
to be learned and disentangles camera parameters from unlabeled RGB image datasets.

Understanding three-dimensional (3D) geometries from two-dimensional (2D) images is important
in computer vision. An image of objects in the real world comprises two independent components:
object identity and camera pose. Object identity represents the shape and texture of an object, and
camera pose comprises camera rotation and translation, and intrinsics such as focal length. Learning
the representation of these two components independently facilitates in understanding the real 3D
world. For example, camera pose invariant feature extraction can facilitate object identification
problems, and camera pose variant feature representations are beneficial for the pose estimation of
the objects. These tasks are easy for humans but difficult for machines.

Recently, 3D representation learning through 3D object generation has been actively researched.
Many techniques are available for learning the relationship between 2D images and 3D objects,
which is called 3D object reconstruction from 2D images. Typically used 3D representations are
voxel grids (Yan et al., 2016; Wu et al., 2016; Choy et al., 2016), point clouds (Fan et al., 2017),
and meshes (Kato et al., 2018; Wang et al., 2018; Kato & Harada, 2019). For all methods, 3D an-
notations such as ground truth 3D models (Choy et al., 2016; Fan et al., 2017; Wang et al., 2018),
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multiple-view images (Yan et al., 2016), or silhouette annotations of objects (Yan et al., 2016;
Kato et al., 2018; Kato & Harada, 2019) must be used. Although these methods achieve 3D ob-
ject generation by controlling the object identity and camera poses independently, the construction
of such datasets requires considerable time and effort. Therefore, a method that can learn 3D rep-
resentations without any labeled information must be developed. Furthermore, methods to generate
high-resolution 3D objects with fidelity have not been developed owing to memory constraint or
training instability.

To realize unsupervised 3D object generation, we employ a different approach, i.e., RGBD image
synthesis. RGBD images comprise the color and depth information of each pixel. The proposed
RGBD image synthesis can be achieved through a simple extension of recently developed image
generation models. Recently, image generation models have shown significant progress, especially
generative adversarial networks (GANs) (Goodfellow et al., 2014). A GAN adversarially trains a
discriminator that estimates the distribution distance between generated and real images; addition-
ally it trains a generator that minimizes the estimated distance. As such, the distribution of training
images can be estimated precisely without supervision. Recent interests in generative models per-
tain to their training stability (Arjovsky et al., 2017; Gulrajani et al., 2017; Miyato et al., 2018) and
improvement in quality and diversity (Karras et al., 2018; Brock et al., 2019; Karras et al., 2019).
Furthermore, methods to learn 3D representation from 2D images by constructing a generative
model conditioned on camera parameters have been proposed (Shen et al., 2018; Sitzmann et al.,
2019; Nguyen-Phuoc et al., 2019). Shen et al. (2018) and Sitzmann et al. (2019) learned to generate
images by controlling camera poses using camera pose annotations or images captured from multi-
ple viewpoints. Although these methods can successfully control an object pose, the scalability is
limited owing to the annotation costs. Nguyen-Phuoc et al. (2019) recently proposed a method to
disentangle object identity and camera poses without any annotations. This method uses latent 3D
features and learns to generate images from the feature projected from the 3D feature with rigid-
body transformations. That is, this method uses strong inductive biases regarding the 3D world to
learn the relationship between camera poses and images. Although this model can model the 3D
world reasonably well, its 3D latent feature processing requires considerable memory and computa-
tional costs than 2D CNN:ss, thus limiting its scalability. Furthermore, these image generation models
cannot output explicit 3D representations, thus limiting the understandability of the output.

We propose the RGBD-GAN, which learns to generate RGBD images from natural RGB image
datasets without any annotations such as camera pose annotations, multiple viewpoints for single
objects, and depth annotations. The proposed model uses an explicit 3D consistency loss for the
generated images; the model generates two RGBD images with different camera parameters and
learns them to be consistent with the 3D world. This training pipeline is simple yet effective for
generating depth images without supervision and for disentangling a camera pose from the image
content. Because the proposed model does not restrict the generator architecture, we can condition
any type of image generator (e.g., PGGAN (Karras et al., 2018), StyleGAN (Karras et al., 2019)) on
camera parameters. Figure 1 shows the generation results from the StyleGAN.

Our contributions are as follows.

e We propose a new image generation technique, i.e., RGBD image synthesis, which can be
achieved from RGB images without any labeled information such as annotations of camera
parameters, depth, or multiple viewpoints for single objects.

e The proposed method can disentangle camera parameters from the image content without
any supervision.

e Our method can be used to condition any type of generator on camera parameters because
the proposed loss function does not restrict the generator architecture.

2 METHOD

In this study, unsupervised 3D representation learning is achieved via RGBD image synthesis. The
proposed method does not require any type of supervision such as annotations of camera parameters,
depth, and multiple viewpoints for a single object. In this section, we first describe the motivation
to use RGBD representation for unsupervised 3D representation learning in subsection 2.1; further-
more, we provide the details of our method in subsection 2.2.
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Figure 2: Proposed pipeline. We train the RGBD image generator with the self-supervised 3D
consistency loss and adversarial loss for RGB channels.

2.1 MOTIVATION

A goal of this research is to construct a model that can generate images I conditioned on camera pa-
rameters c. However, it is impossible to perfectly model the relationship between c and I without any
annotations. Therefore, we alleviate the problem by considering optical flow consistency. Although
optical flow is typically used for two different frames in a movie, we used it for images captured with
different camera parameters. Optical flow consistency is expressed as the pixel movement between
two images.

I(z,y,c) = I(z+ Az,y + Ay, c+ Ac) for Vzx,y,c (1)
Here, = and y are pixel coordinates in the image. Considering a small Ac, this equation can be
written as the following partial differential equation.
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known, then % can be calculated. This term can be helpful for conditioning the generator on the

camera parameters when optimizing the GAN objective. However, % and % are still unknown.
Therefore, we alleviate this problem by considering a geometric constraint on a homogeneous coor-
dinate. Let d be the depth, p = (x,y, 1) the homogeneous coordinate of the pixel, p.or1q the world
coordinate of the pixel, R the rotation matrix, ¢ the translation vector, and K the camera intrinsics.
The camera parameters c are represented herein as { K, R, t}. pyoriqd is constant to ¢. At this time,
we can calculate the position on an image and the depth from the world coordinate p,y14-

dp = KRpworld + Kt 3)

This facilitates in calculating % and % by estimating the depth d. Hence, we used the RGBD
representation for camera parameter conditioning. For depth image d, an optical flow consistency
as an RGB image exists, considering the camera parameter change. This facilitates in estimating the
depth image d.

d(z,y,c) =d(x+ Az,y + Ay, c+ Ac) + Ad for Vzx,y,c 4
Here, Ad can be calculated from Equation 3.

Briefly, training a GAN with the constraints in Equation 1, 3, and 4 is beneficial for learning g—é,
which benefits camera parameter conditional synthesis. Additonally, learning a camera parameter
conditional image generation model facilitates in learning depth distributions with the constraint
from Equation 1 and 3. The details for each module are explained below.

2.2 PROPOSED PIPELINE

The proposed model comprises three components: an RGBD image generator conditioned on cam-
era parameters, RGB discriminator for adversarial training, and self-supervised RGBD consistency
loss. The overview of the pipeline is shown in Figure 2.
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2.2.1 RGBD GENERATOR

In the previous subsection, we showed that depth image estimation facilitates in learning the relation-
ship between images and camera parameters. In this section, we explain the method for the RGBD
image generator. Considering the success in image generation, the generator of a GAN can estimate
complicated distributions. Therefore, we used ordinary RGB image generators such as the DCGAN
or StyleGAN for RGBD synthesis. RGBD synthesis is achieved by adding one channel to the final
layer of the RGB generator. Moreover, as described in the experimental section, we can use image
generation models through 3D latent representations such as the HoloGAN (Nguyen-Phuoc et al.,
2019), which models the 3D world more naturally.

In the proposed pipeline, the generator is conditioned on camera parameters and trained with the
self-supervised consistency loss described in the next subsection. Because no constraint exists for
the generator architecture, any type of generator architecture can be used for RGBD image synthesis,
thus resulting in the high applicability of the method.

2.2.2 SELF-SUPERVISED RGBD CONSISTENCY LOSS

In section 2.1, we showed that the optical flow consistency for RGB and depth can facilitate in learn-
ing camera parameter conditional image generation. We approximated the constraint in Equation 1
and 4 by sampling two camera parameters c; and ¢ and minimizing the difference of both sides of
the equations for two generated images conditioned on the camera parameters, where ¢ = ¢; and
¢+ Ac = co. In this study, the camera parameters are sampled from a predefined distribution p(c)
according to the dataset, similarly to the HoloGAN. We limit the maximum values of Ac to 30° to
avoid large occlusion.

The objective function for Equation 1 is similar to the loss used in monocular video depth estimation
(Zhou et al., 2017). Using Equation 3, we can calculate the 3D position of each pixel when an RGBD
image is viewed from different viewpoints. Therefore, images captured from cy can be rendered by
sampling the pixel values from RGBD images captured from c;. This operation is typically called
the “warp” operation. The operation was implemented with bilinear sampling between the colors
of four neighboring pixels of warped coordinates such that it was differentiable. We applied this
loss to the generated RGBD images conditioned on c¢; and cy. The main difference between depth
estimation and the proposed method is that our method optimizes both the RGB and depth image
generator, although depth estimation only optimizes the depth estimator.

Moreover, for the constraints of the depth map in Equation 4, we define a consistency loss to the
generated depth maps. This loss attempts to equate the depth map generated from c; in 3D space to
that generated from co, which is similar to the left—right disparity consistency loss in (Godard et al.,
2017). The proposed 3D loss function can be written as Equation 5.

L3p = ]EZNP(Z),C1,z~p(c)[||GRGB(27 ¢1) — warp(Gra(z, 2), ClﬁQ)H%

+‘ |pr0jecti0n(GD(z, 01)7 Cl_>2) — warp(GD (Z, CQ), Cl_>2) ‘ H] (5)
Here, Grap(z, ¢) and Gp(z, ¢) are the generated RGB and depth image from a latent vector z and
camera parameters c respectively, and c;_,» is a relative transformation matrix from c; to co. The
“projection” operation calculates the depth value viewed from different viewpoints from the input
depth map using Equation 3. The “Warp” operation is a bilinear resampling of the input images. For
simplification, we omit the loss for the inverse transformation co_,; in the equation.

This loss function causes inaccurate gradients for the occluded pixels during the transformation
c1_,2 because it does not consider those regions. Therefore, in this study, we used the occlusion
aware consistency loss proposed in (Gordon et al., 2019). This technique propagates gradients only
to pixels where the projected depth is smaller than the depth of the other viewpoint image. This
prevents inaccurate gradients in pixels that move behind other pixels during projection.

Finally, we add a depth constraint term to stabilize the training. The loss above can be easily min-
imized to 0 when the generated depth is extremely small. Therefore, we set the minimum limit for
the depth value as d,,;,, and add a regularization for depth values smaller than d,,;,,.

Lieptn = Z max(0, (dmin — d(, y)))2 (6)

T,y
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Figure 3: Generator architectures tested. PGGAN-based model (left), StyleGAN-based model (mid-
dle), and DeepVoxels-based model (right).

2.2.3 RGB DISCRIMINATOR

To achieve the training of an RGBD generator from unlabeled RGB images, we apply adversarial
loss only for the RGB channels of generated images. Although the loss can only improve the reality
of the images, this loss is beneficial for learning depth images and camera parameter conditioning
through the optimization of the loss in Equation 5.

Based on the above, the final objective for the generator L is as follows.

La = Lgan + A3pLsp + Adepth Ldepth @)
Here, L an is an adversarial loss function, and A is a hyperparameter.

3 EXPERIMETNS

3.1 MODEL ARCHITECTURES

The proposed method does not restrict the generator architecture: any type of image generators
can be conditioned on camera parameters. To demonstrate the effectiveness of our method, we
tested three types of image generation models: PGGAN, StyleGAN, and DeepVoxels. The model
architectures are shown in Figure 3. Because perspective information is difficult to obtain from a
single image, in this experiment, the camera intrinsics K are fixed during training. We controlled
only the azimuth 6, (left-right rotation) and elevation 8, (up—down rotation) parameters based on the
training setting of the HoloGAN. In the following, we provide the details of each model architecture.

PGGAN: A PGGAN (Karras et al., 2018) is a state-of-the-art DCGAN. In this experiment, we
conditioned the model on two camera parameters, azimuth and elevation, as follows: First, these
values are input to cos and sin functions, respectively, and the outputs are concatenated to a single
VECLOr Ceyclic- Subsequently, the four-dimensional vector is concatenated to latent vector z, which
is input to the generator. This operation allows the generated images to change continuously for a
360° angle change. We start with a resolution of 32 x 32 and increase it progressively to 128 x 128.

StyleGAN: A StyleGAN (Karras et al., 2019) is a state-of-the-art GAN model that controls the
output “style” of each convolutional layer by performing adaptive instance normalization (AdalN)
(Huang & Belongie, 2017) and acquires hierarchical latent representations. We used ccy i to only
control the style of features on resolutions of 4 x 4 and 8 x 8, as it is known that styles at low-
resolution layers control global features such as the pose and shape of an object. More concretely,
we concatenated cyci;c and the output of the mapping network w, which was then converted to w’
with a multilayer perceptron. Please refer to Figure 3. We start with a resolution of 32 x 32 and
increase it to 128 x 128 progressively.

DeepVoxels: The HoloGAN enables the disentanglement of camera parameters by using 3D la-
tent feature representations. This is a more natural and realistic modeling of the 3D world than the
two models above because it considers explicit transformations in 3D space. However, the Holo-
GAN cannot consider depth information as the projection unit of the HoloGAN only calculates
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the weighted sum of feature on the depth dimension. Therefore, we used the model inspired by
DeepVoxels (Sitzmann et al., 2019) to apply the proposed method. DeepVoxels is a method that
can learn the 3D latent voxel representation of objects using images from multiple viewpoints of
a single object; additionally, it can generate novel-view images. This method uses the occlusion-
aware projection module that learns which voxels are visible from the camera viewpoint along the
depth axis. This is achieved via unsupervised learning. Therefore, a depth image can be acquired
from the model, which is suitable for combining with our method. In this experiment, we combined
DeepVoxels and a voxel feature generator that generates features from random latent vector z, to
be used for the random image generation task. We used 3D convolution and AdalN for the voxel
feature generator, similarly to the HoloGAN. DeepVoxels uses an explicit camera model to acquire
the feature visible in the camera frustum, whereas the HoloGAN uses rigid-body transformations.
This enables a more accurate reasoning about the 3D world. Moreover, for simplicity, we did not
use the Identity regulariser and style discriminator. We compare the three settings for the models
using 3D feature representations. The first model uses the weighted sum of depth dimensions in-
stead of occlusion-aware projection modules, similarly to the HoloGAN. The second model uses
occlusion-aware projection modules but does not use the proposed 3D loss. The final model uses
DeepVoxels and the proposed 3D loss. The methods are called “HoloGAN-like,” “Deep Voxels,” and
“DeepVoxels + 3D loss” in the figures and tables. It is noteworthy that “HoloGAN-like” is not the
same model as the original HoloGAN because it is based on DeepVoxels’ network structures.

3.2 DATASETS

We trained our model using FFHQ (Karras et al., 2019), cars from ShapeNet (Chang et al., 2015),
car images (Krause et al., 2013), and the LSUN bedroom dataset (Yu et al., 2015). We used 128
x 128 images for the PGGAN and StyleGAN, and 64 x 64 images for models using 3D latent
feature representations owing to memory constraints. We used 35° for the elevation angle range for
all experiments, 120° for the azimuth range for the FFHQ and bedroom datasets, and 360° for the
azimuth range for the Car and ShapeNet car datasets. For the ShapeNet car dataset, we used a new
occlusion reasoning algorithm for DeepVoxels—based models to stabilize the training. The details
are explained in the appendix.

3.3 RESULTS

Qualitative results The generative results from each model controlling the camera parameters on
the FFHQ and ShapeNet car datasets are shown in Figures 4 and 5. In the figures, gray images show
the generated depth images. The depth is visualized as black when the depth value is large. For all
models using the proposed loss (top three in the figures), images can be generated by controlling
the camera parameters, preserving their identity. Moreover, the models can generate depth images
that do not exist in the training samples. To confirm the depth consistency, we showed normal maps
and rotated images for the generative results from the StyleGAN, as shown in Figure 6. The white
regions of the ShapeNet car dataset are omitted for the visualization of point clouds. As shown in the
figure, the models can generate the convex shape of a face and the rectangular shape of a car without
any annotations regarding the 3D world. In particular, although the PGGAN and StyleGAN use the
2D CNN, consistent rotation and depth estimation are achieved, which is impossible with previous
methods. This implies that the proposed method has good generalization performance on the gen-
erator architecture. The DeepVoxels—based method with the proposed loss performs well on both
FFHQ and the ShapeNet car dataset. They can acquire more consistent rotation and generate more
consistent depth images than 2D CNN-based models. This is thanks to the explicit 3D modeling
about 3D space, though it does consume much memory and has high computational cost.

For the ShapeNet car dataset in Figure 5, PGGAN- and StyleGAN-based methods can generate
consistently rotated images. However, for the PGGAN, only a 180° azimuth change is acquired.
This is because the model cannot distinguish between the front and back of the car, as it is difficult
to achieve only with unsupervised learning. Meanwhile, StyleGAN-based methods can learn con-
sistent azimuth and elevation angle changes. This is because the StyleGAN is stable owing to its
hierarchical latent representation.

Comparing three 3D-latent-feature-based methods for the datasets, “HoloGAN-like” method works
well on the FFHQ dataset but cannot acquire consistent 360° rotation on the ShapeNet car dataset
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Figure 4: Visualization of comparison for the generated images from each model on FFHQ dataset.
Images in each row are generated from the same latent vector z but different azimuth or elevation
angles. The grayscale images are the generated depth images.
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Figure 5: Visualization of comparison for the generated images from each model on ShapeNet car
images. Images in each row are generated from the same latent vector z but different azimuth or
elevation angles. The grayscale images are generated the depth images.

in our training settings. DeepVoxels—based methods, on the other hand, can control 360° object
rotation on the dataset, realizing the depth map generation without any supervised information. This
result shows that the depth reasoning helps to generate images considering the 3D geometry of the
objects. Moreover, Deep Voxels—based method with the proposed loss can generate more consistent
images for the FFHQ dataset. For example, in “DeepVoxels”, the depth of the background is smaller
than that of the face; however, this does not occur when the proposed loss is used. This is because our
method considers warped images from different viewpoints, thus facilitating the model to accurately
learn the 3D world.

Moreover, additional generative results from the StyleGAN on the car image and bedroom datasets
are shown in Figure 7. For the dataset preprocessing, we center cropped the images without aligning
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Figure 6: Normal map and point cloud visualization for FFHQ and ShapeNet car datasets. Point
clouds in occluded region are not visualized in the figure. We show the placemarks for the tire for
better understanding.
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Figure 7: Generated car and bedroom images using the StyleGAN with proposed loss changing the
azimuth angle range.

Table 1: Performance comparison of unconditional generation models and proposed camera param-
eter conditional models.We report FID for each model.

MODEL FFHQ ShapeNet Car
PGGAN 28.5 16.7
PGGAN + 3D loss 30.3 14.5
StyleGAN 20.9 15.5
StyleGAN + 3D loss  24.2 13.5
HoloGAN-like 234 335
DeepVoxels 19.4 28.6
DeepVoxels + 3D loss ~ 21.1 31.2

the object position. Despite the diversity of the camera poses and object layouts, the model could
learn to generate images by controlling the camera poses.

As aresult, the proposed method effectively helps the generators to learn both depth information and
explicit controls on camera poses. These are achieved without the need for 3D latent representations
as HoloGAN does, and moreover, the proposed method further improve the results for the models
using 3D latent representations.

Quantitative results We compared the Fréchet inception distance (FID) (Heusel et al., 2017) be-
tween models with and without the proposed method for each generator architecture. FID is a typical
evaluation metric for image generation models. The results are shown in Table 1. The results show
that the proposed camera parameter conditional image generation models can generate images with
competitive or even better FIDs than unconditional or RGB image generation models for all types
of generator architectures. The results show the robustness and effectiveness of our method against
the architectures of the generator.

4 CONCLUSION

We herein proposed an RGBD image synthesis technique for camera parameter conditional image
generation. Although the proposed method did not require any labeled dataset, it could explic-
itly control the camera parameters of generated images and generate consistent depth images. The
method did not limit the generator architecture, and could be used to condition any type of image
generator on camera parameters. As the proposed method could learn the relationship between cam-
era parameters and images, future works will include extending the method for unsupervised camera
pose estimation and unsupervised camera pose invariant feature extraction from images.
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Figure 8: Comparison between the softmax weighting (left) and our occlusion reasoning algorithm
(right). The values are the weight for each voxel. Our method accumulates the weight along the
camera ray and ignores the voxels where the accumulative values exceed one. The orange regions
are visible voxels from the camera.

A CAMERA PARAMETER DISTRIBUTIONS

To randomly sample two similar camera parameters c; and cq, we first sample ¢; from a uniform dis-
tribution and then sample cs from an area near to ¢; within the angle range. We limit the maximum
distance between ¢; and co as 30° to avoid large occlusions.

B IMPLEMENTATION DETAILS FOR DEEPVOXELS

The components we used to implement the DeepVoxels—based methods were the projection layer,
occlusion module, and rendering module, which are proposed in (Sitzmann et al., 2019). We imple-
mented them with structures simpler than those of the original implementation to reduce the com-
putational costs and memory usage. We used fewer 3D convolutional layers for occlusion module
and a U-Net-like network with AdalN for the rendering module.

For occlusion reasoning, we used a different algorithm to learn more consistent depth for the
ShapeNet car datasets. The occlusion reasoning to get image features used in DeepVoxels is softmax
weighting along the depth axis, which is visualized on the left side of Figure 8. This algorithm needs
the occlusion module to calculate the weight of the voxels according to the camera poses, which is
very difficult through unsupervised learning. Therefore, to reduce the training cost of the occlusion
network, we use a more explicit reasoning algorithm. First, the network estimates the probability of
each voxel to be on the surface of the object or not; i.e. the opacity of each voxel. This is imple-
mented with a sigmoid activation function. Then, the weights are accumulated along the rays from
the camera by summing the values, and when the accumulated values exceed 1, the later voxels are
ignore, i.e., the weight values are replaced with Os. The algorithm overview is shown in the right
side of Figure 8.

We show the generative results from “DeepVoxels + 3D loss” with each algorithm in Figure 9.
The model that uses the proposed occlusion reasoning can acquire more consistent 360° rotation,
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Figure 9: Comparison of the occlusion reasoning algorithms. The proposed method can acquire
more consistent rotation and generate consistent depth maps than the softmax weighting.

whereas the softmax weighting cannot. Moreover, the proposed algorithm can generate consistent
depth maps compared to the softmax weighting. The results show the effectiveness of the proposed
method for unsupervised learning.

C TRAINING DETAILS

We trained PGGAN- and StyleGAN-based models for 300,000 iterations with batchsize 32, and
3D-latent—feature—based models for 75,000 iterations with batchsize 10. All models are trained
with Adam optimizer with learning rate 0.001 for the generators, 0.00001 for the mapping networks,
and 0.003 for the discriminators. In the experiments, we used a ResNet-based discriminator and
nonsaturating loss (Goodfellow et al., 2014) with gradient penalty (Mescheder et al., 2018).
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