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ABSTRACT

We empirically evaluate common assumptions about neural networks that are
widely held by practitioners and theorists alike. We study the prevalence of lo-
cal minima in loss landscapes, whether small-norm parameter vectors generalize
better (and whether this explains the advantages of weight decay), whether wide-
network theories (like the neural tangent kernel) describe the behaviors of classi-
fiers, and whether the rank of weight matrices can be linked to generalization and
robustness in real-world networks.

1 INTRODUCTION

Modern deep learning methods are descendent from such long-studied fields as statistical learning,
optimization, and signal processing, all of which were built on mathematically rigorous foundations.
In statistical learning, principled kernel methods have vastly improved the performance of SVMs and
PCA (Suykens & Vandewalle, 1999; Schölkopf et al., 1997), and boosting theory has enabled weak
learners to generate strong classifiers (Schapire, 1990). Optimizers in deep learning are borrowed
from the field of convex optimization , where momentum optimizers (Nesterov, 1983) and conjugate
gradient methods provably solve ill-conditioned problems with high efficiency (Hestenes & Stiefel,
1952). Deep learning harnesses foundational tools from these mature parent fields.

Despite its rigorous roots, deep learning has driven a wedge between theory and practice. Recent
theoretical work has certainly made impressive strides towards understanding optimization and gen-
eralization in neural networks. But doing so has required researchers to make strong assumptions
and study restricted model classes.

In this paper, we seek to understand whether deep learning theories accurately capture the behaviors
and network properties that make realistic deep networks work. Following a line of previous work,
such as Swirszcz et al. (2016), Zhang et al. (2016), Balduzzi et al. (2017) and Santurkar et al. (2018),
we put the assumptions and conclusions of deep learning theory to the test using experiments with
both toy networks and realistic ones. We focus on the following important theoretical issues:

• Local minima: Numerous theoretical works argue that all local minima of neural loss func-
tions are globally optimal or that all local minima are nearly optimal. In practice, we find
highly suboptimal local minima in realistic neural loss functions, and we discuss reasons
why suboptimal local minima exist in the loss surfaces of deep neural networks in general.

• Weight decay and parameter norms: Research inspired by Tikhonov regularization suggests
that low-norm minima generalize better, and for many, this is an intuitive justification for
simple regularizers like weight decay. Yet for neural networks, it is not at all clear which
form of `2-regularization is optimal. We show this by constructing a simple alternative:
Biasing solutions toward a non-zero norm still works and can even measurably improve
performance for modern architectures.

• Rank: Generalization theory has provided guarantees for the performance of low-rank net-
works. However, we find that regularization which encourages high-rank weight matrices
often outperforms that which promotes low-rank matrices. This indicates that low-rank
structure may not be a significant force behind generalization in practical networks. We
further investigate the adversarial robustness of low-rank networks, which are thought to
be more resilient to attack, and we find empirically that their robustness is often lower than
the baseline or even a purposefully constructed high-rank network.
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• Neural tangent kernels and the wide-network limit: We investigate theoretical results con-
cerning neural tangent kernels of realistic architectures. Astonishingly, stochastic sampling
of the tangent kernels suggests that theoretical results on tangent kernels of multi-layer net-
works may transfer to realistic settings and initializations for multilayer networks and basic
convolutional architectures. However, this transfer holds best for extremely wide networks,
and does not reliably hold in the regime where practical deep networks live and even re-
verses when considering ResNet architectures.

2 LOCAL MINIMA IN LOSS LANDSCAPES: DO SUBOPTIMAL MINIMA EXIST?

It is generally accepted that “in practice, poor local minima are rarely a problem with large net-
works.” (LeCun et al., 2015). However, exact theoretical guarantees for this statement are elusive.
Various theoretical studies of local minima have investigated spin-glass models (Choromanska et al.,
2014), deep linear models (Laurent & Brecht, 2018; Kawaguchi, 2016), parallel subnetworks (Ha-
effele & Vidal, 2017), and dense fully connected models (Nguyen et al., 2018) and have shown that
either all local minima are global or all have a small optimality gap. The apparent scarcity of poor
local minima has lead practitioners to develop the intuition that bad local minima (“bad” meaning
high loss value and suboptimal training performance) are practically non-existent.

To further muddy the waters, some theoretical works prove the existence of local minima. Such
results exist for simple fully connected architectures (Swirszcz et al., 2016), single-layer networks
(Liang et al., 2018), and two-layer ReLU networks (Safran & Shamir, 2017). Unfortunately, existing
analysis of neural loss landscapes requires strong assumptions (e.g. random training data, linear
activation functions, fully connected layers, or extremely wide network widths) — so strong, in fact,
that it is reasonable to question whether these results have bearing on practical neural networks or
describe the underlying cause of good optimization performance in real-world settings.

In this section, we investigate the existence of suboptimal local minima from a theoretical perspec-
tive and an empirical one. If suboptimal local minima exist, they are certainly hard to find by
standard methods (otherwise training would not work). Thus, we present simple theoretical results
that inform us on how to construct non-trivial suboptimal local minima, concretely generalizing pre-
vious constructions, such as those by Swirszcz et al. (2016). Using experimental methods inspired
by theory, we easily find suboptimal local minima in the loss landscapes of a range of classifiers.

Trivial local minima are easy to find in ReLU networks – consider the case where bias values are
sufficiently low so that the ReLUs are “dead” (i.e. inputs to ReLUs are strictly negative). Such
a point is trivially a local minimum. Below, we make a more subtle observation that multilayer
perceptrons (MLPs) must have non-trivial local minima, provided there exists a linear classifer that
performs worse than the neural network (an assumption that holds for virtually any standard bench-
mark problem). Specifically, we show that MLP loss functions contain local minima where they
behave identically to a linear classifier on the same data.

We now define a family of low-rank linear functions which represent an MLP. Let “rank-s affine
function” denote an operator of the form G(x) = Ax + b with rank(A) = s.
Definition 2.1. Consider a family of functions, {Fφ : Rm → Rn}φ∈RP parameterized by φ.We say
this family has rank-s affine expression if for all rank-s affine functions G : Rm → Rn and finite
subsets Ω ⊂ Rm, there exists φ with Fφ(x) = G(x), ∀x ∈ Ω. If s = min(n,m) we say that this
family has full affine expression.

We investigate a family of L-layer MLPs with ReLU activation functions, {Fφ : Rm →
Rn}φ∈Φ, and parameter vectors φ, i.e., φ = (A1,b1, A2,b2, . . . , AL,bL), Fφ(x) =
HL(f(HL−1...f(H1(x)))), where f denotes the ReLU activation function and Hi(z) = Aiz + bi.
Let Ai ∈ Rni×ni−1 , bi ∈ Rni with n0 = m and nL = n.
Lemma 1. Consider a family of L-layer multilayer perceptrons with ReLU activations {Fφ : Rm →
Rn}φ∈Φ, and let s = mini ni be the minimum layer width. Such a family has rank-s affine expres-
sion.

Proof. The idea of the proof is to use the singular value decomposition of any rank-s affine function
to construct the MLP layers and pick a bias large enough for all activations to remain positive. See
Appendix A.1.
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The ability of MLPs to represent linear networks allows us to derive a theorem which implies that
arbitrarily deep MLPs have local minima at which the performance of the underlying model on the
training data is equal to that of a (potentially low-rank) linear model. In other words, neural networks
inherit the local minima of elementary linear models.

Theorem 1. Consider a training set, {(xi, yi)}Ni=1, a family {Fφ}φ of MLPs with s = mini ni
being the smallest width. Consider a parameterized affine function GA,b solving

min
A,b
L(GA,b; {(xi, yi)}Ni=1), subject to rank(A) ≤ s, (1)

for a continuous loss function L. Then, for each local minimum, (A′,b′), of the above training
problem, there exists a local minimum, φ′, of the MLP loss L(Fφ; {(xi, yi)}Ni=1) with the property
that Fφ′(xi) = GA′,b′(xi) for i = 1, 2, ..., N .

Proof. See appendix A.2.

The proof of the above theorem constructs a network in which all activations of all training examples
are positive. We do, however, expect that the general problem in expressivity occurs every time the
support of the activations coincides for all training examples, as the latter reduces the deep network
to an affine linear function (on the training set), which relates to the discussion in Balduzzi et al.
(2017). We test this hypothesis below by initializing deep networks with biases of high variance.
Note that the above constructions of Lemma 1 and Theorem 1 are not limited to MLPs and could
be extended to convolutional neural networks with suitably restricted linear mappings Gφ by using
the convolution filters to represent identities and avoiding any negative activations on the training
examples. Moreover, shallower MLPs can similarly be embedded into deeper MLPs recursively.
Linear classifiers, or even shallow MLPs, often have higher training loss than more expressive net-
works. Thus, we can use the idea of Theorem 1 to find various suboptimal local minima in the loss
landscapes of neural networks. We confirm this with subsequent experiments.

We find that initializing a network at a point that approximately conforms to Theorem 1 is enough to
get trapped in a bad local minimum. We verify this by training a linear classifier on CIFAR-10 with
weight decay, (which has a test accuracy of 40.53%, loss of 1.57, and gradient norm of 0.00375). We
then initialize a multilayer network as described in Lemma 1 to approximate this linear classifier and
recompute these statistics on the full network (see Table 1). When training with this initialization,
the gradient norm drops futher, moving parameters even closer to the linear minimizer. The final
training result still yields positive activations for the entire training dataset.

Moreover, any isolated local minimum of a linear network results in many local minima of an MLP
Fφ′ , as the weights φ′ constructed in the proof of Theorem 1 can undergo transformations such
as scaling, permutation, or even rotation without changing Fφ′ as a function during inference, i.e.
Fφ′(x) = Fφ(x) for all x for an infinite set of parameters φ, as soon as F has at least one hidden
layer.

While our first experiment initializes a deep MLP at a local minimum it inherited from a linear one
to empirically illustrate our findings of Theorem 1, Table 1 also illustrates that similarly bad local
minima are obtained when choosing large biases (third row) and choosing biases with large variance
(fourth row) as conjectured above. To significantly reduce the bias, however, and still obtain a sub-
par optimum, we need to rerun the experiment with SGD without momentum, as shown in the last
row, reflecting common intuition that momentum is helpful to move away from bad local optima.

In light of our finding that neural networks trained with unconventional initialization reach subopti-
mal local minima, we conclude that poor local minima can readily be found with a poor choice of
hyperparameters. Suboptimal minima are less scarce than previously believed, and neural networks
avoid these because good initializations and stochastic optimizers have been fine-tuned over time.
Fortunately, promising theoretical directions may explain good optimization performance while re-
maining compatible with empirical observations. The approach followed by Du et al. (2019) an-
alyzes the loss trajectory of SGD, showing that it avoids bad minima. While this work assumes
(unrealistically) large network widths, this theoretical direction is compatible with empirical stud-
ies, such as Goodfellow et al. (2014), showing that the training trajectory of realistic deep networks
does not encounter significant local minima.
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Table 1: Local minima for MLPs generated via various initializations. We show loss, euclidean
norm of the gradient vector, and minimum eigenvalue of the Hessian before and after training. We
use 500 iterations of the power method on a shifted Hessian matrix computed on the full dataset to
find the minimum eigenvalue. The experiment in the last row is trained with no momentum (NM).

At Initialization After training

Init. Type Loss Grad. Min. EV Loss Grad. Min. EV

Default 4.5963 0.5752 -1.5549 0.0061 0.0074 0.0007
Lemma 1 1.5702 0.0992 0.03125 1.5699 0.0414 0.0156
Bias+20 31.204 343.99 -1.7421 2.3301 0.0090 0.0005

Bias ∈ U(−50, 50) 51.445 378.36 -430.49 2.3153 0.0048 0.0000
Bias ∈ U(−10, 10) NM 12.209 42.454 -47.733 0.2198 0.0564 0.0013

3 WEIGHT DECAY: ARE SMALL `2-NORM SOLUTIONS BETTER?

Classical learning theory advocates regularization for linear models, such as SVM and linear regres-
sion. For SVM, `2 regularization endows linear classifiers with a wide-margin property (Cortes &
Vapnik, 1995), and recent work on neural networks has shown that minimum norm neural network
interpolators benefit from over-parametrization (Hastie et al., 2019) . Following the long history of
explicit parameter norm regularization for linear models, weight decay is used for training nearly
all high performance neural networks (He et al., 2015a; Chollet, 2016; Huang et al., 2017; Sandler
et al., 2018).

In combination with weight decay, all of these cutting-edge architectures also employ batch nor-
malization after convolutional layers (Ioffe & Szegedy, 2015). With that in mind, van Laarhoven
(2017) shows that the regularizing effect of weight decay is counteracted by batch normalization,
which removes the effect of shrinking weight matrices. Zhang et al. (2018) argue that the synergistic
interaction between weight decay and batch norm arises because weight decay plays a large role in
regulating the effective learning rate of networks, since scaling down the weights of convolutional
layers amplifies the effect of each optimization step, effectively increasing the learning rate. Thus,
weight decay increases the effective learning rate as the regularizer drags the parameters closer and
closer towards the origin. The authors also suggest that data augmentation and carefully chosen
learning rate schedules are more powerful than explicit regularizers like weight decay.

Other work echos this sentiment and claims that weight decay and dropout have little effect on
performance, especially when using data augmentation (Hernández-Garcı́a & König, 2018). Hoffer
et al. (2018) further study the relationship between weight decay and batch normalization, and they
develop normalization with respect to other norms. Shah et al. (2018) instead suggest that minimum
norm solutions may not generalize well in the over-parametrized setting.

We find that the difference between performance of standard network architectures with and without
weight decay is often statistically significant, even with a high level of data augmentation, for exam-
ple, horizontal flips and random crops on CIFAR-10 (see Tables 2 and 3). But is weight decay the
most effective form of `2 regularization? Furthermore, is the positive effect of weight decay because
the regularizer promotes small norm solutions? We generalize weight decay by biasing the `2 norm
of the weight vector towards other values using the following regularizer, which we call norm-bias:

Rµ(φ) =

∣∣∣∣∣
(

P∑
i=1

φ2
i

)
− µ2

∣∣∣∣∣ . (2)

R0 is equivalent to weight decay, but we find that we can further improve performance by biasing
the weights towards higher norms (see Tables 2 and 3). In our experiments on CIFAR-10, networks
are trained using weight decay coefficients from their respective original papers. ResNet-18 and
DenseNet are trained with µ2 = 2500 and norm-bias coefficient 0.005, and MobileNetV2 is trained
with µ2 = 5000 and norm-bias coefficient 0.001. While we find that weight decay improves results
over a non-regularized baseline for all three models, we also find that models trained with large
norm bias (i.e., large µ) outperform models trained with weight decay.
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These results lend weight to the argument that explicit parameter norm regularization is in fact useful
for training networks, even deep CNNs with batch normalization and data augmentation. However,
the fact that norm-biased networks can outperform networks trained with weight decay suggests that
any benefits of weight decay are unlikely to originate from the superiority of small-norm solutions.

To further investigate the effect of weight decay and parameter norm on generalization, we also
consider models without batch norm. In this case, weight decay directly penalizes the norm of the
linear operators inside a network, since there are no batch norm coefficients to compensate for the
effect of shrinking weights. Or goal is to determine whether small-norm solutions are superior in
this setting where the norm of the parameter vector is more meaningful.

In our first experiment without batch norm, we experience improved performance training an MLP
with norm-bias (see Table 3). In a state-of-the-art setting, we consider ResNet-20 with Fixup ini-
tialization, a ResNet variant that removes batch norm and instead uses a sophisticated initialization
that solves the exploding gradient problem (Zhang et al., 2019). We observe that weight decay sub-
stantially improves training over SGD with no explicit regularization — in fact, ResNets with this
initialization scheme train quite poorly without explicit regularization and data normalization. Still,
we find that norm-bias with µ2 = 1000 and norm-bias coefficient 0.0005 achieves better results
than weight decay (see Table 3). This once again refutes the theory that small-norm parameters gen-
eralize better and brings into doubt any relationship between classical Tikhonov regularization and
weight decay in neural networks. See Appendix A.5 for a discussion concerning the final parameter
norms of Fixup networks.

Table 2: ResNet-18, DenseNet-40, and MobileNetV2 models trained on non-normalized CIFAR-10
data with various regularizers. Numerical entries represent the average accuracy over 10 runs.

Model No weight decay (%) Weight decay (%) Norm-bias (%)
ResNet 93.46 (±0.05) 94.06 (±0.07) 94.86 (±0.05)

DenseNet 89.26 (±0.08) 92.27 (±0.06) 92.49 (±0.06)
MobileNetV2 92.88 (±0.06) 92.88 (±0.09) 93.50 (±0.09)

Table 3: ResNet-18, DenseNet-40, MobileNetV2, and ResNet-20 with Fixup initialization trained
on normalized CIFAR-10 data with various regularizers. Numerical entries represent the average
accuracy over 10 runs.

Model No weight decay (%) Weight decay (%) Norm-bias (%)
ResNet 93.40 (±0.04) 94.76 (±0.03) 94.99 (±0.05)

DenseNet 90.78 (±0.08) 92.26 (±0.06) 92.46 (±0.04)
MobileNetV2 92.84 (±0.05) 93.64 (±0.05) 93.64 (±0.03)
ResNet Fixup 10.00 (±0.00) 91.42 (±0.04) 91.55 (±0.07)

MLP 58.88 (±0.10) 58.95 (±0.07) 59.13 (±0.09)

4 KERNEL THEORY AND THE INFINITE-WIDTH LIMIT

In light of the recent surge of works discussing the properties of neural networks in the infinite-
width limit, in particular, connections between infinite-width deep neural networks and Gaussian
processes, see Lee et al. (2017), several interesting theoretical works have appeared. The wide net-
work limit and Gaussian process interpretations have inspired work on the neural tangent kernel
(Jacot et al., 2018), while Lee et al. (2019) and Bietti et al. (2018) have used wide network assump-
tions to analyze the training dynamics of deep networks. The connection of deep neural networks to
kernel-based learning theory seems promising, but how closely do current architectures match the
predictions made for simple networks in the large-width limit?

We focus on the Neural Tangent Kernel (NTK), developed in Jacot et al. (2018). Theory dictates
that, in the wide-network limit, the neural tangent kernel remains nearly constant as a network
trains. Furthermore, neural network training dynamics can be described as gradient descent on a
convex functional, provided the NTK remains nearly constant during training (Lee et al., 2019). In
this section, we experimentally test the validity of these theoretical assumptions.
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Figure 1: The correlation coefficient of the neural tangent kernel after training with its initialization.
We expect this coefficient to converge toward 1 in the infinite-width limit for multi-layer networks
as in Jacot et al. (2018), the effect on different architectures and especially residual neural networks
is much less clear. We find that the trend toward infinite-width is essentially confirmed for the con-
volutional neural network, while it is falsified for the ResNet (which features batch normalization).

Fixing a network architecture, we use F to denote the function space parametrized by φ ∈ Rp. For
the mapping F : RP → F , the NTK is defined by

Φ(φ) =

P∑
p=1

∂φp
F (φ)⊗ ∂φp

F (φ), (3)

where the derivatives ∂φpF (φ) are evaluated at a particular choice of φ describing a neural network.
The NTK can be thought of as a similarity measure between images; given any two images as input,
the NTK returns an n × n matrix, where n is the dimensionality of the feature embedding of the
neural network. We sample entries from the NTK by drawing a set ofN images {xi} from a dataset,
and computing the entries in the NTK corresponding to all pairs of images in our image set. We do
this for a random neural network f : Rm → Rn and computing the tensor Φ(φ) ∈ RN×N×n×n of
all pairwise realizations, restricted to the given data:

Φ(φ)ijkl =

P∑
p=1

∂φp
f(xi, φ)k · ∂φp

f(xj , φ)l (4)

By evaluating Equation 4 using automatic differentiation, we compute slices from the NTK before
and after training for a large range of architectures and network widths. We consider image classi-
fication on CIFAR-10 and compare a two-layer MLP, a four-layer MLP, a simple 5-layer ConvNet,
and a ResNet. We draw 25 random images from CIFAR-10 to sample the NTK before and after
training. We measure the change in the NTK by computing the correlation coefficient of the (vec-
torized) NTK before and after training. We do this for many network widths, and see what happens
in the wide network limit. For MLPs we increase the width of the hidden layers, for the ConvNet
(6-Layer, Convolutions, ReLU, MaxPooling), we increase the number of convolutional filters, for
the ResNet we consider the WideResnet (Zagoruyko & Komodakis, 2016) architecture, where we
increase its width parameter. We initialize all models with uniform He initialization as discussed in
He et al. (2015b), departing from specific Gaussian initializations in theoretical works to analyze the
effects for modern architectures and methodologies.

The results are visualized in Figure 1, where we plot parameters of the NTK for these different
architectures, showing how the number of parameters impacts the relative change in the NTK
(||Φ1 − Φ0||/||Φ0||, where Φ0/Φ1 denotes the sub-sampled NTK before/after training) and cor-
relation coefficient (Cov(Φ1,Φ0)/σ(Φ1)/σ(Φ0)). Jacot et al. (2018) predicts that the NTK should
change very little during training in the infinite-width limit.

At first glance, it might seem that these expectations are hardly met for our (non-infinite) experi-
ments. Figure 1a shows that the relative change in the NTK during training (and also the magnitude
of the NTK) is rapidly increasing with width and remains large in magnitude for a whole range of
widths of convolutional architectures. The MLP architectures do show a trend toward small changes
in the NTK, yet convergence to zero is slower in the 4-Layer case than in the 2-Layer case.
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However, a closer look shows that almost all of the relative change in the NTK seen in Figure 1a
is explained by a simple linear re-scaling of the NTK. It should be noted that the scaling of the
NTK is strongly effected by the magnitude of parameters at initialization. Within the NTK theory
of Lee et al. (2017), a linear rescaling of the NTK during training corresponds simply to a change in
learning rate, and so it makes more sense to measure similarity using a scale-invariant metric.

Measuring similarity between sub-sampled NTKs using the scale-invariant correlation coefficient,
as in Figure 1b, is more promising. Surprisingly, we find that, as predicted in Jacot et al. (2018),
the NTK changes very little (beyond a linear rescaling) for the wide ConvNet architectures. For the
dense networks, the predicted trend toward small changes in the NTK also holds for most of the
evaluated widths, although there is a dropoff at the end which may be an artifact of the difficulty of
training these wide networks on CIFAR-10. For the Wide Residual Neural Networks, however, the
general trend toward higher correlation in the wide network limit is completely reversed. The corre-
lation coefficient decreases as network width increases, suggesting that the neural tangent kernel at
initialization and after training becomes qualitatively more different as network width increases.

In summary, while we find that trends towards stability of the NTK hold suprisingly well for some
realistic architectures in the wide network limit, the NTK is frequently unstable in standard param-
eter regimes and for network architectures that work extremely well in practice. This gives us hope
that kernel-based theories of neural networks may yield guarantees for realistic (albeit wide) models.
However, the good behavior of models with unstable NTKs is an indicator that good optimization
and generalization behavior does not fundamentally hinge on the stability of the NTK.

5 RANK: DO NETWORKS WITH LOW-RANK LAYERS GENERALIZE BETTER?

State-of-the-art neural networks are highly over-parameterized, and their large number of parame-
ters is a problem both for learning theory and for practical use. In the theoretical setting, rank has
been used to tighten bounds on the generalization gap of neural networks. Generalization bounds
from Harvey et al. (2017) are improved under conditions of low rank and high sparsity (Neyshabur
et al., 2017) of parameter matrices, and the compressibility of low-rank matrices (and other low-
dimensional structure) can be directly exploited to provide bounds (Arora et al., 2018). Further
studies show a tendency of stochastic gradient methods to find low-rank solutions (Ji & Telgarsky,
2018). The tendency of SGD to find low-rank operators, in conjunction with results showing gener-
alization bounds for low-rank operators, might suggest that the low-rank nature of these operators is
important for generalization.

Langenberg et al. (2019) claim that low-rank networks, in addition to generalizing well to test data,
are more robust to adversarial attacks. Theoretical and empirical results from the aforementioned
paper lead the authors to make two major claims. First, the authors claim that networks which
undergo adversarial training have low-rank and sparse matrices. Second, they claim that networks
with low-rank and sparse parameter matrices are more robust to adversarial attacks. We find in
our experiments that neither claim holds up in the standard robustness setting of CIFAR-10 image
classification with ResNet-18.

We test the generalization and robustness properties of neural networks with low-rank and high-
rank operators by promoting low-rank or high-rank parameter matrices in late epochs. We employ
the regularizer introduced in Sedghi et al. (2018) to create the protocols RankMin, to find low-rank
parameters, and RankMax, to find high-rank parameters. RankMin involves fine-tuning a pre-trained
model by replacing linear operators with their low-rank approximations, retraining, and repeating
this process. Similarly, RankMax involves fine-tuning a pre-trained model by clipping singular
values from the SVD of parameter matrices in order to find high-rank approximations. We are able
to manipulate the rank of matrices without strongly affecting the performance of the network. We
use both natural training and 7-step projected gradient descent (PGD) adversarial training routines
(Madry et al., 2017). The goal of the experiment is to observe how the rank of weight matrices
impacts generalization and robustness. We start by attacking naturally trained models with the
standard PGD adversarial attack with ε = 8/255. Then, we move to the adversarial training setting
and test the effect of manipulating rank on generalization and on robustness.

In order to compare our results with Langenberg et al. (2019), we borrow the notion of effective
rank, denoted by r(W ) for some matrixW . This continuous relaxation of rank is defined as follows.
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Table 4: All models tested are ResNet-18s. Robust accuracy is measured with 20-step PGD attacks
with the ε values specified at the top of the column.

Training method Training
Accuracy (%)

Clean
Accuracy (%)

Robust (%)
ε = 8/255

Robust (%)
ε = 1/255

Naturally Trained 99.99 94.66 0.00 31.98
RankMax 99.76 93.66 0.00 22.01
RankMin 99.90 94.44 0.00 31.53

Adversarially Trained 89.66 85.06 33.10 80.49
RankMaxAdv 89.21 84.72 32.40 80.11
RankMinAdv 88.33 84.68 30.57 79.98

0 2 4 6 8 10 12 14

Filter index
0

50

100

150

200

250

300

350

400

Ef
fe

ct
iv

e 
Ra

nk

Untrained
Adv
RankMaxAdv
RankMinAdv

(a) Effective rank of naturally trained models.
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(b) Effective rank of adversarially trained models.

Figure 2: This plot shows the effective rank of each filter. The filters are indexed on the x-axis,
so moving to the right is like moving through the layers of the network. Our routines designed to
manipulate the rank have exactly the desired effect as shown here.

r(W ) = ‖W‖∗
‖W‖F where ‖ · ‖∗, ‖ · ‖1, and ‖ · ‖F are the nuclear norm, the 1-norm, and the Frobenius

norm, respectively. Note that the singular values of convolution operators can be found quickly with
a method from Sedghi et al. (2018), and this method is used here.

In Table 4, RankMin and RankMax achieve similar generalization. Figure 2 confirms that these
two training routines do, in fact, control effective rank. Thus, increasing rank using an analogue
of rank minimizing algorithms does not harm performance. Moreover, we observe that adversarial
robustness does not imply low-rank operators, nor do low-rank operators imply robustness. The
findings in Ji & Telgarsky (2018) are corroborated here as the black dots in Figures 2 show that
initializations are higher in rank than trained models. Our investigation into what useful intuition in
practical cases can be gained from the theoretical work on the rank of CNNs and from the claims
about adversarial robustness revealed that rank plays little to no role in the performance of residual
networks in the setting of image classification.

6 CONCLUSION

Theoretical work on neural networks has made significant progress in recent years, and there are
great reasons to be optimistic about its future. While there is a divide between theory and practice in
deep learning, we have seen major benefits when theory and practice come together. For example,
certifiably robust classifiers may allow users to ensure security against adversarial attacks (Raghu-
nathan et al., 2018; Cohen et al., 2019), and Wasserstein GANs avoid many of the notorious training
difficulties of generative adversarial networks (Arjovsky et al., 2017). This work is meant to under-
score the need to carefully examine the assumptions of theory and also to highlight ways to steer
theory towards more realistic and less understood models, like residual networks, deep networks,
non-linear nets, and models that live far away from the wide-network/kernel limit.
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A APPENDIX

A.1 PROOF OF LEMMA 1

Lemma 1. Consider a family of L-layer multilayer perceptrons with ReLU activations {Fφ : Rm →
Rn} and let s = mini ni be the minimum layer width. Then this family has rank-s affine expression.

Proof. Let G be a rank-s affine function, and Ω ⊂ Rm be a finite set. Let G(x) = Ax + b with
A = UΣV being the singular value decomposition of A with U ∈ Rn×s and V ∈ Rs×m.

We define

A1 =

[
ΣV
0

]
where 0 is a (possibly void) (n1 − s) × m matrix of all zeros, and b1 = c1 for c =
maxxi∈Ω,1≤j≤n1

|(A1xi)j | + 1 and 1 ∈ Rn1 being a vector of all ones. We further choose
Al ∈ Rnl×nl−1 to have an s × s identity matrix in the upper left, and fill all other entries with
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zeros. This choice is possible since nl ≥ s for all l. We define bl = [0 c 1]
T ∈ Rnl where

0 ∈ R1×s is a vector of all zeros and 1 ∈ R1×(nl−s) is a (possibly void) vector of all ones.

Finally, we choose AL = [U 0], where now 0 is a (possibly void) n × (nL−1 − s) matrix of all
zeros, and bL = −cAL1 + b for 1 ∈ RnL−1 being a vector of all ones.

Then one readily checks that Fφ(x) = G(x) holds for all x ∈ Ω. Note that all entries of all
activations are greater or equal to c > 0, such that no ReLU ever maps an entry to zero.

A.2 PROOF OF THEOREM 1

Theorem 1. Consider a training set, {(xi, yi)}Ni=1, a family {Fφ} of MLPs with s = mini ni being
the smallest width. Consider the training of a rank-s linear classifier GA,b, i.e.,

min
A,b
L(GA,b; {(xi, yi)}Ni=1), subject to rank(A) ≤ s, (5)

for any continuous loss function L. Then for each local minimum, (A′,b′), of the above training
problem, there exists a local minimum, φ′, of L(Fφ; {(xi, yi)}Ni=1) with the property that Fφ′(xi) =
GA′,b′(xi) for i = 1, 2, ..., N .

Proof. Based on the definition of a local minimium, there exists an open ball D around (A′,b′)
such that

L(GA′,b′ ; {(xi, yi)}Ni=1) ≤ L(GA,b; {(xi, yi)}Ni=1) ∀(A,b) ∈ D with rank(A) ≤ s. (6)

First, we use the same construction as in the proof of Lemma 1 to find a function Fφ′ with Fφ′(xi) =
GA′,b′(xi) for all training example xi. Because the mapping φ 7→ Fφ(xi) is continuous (not only
for the entire network F but also for all subnetworks), and because all activations of Fφ′ are greater
or equal to c > 0, there exists an open ballB(φ′, δ1) around φ′ such that the activations of Fφ remain
positive for all xi and all φ ∈ B(φ′, δ1).

Consequently, the restriction of Fφ to the training set remains affine linear for φ ∈ B(φ′, δ1). In
other words, for any φ ∈ B(φ′, δ1) we can write

Fφ(xi) = A(φ)xi + b(φ) ∀xi,

by defining A(φ) = ALAL−1 . . . A1 and b(φ) =
∑L
l=1ALAL−1 . . . Al+1bl. Note that due to

s = mini ni, the resulting A(φ) satisfies rank(A(φ)) ≤ s.
After restricting φ to an open ball B(φ′, δ2), for δ2 ≤ δ1 sufficiently small, the above (A(φ),b(φ))
satisfy (A(φ),b(φ)) ∈ D for all φ ∈ B(φ′, δ2). On this set, we, however, already know that the loss
can only be greater or equal to L(Fφ′ ; {(xi, yi)}Ni=1) due to equation 6. Thus, φ′ is a local minimum
of the underlying loss function.

A.3 ADDITIONAL COMMENTS REGARDING THEOREM 1

Note that our theoretical and experimental results do not contradict theoretical guarantees for deep
linear networks (Kawaguchi, 2016; Laurent & Brecht, 2018) which show that all local minima are
global. A deep linear network with s = min(n,m) is equivalent to a linear classifier, and in this
case, the local minima constructed by Theorem 1 are global. However, this observation shows
that Theorem 1 characterizes the gap between deep linear and deep nonlinear networks; the global
minima predicted by linear network theories are inherited as (usually suboptimal) local minima when
ReLU’s are added. Thus, linear networks do not accurately describe the distribution of minima in
non-linear networks.

A.4 ADDITIONAL RESULTS FOR SUBOPTIMAL LOCAL OPTIMA

Table 5 adds more experiments, repeating the previous experiment (training on CIFAR-10 until
convergence from different initializations) for a full ResNet-18 architecture trained with gradient
descent. We find that essentially the same results appear for the deeper architecture, initializing with
very high bias leads to highly non-optimal solutions. In this case even solutions that are equally bad
as a zero-norm initialization.
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Table 5: Local minima for ResNets generated via initialization and trained by vanilla gradient de-
scent, showing loss, euclidean norm of the gradient vector, and minimum eigenvalue of the Hessian
before and after training.

At Initialization After training

Init. Type Loss Grad. Loss Grad.

Default 2.30312 0.0500 0.00014 0.0141
Zero 2.30258 0.000245 2.302585 0.000129

Bias ∈ U(−10, 10) 12.9679 214.686 2.3026 0.00123
Bias ∈ U(−50, 50) 84.678 1190.235 2.3026 0.007021

A.5 DETAILS CONCERNING LOW-NORM REGULARIZATION EXPERIMENTS

Our experiments comparing regularizers all run for 300 epochs with an initial learning rate of 0.1
and decreases by a factor of 10 at epochs 100, 175, 225, and 275. We use the SGD optimizer with
momentum 0.9. In error bounds of form (±σ%), σ represents the standard error, i.e. σsample√

n
.

We also tried negative weight decay coefficients, which leads to ResNet-18 CIFAR-10 performance
above 90% while blowing up parameter norm, but this performance is still suboptimal and is not
informative concerning the optimality of minimum norm solutions. One might wonder if high
norm-bias coefficients lead to even lower parameter norm than low weight decay coefficients. This
question may not be meaningful in the case of networks with batch normalization. In the case
of ResNet-20 with Fixup, which does not contain running mean and standard deviation, the aver-
age parameter `2 norm after training with weight decay is 24.51 while that of models trained with
norm− bias is 31.62.

A.6 DETAILS ON THE NEURAL TANGENT KERNEL EXPERIMENT

For further reference, we include details on the NTK sampling during training epochs in Figure 3.
We see that the parameter norm (Right) behaves normally (all of these experiments are trained with
a standard weight decay parameter of 0.0005), yet the NTK norm (Left) rapidly increases. Most of
this increase, however is scaling of the kernel, as the correlation plot (Middle) is much less drastic.
We do see that most change happens in the very first epochs of training, whereas the kernel only
changes slowly later on.
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Figure 3: Plotting the evolution of NTK parameters during training epochs. Left: Norm of the NTK
Tensor, Middle: Correlation of current NTK iterate versus initial NTK. Right: Reference plot of the
network parameter norms.

A.7 DETAILS ON RANKMIN AND RANKMAX

We developed routines to promote both low-rank and high-rank parameter matrices. We did this
by computing approximations to the linear operators at each layer. Since convolutional layers are
linear operations, we know that there is a matrix whose dimensions are the number of parameters
in the input to the convolution and the number of parameters in the output of the convolution. In
order to compute low-rank approximations of these operators, one could write down the matrix
corresponding to the convolution, and then compute a low-rank approximation using a singular
value decomposition (SVD). In order to make this problem computationally tractable we used the
method for computing singular values of convolution operators derived in Sedghi et al. (2018). We
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Figure 4: The similarity coefficient of the neural tangent kernel after training with its initialization.
We expect this coefficient to converge toward 1 in the infinite-width limit for multi-layer networks.
Also shown is the direct relative difference of the NTK norms, which behaves similarly to the nor-
malized direct difference from figure 1.
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Figure 5: For reference we record the test accuracy of all models from 1 in the left plot and the
relative change in parameters in the right plot.

were then able to do low-rank approximation in the classical sense, by setting each singular value
below some threshold to zero. In order to compute high-rank operators, we clipped the singular
values so that when mulitplying the SVD factors, we set each singular value to be equal to the
minimum of some chosen constant and the true singular value. It is important to note here that these
approximations to the convolutional layers, when done naively, can return convolutions with larger
filters. To be precise, an n×n filter will map to a k× k filter through our rank modifications, where
k ≥ n. We follow the method in Sedghi et al. (2018), where these filters are pruned back down by
only using n× n entries in the output.

The training routine was then modified in the last 20 epochs to periodically approximate the param-
eters of the network with one of our two approximations. In each case we use pre-trained ResNet-18
models trained for 200 epochs on CIFAR-10 data, with the learning rate initiated to 0.1 and decreas-
ing by a factor of 10 at epochs 100 and 150. The data augmentation during training includes random
crops and horizontal flips. For adversarial training we use `∞ 7-step PGD with step size equal to
2/255, and total ε = 8/255. Starting with one naturally and one adversarially pre-trained model,
we trained for an additional 20 epochs with the learning rate decreasing by a factor of 10 again at
epochs 203 and 208. For any run in which we project to low-rank or high-rank operators, these
projections occur after epochs 201, 205, and 210. As specified in Table 4, we test the accuracy of
each model on clean CIFAR-10 test data, as well as 20-step PGD attack with ε = 8/255 (with step
size equal to 2/255) and ε = 1/255 (with step size equal to .25/255).
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