Finding NEM-U: Explaining unsupervised representation learning through
neural network generated explanation masks

Bjorn Leth Mgller ! Christian Igel ! Kristoffer Knutsen Wickstrgm > Jon Sporring' Robert Jenssen ! 2?
Bulat Ibragimov '

Original

Supervised Classification

DINO

SimCLR

Figure 1. NEM-U explaining how important various parts of an image are for feature extractors trained using different methods. The
feature extractor trained using supervised learning focuses on the ears and face of the object. The DINO pretrained feature extractor
considers the entirety of all animals. The SWAV and SimCLR feature extractors look at both the focused object and the background,
where SWAV is more focused than SimCLR. Explanations are generated without optimization on the image (taken from VOC data set).

Abstract

Unsupervised representation learning has become
an important ingredient of today’s deep learning
systems. However, only a few methods exist that
explain a learned vector embedding in the sense
of providing information about which parts of
an input are the most important for its represen-
tation. These methods generate the explanation
for a given input after the model has been evalu-
ated and tend to produce either inaccurate expla-
nations or are slow, which limits their practical
use. To address these limitations, we introduce
the Neural Explanation Masks (NEM) framework,
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which turns a fixed representation model into a
self-explaining system by augmenting it with a
masking neural network. This network provides
occlusion-based explanations in parallel to com-
puting the representations during inference. We
present an instance of this framework, the NEM-U
(NEM using U-net structure) architecture, which
leverages similarities between segmentation and
occlusion-based explanation masks. Our experi-
ments show that NEM-U generates explanations
faster and with lower complexity compared to the
current state-of-the-art while maintaining high ac-
curacy as measured by locality.

1. Introduction

Explainable AI (XAI) is concerned with explaining the out-
puts of machine learning (ML) models to improve trans-
parency and safety. In the context of representation learning,
we want to know which parts of an input are most impor-
tant for the representation (i.e., embedding) provided by
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the model. With the increasing importance of unsupervised
learning in computer vision (Caron et al., 2021; Chen et al.,
2020), speech and natural language processing (Devlin et al.,
2019; Brown et al., 2020; Mohamed et al., 2022), and time
series modelling (Wickstrgm et al., 2022; Poppelbaum et al.,
2022), there is a big need for XAl approaches that go beyond
the supervised setting.

Explaining representations can be regarded as a general ap-
proach applicable to models that have been trained in both
the supervised and unsupervised setting. A few methods
exist that are designed for the task of explaining represen-
tations (Wickstrgm et al., 2023a; Crabbé & van der Schaar,
2022), but they suffer from some significant limitations,
namely low-quality explanations or slow computational
speed. Methods generating low-quality explanations are
generally not desirable, whereas slow computational speed
limits the methods’ usefulness in many real-world scenarios
where high inference speed is required, for example video
processing and interactive applications.

Our goal is to generate high-quality explanations with low
latency. To this end, we introduce the NEM (Neural Ex-
planation Masks) framework, which takes a fixed model ®
and turns it into a self-explaining system by augmenting it
with a masking network ¥. The masking network is trained
to segment a given input into areas of importance for the
representation provided by ®. Instead of running a post-hoc
process to provide the explanation of a new input, we design
a self-explaining system that provides the explanation in
parallel with the output. In contrast to running an optimiza-
tion process to find an occlusion mask, we learn to predict
the mask. This speeds up the system during inference time
at the cost of having to train the masking network once be-
fore using the system. Furthermore, connecting ¥ directly
with the explained model ® allows to leverage encodings at
different levels of ®.

The NEM approach is general in the sense that it is in prin-
ciple not input-specific and applicable to any differentiable
model ®. However, our empirical evaluation focuses on
explaining deep neural network embeddings of images. Out-
putting an occlusion mask for highlighting the important
parts of an input can be viewed as a segmentation task. This
insight allows us to build on results from the field of se-
mantic segmentation. We do so by introducing the NEM-U
(NEM using U-Net structure) architecture. In this instance
of the NEM framework, the explained model and masking
network can be viewed as the encoder and decoder of a
U-Net, arguably one of the most popular neural network
architectures for image segmentation (Ronneberger et al.,
2015).

The main contributions of this study are the following:

* The NEM framework, which generates representation

explanations by augmenting a given representation gen-
erating system with a masking network, alongside a
loss function to train the masking network;

* The NEM-U architecture, a specific NEM architecture
that leverages a U-Net encoder-decoder structure to
improve mask generation;

* Experiments showing that NEM-U is considerably
faster and provides less complex explanations com-
pared to the state of the art, while still keeping the
quality of explanations high.

2. Related Work

Explaining vector representations of data, as opposed to
scalar predictions, is a new direction within XAI. There are
two main approaches in this direction. The first is to adapt
existing XAI methods to handle the representation learn-
ing setting. Most notably, the label-free XAl framework
(Crabbé & van der Schaar, 2022; Chen et al., 2023) offers
an auxiliary function that allows XAI methods designed for
the supervised setting to be used in the unsupervised repre-
sentation learning setting. The label-free XAl framework
has the advantage that it enables the use of existing methods.
However, it has been shown to perform worse compared
to alternative approaches (Wickstrgm et al., 2023a). The
second direction is to design new XAI methods that are
particularly suited for the unsupervised representation learn-
ing setting. Notably, the RELAX framework (Wickstrgm
et al., 2023a) uses a masking approach to measure simi-
larities between masked and unmasked representations for
explainability. RELAX has been extended to explaining
relations between representations (Lin et al., 2023) and has
been applied in several areas including medicine (Wick-
strgm et al., 2023b) and social science (Feng et al., 2023).
RELAX has demonstrated excellent performance, but the
method requires a computationally demanding randomized
optimization procedure for each explained sample. Bertolini
et al. (2023) have proposed another method for directly ex-
plaining vector representation with a focus on convolutional
neural networks. They aggregate the saliency maps of latent
representations extracted from different embedding layers
of the model to be explained.

Explaining neural networks through occlusions is a long-
standing and active area in XAl research. Zeiler & Fer-
gus (2014) introduced one of the earliest occlusion-based
XAI methods, where an input image was systematically
occluded with a rectangular mask while monitoring the
output of the network. Petsiuk et al. (2018) suggested to
randomly mask out parts of the image, which reduced com-
putational demand and improved performance. Other lines
of work focus on optimizing a mask for each instance (Fong
& Vedaldi, 2017; Fong et al., 2019; MacDonald et al., 2019;
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Kolek et al., 2020). The recent work of Bhalla et al. (2023)
has explored whether simultaneously optimizing masks of
the training data used to train a model while training the
model results in models which can be better explained with
occlusion-based methods. However, apart from the RE-
LAX framework, occlusion-based methods have generally
been designed with supervised predictions in mind. An
approach, alternative to input occlusions, is to generate an
explanation from the model gradients. This can be achieved
using Integrated Gradients (Sundararajan et al., 2017), Gra-
dient SHAP (Lundberg & Lee, 2017) and different variants
of GradCAM (Selvaraju et al., 2017; Chattopadhay et al.,
2018; Jiang et al., 2021).

The idea of explaining one neural network through another
is well-established in the XAl literature. Taghanaki et al.
(2019) introduced InfoMask, where an encoder-decoder
network jointly masks and predicts an input image. Zh-
moginov et al. (2021) introduced an information-bottleneck
approach to salient region discovery, where a variational au-
toencoder was used to generate salient regions for a classifi-
cation model. Schulz et al. (2020) proposed an information-
theoretic approach where a readout network would mask
out irrelevant regions and only passes relevant regions to the
predictor. However, all of these methods are designed for
supervised learning and are not applicable in the representa-
tion XAl setting.

3. Methodology

In the following, we first present the general NEM (Neural
Explanation Masks) framework, which allows for training a
masking network that can generate occlusion-based expla-
nations for differentiable representation learning systems.
Then we derive an objective function for training NEM
models. Finally, we introduce the NEM-U (NEM using U-
Net structure) architecture, a specific instance of the NEM
framework utilizing a U-Net style encoder-decoder architec-
ture.

3.1. Neural Explanation Masks (NEM)

We decided to follow an occlusion-based explanation
paradigm, which has proven to be effective in the repre-
sentation learning setting (Wickstrgm et al., 2023a). As
we wanted a framework that allows for computationally
inexpensive generation of explanations, we worked on a
self-explaining system. Furthermore, we wished to have a
fast method for gauging the quality of a given explanation.
This led to the NEM (Neural Explanation Masks) frame-
work. It comprises two key components: the frozen model ®
and the masking network V. The former is the differentiable
model that generates the representations for which explana-
tions are desired. It is frozen in the sense that its weights
and therefore its input-output behaviour do not change when

using it together with NEM. The masking network generates
occlusion masks conditioned on the input to ®, indicating
important regions of the input.

Given @, the masking network is trained on a corpus of data
X. Let us assume that the inputs are images, x € R**7, and
® : R™*J — RY, for some integers i, j, and d. For each
input z € X, the masking network generates an explana-
tion mask m = W(®,z) € [0,1]"*. The mask is used to
occlude parts of z. The masked input can, for example, be
computed as r,, = x ® m, where ® denotes the Hadamard
product (see equation (1) below for a more general defini-
tion). Both x and zy, are then processed by the frozen model
to generate the representation pair (7, ) = (®(z), ®(zn)).
Finally, the triplet (7, r,, m) is used to optimize the masking
network according to an objective function £ as we discuss
in Section 3.2.

Since network W is trained to generate masks for various
inputs, it is possible to predict explanation masks for new
observations without additional optimization. The NEM
framework allows for quickly measuring the quality of a
given explanation mask, both during training the system
as well as for evaluating an explanation mask generated
by the system after deployment. An estimate of whether a
predicted mask removes important information of the input
can be computed by measuring the difference between the
representation of the original and masked input.

Figure 2 depicts the NEM framework. The framework as-
sumes the differentiability of all components, as this permits
gradient-based optimization of the masking network. To
exploit information from the encoding process of the frozen
model, the masking network can extract input representa-
tions generated by the frozen network, although this is not
required. This will be used in the NEM-U architecture
described in Section 3.3.

3.2. Objective Function

The question arises how to train the masking network W. In
the following, we describe the objective function we use for
NEM training. The goal is to train a masking network ¥
that predicts an accurate explanation mask for a given input.
We assume that the input is drawn from some unknown
input distribution and that we have access to training data
X sampled from the same distribution. In the occlusion-
based masking paradigm, the task of generating explanation
masks can be viewed as segmenting the input into areas of
relevance and irrelevance, similar to the signal-distractor
framework by Bhalla et al. (2023). In the language of Fong
& Vedaldi (2017), we play a preservation game where we
trade off information and mask sparsity to find a sparse set
of features that are maximally informative for the given
model .
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Figure 2. Overview of the NEM framework. The black parts of the
diagram indicate paths that will be used during training and after
deployment. The green parts indicate additional information flow
during training. The blue arrow symbolizes latent representations
extracted from the frozen model to inform the masking network. In
the case of NEM-U, skip connections are used to extract different
levels of input representations. NEM architectures such as NEM-U
can be run in parallel during inference.

Similar to Wickstrgm et al. (2023a), we define a subset of
informative features (i.e., a subset of pixels) as a set of fea-
tures that results in a latent representation which is close
to the representation of the full set of features (i.e., the full
image). When computing a representation for a subset of
features, the features not in the subset are replaced by ran-
dom values drawn i.i.d. from some perturbation distribution
V as suggested by MacDonald et al. (2019). Thus, for an
input  and a mask m = ¥(®, z) € [0, 1]**/ generated by
the masking network, we compute the masked image as

I =V(Q,2)0z+ (1 -V (P,2))Ov (1

with v ~ V. The representation of the masked image should
be close to the representation of the original image. There-
fore, we minimize

Py(®,2) = d(®(x), P(xm)) )

for some distance measure d. At the same time, we would
like to minimize the conflicting objective of having a sparse
occlusion mask as measured by the 1-norm ||U(®,z)||;.
Since our goal is to segment the image into areas of in-
formation (foreground/signal) and non-information (back-
ground/distractor), we include a general regularization term

B(x) that penalizes masking solutions where the results
are non-binary. This penalization term is needed since ¥
outputs continuous masks. Putting it all together, we arrive
at the general loss function

LX) =) E [\Pa(®,2)] + X[ (@, )| + B(a),

sex v~V

3)
where the trade-offs between the three objectives are con-
trolled by weighting parameters Ay, Ao > 0.

By setting Ay = 1, B(z) = 0, X = {z} and replacing
U(®, ) by a single mask to be optimized, we recover the ob-
jective function of the rate-distortion explanation framework
as introduced by MacDonald et al. (2019). Alternatively,
by setting A\; = 1, B(z) = 0,d = || - ||1, and replacing
U (®, ) with a mask for each image to be optimized, we re-
cover the data distillation loss Lgpa of the signal-distractor
framework proposed by Bhalla et al. (2023).

3.3. NEM using U-net (NEM-U)

In this section, we introduce a specific instance of the NEM
architecture termed NEM-U. As the masking network es-
sentially segments the input into areas that are important or
unimportant for the frozen model, we can exploit ideas from
the segmentation literature, more specifically the widely
used U-net encoder-decoder architecture (Ronneberger et al.,
2015). The U-Net is commonly used for 2D and 3D image
segmentation but has also been applied to other tasks such
as time series segmentation (Perslev et al., 2019).

In the NEM-U (NEM using U-net) architecture, the masking
network ¥ is a U-Net, where the frozen model ¢ acts as
the U-Net encoder. Only the decoder part is trained when
learning explanations in the NEM-U setup while the encoder
is frozen.

In the U-Net architecture, the decoder generates a segmenta-
tion mask based on several representations computed by the
encoder at different depths. In NEM-U, this latent represen-
tation extraction mechanism, indicated in blue in Figure 2,
allows the masking model to benefit from multiple levels
of representations generated by the explained model, po-
tentially improving performance. Furthermore, removing
the need for an unique encoder for ¥ reduces the overall
number of model parameters. Our conjecture is that direct
access to different layers of representations in the explained
model ® facilitates faster training and better performance of
the masking network W. Therefore, we focus on the NEM-U
architecture in the experimental evaluation.

4. Experiments and Results

This section describes our empirical evaluation of the NEM-
U architecture for explaining computer vision models. We
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start by describing how we set up the NEM-U models for
the experiments. Then we outline the overall experimental
protocol used for model evaluation. Finally, we show the
results of our experiments

4.1. Implementation

When implementing NEM-U, design choices include the
network architecture, masking method, distance function,
and objective function weighting coefficients. In the fol-
lowing experiments, the NEM-U models utilized untrained
standard U-net decoders for the masking network. The num-
ber of trainable parameters of the masking networks varied
from 9M to 10.1M, depending on the specific model that was
explained. To ensure that the output masks stayed within the
range of 0 to 1, a sigmoid activation function was applied in
the final layer. Pixel scaling was employed as the masking
methodology. That is, each pixel of an image is simply
multiplied with its corresponding mask, i.e., V = §(0) im-
plying ¥(®,2) 0z + (1 — ¥(P,2)) Ov =V (D, z) Oz
For the distance measure d we selected the negative cosine
similarity.

The regularizer B(x) considered the representation of both
the signal represented by W(®, x) and its distractor defined
by the inverse T, = (1 — ¥(®P, x)). To encourage solutions
with binary masks, we penalize solutions where the masked
image and the inverse masked image are close in latent
space. This distance is defined as N4(®, x). The intuition
is that if an object is only partially occluded by the mask,
it will influence both latent representations. Furthermore,
we scale Ny (®,x) with Py(®, ), since we only care about
binary masks when our masked image is already close to
the original image in latent space. Thus we set

B(z) = —=Na(®,7) Py (P, x). 4)

Plugging these choices into (3) yields the loss function

LX) =Y (A = Na(®@,2)) Pa(®,2) + Ao (D, 2) |1
zeX
Q)
with

xm =V (P,2) Oz, 6)
Tm = (1—U(D,2)) O 7
Py(®,z) = — cos (P(z), ®(x m)) 8)
Na(®,2) = —cos (P(zm), ®(Tm)). )

We set A\; = 1.5 and A\, = 1 since this choice yielded sparse
coherent masks for all explained models. These values were
determined via visual inspection of masks generated on the
validation split of the training data. An evaluation of differ-
ent implementation choices is summarized in Appendix B.

4.2. Experimental Evaluation

In this section, we present our empirical evaluation of the
NEM architecture, including descriptions of evaluation met-
rics, datasets, and baseline methods.

Metrics. To evaluate the proposed methodology and com-
pare it with existing methods, we considered several estab-
lished metrics from prior studies on quantitative evaluation
of XAI. First, we compute locality metrics (Zhang et al.,
2018; Arras et al., 2022), which measure the overlap be-
tween an explanation and a reference segmentation mask
or bounding box provided by human annotators. Locality
acts as a proxy for how much the explanation agrees with
how a human would explain what the important content of
an image is. There exist numerous versions of the locality
metric, and here we considered relevance rank accuracy
(Arras et al., 2022) as used by Wickstrgm et al. (2023a) and
relevance mass accuracy (Arras et al., 2022). For relevance
rank, pixels are sorted according to their importance score,
and we measure how many of the top-k pixels are within
the ground truth mask, where k is set to be the number
of pixels in the ground truth mask. A high relevance rank
score indicates that the explanation aligns well with the hu-
man annotation. For relevance mass, the ratio of positive
attributions within the ground truth mask to the sum of all
positive attributions is calculated. A high relevance mass
indicates that the explanation puts a lot of attention on the
same region as the human annotation and little on other
regions. Second, we computed complexity metrics (Bhatt
et al., 2021; Chalasani et al., 2020), which measure how
sparse and therefore comprehensible an explanation is. The
rationale is that a good explanation should highlight small
regions with few pixels such that it is easy for a human to in-
terpret the output. We considered two popular metrics from
the complexity family, namely complexity, measured as the
entropy of the explanation mask (Bhatt et al., 2021), and
sparseness (Chalasani et al., 2020), measured as the Gini
index of the absolute values of the explanation mask. Fur-
thermore, we determined the computational speed of each
method by measuring the average time per image needed to
generate explanations for 1000 random images. The final
speed score was calculated by averaging the results for each
individual explained model. A standard evaluation mea-
sure in explainability research is faithfullness, which has
originally been defined for supervised tasks. We adapted
faithfullness for the unsupervised setting, see Appendix A
for details. Apart from the speed score, all metrics were
adapted from the Quantus library (Hedstrom et al., 2023).

Datasets. Following prior works (Wickstrgm et al., 2023a;
Petsiuk et al., 2018), we used the COCO dataset (Lin et al.,
2014) and the VOC dataset (Everingham et al., 2010). For
the COCO dataset, we randomly sampled 1000 images and
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bounding boxes from the COCO validation set for evaluation
purposes and randomly sampled 10000 images from the
COCO train set for training NEM-U models. Similarly, we
randomly sampled 1000 images and bounding boxes from
the VOC test set for evaluation and used the entire VOC
train set (2501 images) for NEM-U model training. Like
prior works on unsupervised XAI (Wickstrgm et al., 2023a),
we combined bounding boxes for each class into a single
collective annotation for the entire image.

Baseline methods. We compared NEM-U to established
methods from the representation learning explainablity lit-
erature. We considered the RELAX method (Wickstrgm
et al., 2023a) and its associated U-RELAX method, where
explanations from RELAX are thresholded based on un-
certainty estimates. We also looked at the label-free ex-
plainability method by Crabbé & van der Schaar (2022),
which allows XAI methods designed for the supervised set-
ting to be used in the unsupervised representation learning
setting. Using this approach, we considered the following
well-known explainability methods: Integrated Gradients
(Sundararajan et al., 2017), Gradient SHAP (Lundberg &
Lee, 2017) and Saliency (Simonyan et al., 2013). All ex-
planation masks were normalized to the range [0, 1] to en-
sure fair comparisons when calculating complexity. That
is, we considered the normalized mask m’ = (¥(®,z) —
min(P (P, z)))/(max(¥ (P, z)) — min(¥(P,x))), where
minimum and maximum are computed pixel-wise.

Architectures and pre-training methods. We evaluated
the different unsupervised explainability methods for ex-
plaining features extracted from two widely used deep learn-
ing architectures, namely the ResNet50 (He et al., 2016) and
the vision transformer (Kolesnikov et al., 2021). We inves-
tigated several pre-training methods both with and without
labels. For the ResNet50, we studied models trained using
supervised learning and self-supervised learning using the
SimCLR method (Chen et al., 2020) and the SwWAV method
(Caron et al., 2020). For the vision transformer, we con-
sidered self-supervised training using the DINO methods.
The supervised ResNet50 was evaluated as a feature extrac-
tor, meaning we explained the output of the last embedding
layer of the model. The vision transformer was adapted to
the NEM-U framework by reshaping the extracted latent
representations to fit the U-net decoders of the masking net-
work. The supervised weights and weights for DINO were
obtained from the timm library (Wightman, 2019), whereas
the SWAV and SimCLR weights were obtained from the
Pytorch Lightning Bolts library (Falcon & The PyTorch
Lightning team, 2019).

NEM-U training. All NEM-U models were trained in the
same fashion for the evaluations. All models were optimized
using the prodigy optimizer (Mishchenko & Defazio, 2023)

for 10 epochs on either the COCO or the VOC training
data depending on the evaluation dataset. There was no
overlap between training data and evaluation data, as we
wished to gauge the performance of the NEM-U models
in an inference setting. No data augmentations were used
during training.

Table 1. Results of the runtime experiments. These experiments
have been conducted on a NVIDIA GeForce RTX 4090.

Method Time in seconds
RELAX 2.048
Integrated Gradients 0.072
Gradient SHAP 0.011
Saliency 0.007
NEM-U (Ours) 0.002

4.3. Results

The results for speed are summarized in Table 1, the re-
sults for locality and complexity are summarized in Table 2.
Examples of explanation masks generated during the evalua-
tion can be seen in Figure 1, Figure 3 and Appendix C. NEM-
U achieved the highest speed with an average latency of
0.002 seconds per image, whereas the other methods ranged
from 0.007 seconds per image achieved by the Saliency
method to 2.050 seconds per image achieved by RELAX.
In general, NEM-U yielded the lowest complexity metrics
across all models and datasets. When measuring locality us-
ing relevancy mass, NEM-U achieved the best values across
all datasets and models, whereas it obtained the second or
third-best locality score when measuring relevancy rank de-
pending on whether it is evaluated on the VOC or COCO
dataset.

5. Discussion

Results. The results of our experiments indicate that the
NEM-U model creates a mask with a locality comparable
to the RELAX methodology and better than the other meth-
ods. Furthermore, the masks have the sparsest explanations
(measured in complexity) in general and are generated faster
than any other methods during inference. Notable NEM-U
is approx. 1000 times faster than the current state-of-the-art
approach RELAX with similar locality metrics.

Locality metrics. There was a notable difference between
performance in locality across the two locality metrics.
While RELAX performed best in terms of relevancy rank-
ing, NEM-U performed best in terms of the relevancy mass.
This indicates that most of the mass of NEM-U explana-
tions were located inside the bounding boxes, but its ability
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RELAX
RR: 0.819, RM: 0.713

U-RELAX

NEM-U
RR: 0.739, RM: 0.825

NEM-U RELAX U-RELAX
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Integrated Gradients
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Gradient Shap
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Figure 3. Different XAI methods applied to a ResNet50 model trained using SimCLR on an image from the VOC (top) and the COCO
(bottom) validation set, respectively. RR and RM denote the relevancy rank score and the relevancy mass, respectively. Note that the
explanation masks of NEM-U varies across datasets due to the differences in training data.

to rank features was worse than that of RELAX. Notably,
even in the cases where the complexity of U-RELAX (e.g.,
DINO on the VOC dataset) was lower than NEM-U, NEM-
U still achieved the highest relevancy mass. Thus, the better
relevancy mass score was not just a mere result of NEM-
U’s explanations having lower complexity. The sparsity of
the NEM-U explanations probably also reduced its ranking
score, indicated by U-RELAX performing worse than both
RELAX and NEM-U on the VOC dataset.

Set-of-features vs. additive feature explanations. The
loss (3), which is used to train the NEM-U models, does not
encourage the models to create an additive feature explana-
tion, that is, an explanation mask that ranks all individual
feature (in our case pixels) contributions of an input. Similar
to the works by Fong et al. (2019) and Kolek et al. (2020;
2023), our loss function (3) encourages set-of-features ex-
planations, induced by B(z) as defined by (4). Therefore, a
NEM-U explanation is best viewed as an unordered subset
of the input features. These features are important for the
model but the individual ranking between features based
on the gradual scores is less informative. Comparing ad-
ditive feature explanations and set-of-feature explanations
directly is difficult as pointed out by Fong et al. (2019),
which is an issue since all methods we compare against are
arguably additive feature explanations. To our knowledge,
there are no meaningful metrics that compare the locality
of the set-of-feature explanations approach to the additive
feature explanation fairly. This is why we opted for both
relevance rank, which benefits additive feature explanations,
and relevance mass, which benefits set-of-feature explana-

tions.

Whether set-of-features or additive feature explanations are
better is an open question, but Kolek et al. (2020) argue that
sets of features should be desirable in situations where sin-
gle features do not carry much meaning, such as individual
pixels’ contributions to an image classification. Another
benefit of the sets of features is that validating the expla-
nation is fast and straightforward since the masked image
representing these features can be passed directly through
the model and the output can be compared with the result of
passing the unmasked input through the network.

Qualitative evaluation across datasets. Figure 3 shows
examples contrasting different XAI methods; more exam-
ples are presented in Appendix C alongside images depict-
ing the worst NEM-U explanations. The figures demonstrate
that the NEM-U models generated visual explanations of
low complexity compared to other methods. The ¥ is a
trained model and thus will output masks that are biased
by the specific dataset it is trained on. An example of this
is that NEM-U had the tendency to generate much denser
explanations on the COCO dataset. This might be due to the
size of the dataset and particular qualities of each dataset,
e.g., COCO in general has smaller objects of interest com-
pared to VOC (Lin et al., 2014). These denser, more binary
explanations also potentially explain why the relevancy rank
of NEM-U dropped on the COCO set.

Latency considerations. NEM-U was faster than all other
methods during inference. Our method only requires a
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Table 2. Experimental results for the two locality metrics relevancy rank and relevancy mass as well as for the two complexity metrics
complexity and sparseness. In case of the locality metrics, higher values indicate better performance. NEM-U performs best in terms
relevancy mass, whereas RELAX yields the highest relevancy ranks. NEM-U ranks second when considering the relevancy ranks on
VOC, whereas U-RELAX ranks second place in all other settings. Lower values indicate better performance for complexity, whereas
higher values indicate better performance for sparseness. NEM-U wins 12 out of 16 games whereas U-RELAX wins 4 of 16 games.

Model Method Relevance Rank T Relevance Mass 1 Complexity | Sparseness 1
VOC COCO VOC COCO VOC COCO VOC coco
RELAX 0.719 0.689 0.599 0.556 10.626 10.628 0.336  0.335
U-RELAX 0.666 0.646 0.679 0.628 9988 9987 0.637 0.639
Supervised Integ.rated Gradients 0.567 0.540 0.569 0.534 10.253 10.277 0.551 0.542
Gradient SHAP 0.568 0.541 0.571 0.534 10.251 10.275 0.552  0.543
Saliency 0.555 0.419 0.537 0.427 10.443 10.227 0.460  0.547
NEM-U (Ours) 0.691 0.644 0.823 0.697 9390 9.633 0.740  0.712
RELAX 0.761 0.725 0.642 0.592 10.559 10.568 0.391 0.385
U-RELAX 0.714 0.687 0.726 0.669 9969 9974 0.649 0.647
DINO Integrated Gradients 0.576 0.537 0.584 0.532 10.128 10.161 0.600  0.589
Gradient SHAP 0.575 0.539 0.585 0.536  10.065 10.100 0.616  0.605
Saliency 0.565 0.522 0.547 0.503 10.302 10.305 0.526 0.524
NEM-U (Ours) 0.738 0.638 0.749 0.688 10.124  9.847 0.573  0.656
RELAX 0.721 0.685 0.589 0.544 10.665 10.670 0.305  0.300
U-RELAX 0.656 0.635 0.662 0.615 10.021 10.027 0.621 0.617
SWAV Integrated Gradients 0.513 0.476 0.517 0476 10.307 10.320 0.531 0.525
Gradient SHAP 0.511 0.476 0.516 0476 10.300 10.309 0.535  0.530
Saliency 0.489 0.456 0.489 0.453 10460 10.462 0.451 0.449
NEM-U (Ours) 0.686 0.582 0.736 0.641 9808 9.578 0.687 0.779
RELAX 0.709 0.665 0.612 0.561 10.597 10.607 0.368  0.360
U-RELAX 0.619 0.593 0.661 0.610 9949 9960 0.660  0.655
SimCLR Integrated Gradients 0.530 0.479 0.536 0.483 10.260 10.271 0.551 0.546
Gradient SHAP 0.528 0.478 0.535 0.483 10.246 10.258 0.556  0.551
Saliency 0.508 0.460 0.505 0.459 10.386 10.371 0.488  0.496
NEM-U (Ours) 0.692 0.562 0.710 0.656 9993 9340 0.649 0.829

forward pass through the frozen model and the masking
network, whereas the second fastest method, the saliency
method, has to do both a forward and a backward pass
through the explained model. Since the explained model
in all our experiments was larger than the masking model,
NEM-U was faster. It is important to stress that our method
was evaluated for all metrics in the inference setting. Since
our method requires training, it is most efficient when the
amount of explanations needed is sufficiently large. If only
a few explanations are needed, other methods that do not
require training might be more suitable.

Future work. Future work could explore how to further
improve the model’s performance in general and its ability
to rank pixels in particular. One potential avenue would be
to build on previous work on the rate-distortion framework.
Kolek et al. (2023) have, in the supervised setting, achieved

excellent explanations by leveraging shearlet or wavelet
image representations. The cost of using these represen-
tations was low inference speed, which could potentially
be mitigated by our method’s high inference speed. An-
other avenue for improving masking would be to carry over
methodology from online learning by allowing the masking
network to optimize its explanation mask for a given input.
Some implementation decisions should be explored further,
for example, more principled ways of choosing B(x) in (3)
should be developed. Ideally, we would want a solution
based on the || - ||o norm to get more binary masks, but such
an approach is not well-suited for gradient-based learning.
Kolek et al. (2023) have tried to solve this issue via a spatial
energy penalty term.

Looking at the COCO results (e.g., lower part in Figure 3),
we can see that our approach can generate binarized low-
complexity explanation masks. Thus, the NEM framework
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could potentially serve as the basis for a method to translate
a given image classification model into a corresponding
segmentation model.

6. Conclusion

‘We have introduced the NEM framework, which allows for
transforming a differentiable model into a self-explaining
system by augmenting it with a masking network. Further-
more, we have introduced the NEM-U architecture, which
leverages a U-Net style encoder-decoder setup to implement
the NEM framework. Our experiments indicate that the
NEM-U models produce explanations on par with the state
of the art while having lower complexity and much lower
latency.

Impact Statement

This paper presents work whose goal is to advance the field
of explainable Al. Explainable Al is important for under-
standing and improving fairness, transparency, trust, and
accuracy in Al-based decision-making. Applications re-
quiring the generation of many explanations (i.e., online
analysis of videos) do not only directly profit from the high
accuracy and low latency of the NEM approach, but they
also become more resource efficient (Wright et al., 2023).
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A. Faithfullness

The question of how to measure faithfullness is not well studied in the literature of unsupervised XAI. One issue is that
measuring distances in embedding space is complicated due to the high dimensionality of the space, and thus standard
faithfullness concepts such as deletion and insertion curves (Fong et al., 2019) might be misleading. In our case, a comparison
of methods using faithfullness may be biased. The current SOTA approach, RELAX, is a pixel-level attribution method,
whereas the NEM framework is a set-wise attribution method, which hampers a direct comparison as already pointed out
by Kolek et al. (2023). In the following, we consider two metrics to gauge the faithfullness of the NEM framework, which
we regard to be less affected by the issues outlined above.

Inspired by Kolek et al. (2023), we define a faithfullness score by measuring the distance of the original image and the
masked image using cosine similarity. To account for the sparsity of the mask, we divide the distance score by the L1 norm
of the explanation mask, creating our final faithfullness score. To evaluate NEM-U using this score, we compared it with
other ways of generating occlusion masks: We considered U-RELAX and additionally defined UMT-RELAX as a method
that generates a binary mask by thresholding the uncertainty map of RELAX at its mean. We added the inverse of the
NEM-U mask, referred to as NEM-U-INVERSE, to understand the importance of what is discarded by NEM-U. Finally, we
included a naive solution randomly removing half of the pixels. The results can be seen in Table 3. We find that NEM-U
achieves either the highest or second highest score.

An alternative approach is to evaluate the faithfullness of the different methods on a downstream task by explaining a
classifier trained in a supervised manner. This allows for using standard faithfullness metrics. We apply all methods
evaluated in the main paper to explain the last embedding layer of a ResNet50 classifier trained on ImageNet. The created
attribution map of the embedding layer is used as a proxy explanation for the output layer, meaning we use the attribution
map as if it was the attribution map for the output layer. We measure the faithfullness using the monotonicity metric
proposed by Nguyen & Martinez (2020). We extract 11000 images from the ImageNet validation set, where 10000 is used
to train the NEM-U model and the other 1000 is used for evaluation. The results are shown in Table 4.

Table 3. Unsupervised measure of faithfulness. Accuracy is measured as the cosine similarity between the masked vector representation
and the original vector representation. Complexity is the L; norm of the explanation mask. The score is an overall measure of mask
performance and is calculated as accuracy divided by complexity.

Model Method Accuracy T Complexity | Score 1
VOC COCO VOC COCO VOC COCO
NEM-U 0.87 089 0.25 028 348 3.21
Supervised NEM-U-INVERSE  0.82 0.80 0.75 0.72  1.09 1.11
U-RELAX 0.90 090 0.20 020 445 4.50
UMT-RELAX 0.91 0.88 0.40 037 239 2.46
Naive Solution 0.70 0.71  0.50 0.50 141 1.42
NEM-U 0.93 092 0.39 033 238 2.77
DINO NEM-U-INVERSE  0.68 0.67 0.61 0.67 1.11 1.00
U-RELAX 0.87 087 0.20 020 4.35 4.28
UMT-RELAX 0.88 0.87 0.37 037 248 2.46
Naive Solution 0.69 0.70  0.50 0.50 1.38 1.40
NEM-U 0.90 0.87 0.23 0.14 3.99 6.21
SWAV NEM-U-INVERSE  0.95 095 0.77 0.86 123 1.11
U-RELAX 0.88 088 0.24 025 3.60 3.58
UMT-RELAX 0.88 0.88 0.44 044 2.04 2.03
Naive Solution 0.78 0.79  0.50 050 1.57 1.57
NEM-U 0.90 0.82 0.21 006 433 14.09
SimCLR NEM-U-INVERSE  0.93 096 0.79 094 1.18 1.02
U-RELAX 0.84 0.84 0.20 021 4.20 4.06
UMT-RELAX 0.85 0.85 042 042 2.12 2.10
Naive Solution 0.68 0.69 0.50 0.50 1.36 1.38
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Table 4. Faithfullness measurement by explaining a downstream supervised classifcation task on 1000 images extracted from the validation
set of ImageNet.

Method Monotonicity Correlation 1
NEM-U 0.568
RELAX 0.463
U-RELAX 0.441
Integrated Gradients 0.512
Grad shap 0.505
Saliency 0.400

B. Additional Experimental Results
B.1. DINO Attribution Maps

To explore whether the NEM framework provides any benefits to models which are inherently interpretable, we compared
our main results with using the attribution maps of the DINO model as an explanation. The results can be seen in Table 5. In
general, the results indicate that the explanations provided by NEM-U have better locality and lower complexity.

Table 5. Comparing the DINO attention maps with using NEM-U to explain the model
Relevancy Mass T Relevancy Rank 1 Complexity | Sparseness T
vOoC COCO vOoC COCoO VOC COCO VOC cCoco

Attention Map  0.687 0.646  0.687 0.669 10.161 10.169 0.588 0.586
NEM-U 0.749 0.688 0.738 0.638 10.124 9.847 0.573 0.656

B.2. Choice of Masking Scheme

Previous papers using masking based approaches (Kolek et al., 2022; 2023; Fong et al., 2019) have leveraged more
sophisticated masking schemes during training compared to pixel scaling as is done in this paper. A common method is
noise injection, where the input data is replaced with Gaussian noise in proportion to the masking value. Recent work has
indicated that this approach is not helpful in the unsupervised setting (Wickstrgm et al., 2023a). Since proper noise injection
require estimating the mean and variance of the training data, it would be interesting to determine, whether using a more
advanced masking scheme yields benefits. To study this, we compared our main results with variants where we used noise
injection. The results are summarized in Table 6 and indicate that there is no obvious benefit to choosing either intervention
scheme.

Table 6. Comparing different intervention distributions.

Model Intervention Relevancy Rank 1 Relevancy Mass T Complexity | Sparseness 1
vOC COCO VOC COCO vOC COCO VOC COCO
Supervised Pixel scaling 0.691 0.644 0.823 0.697 9390 9.633 0.740 0.712
Noise injection  0.568 0.557 0.503 0.651 10.763 10.662 0.160  0.276
Dino Pixel scaling 0.738 0.638 0.749 0.688 10.124  9.847 0.573  0.656
Noise injection  0.719 0.650 0.709 0.495 10.181 10.059 0.508  0.571
SWAV Pixel scaling 0.686 0.582 0.736 0.641 9.808 9.578 0.687  0.779
Noise injection  0.549 0.524  0.802 0.571 8367 8.598 0926 0.918
SimCLR Pixel scaling 0.692 0.562 0.710 0.656 9.993 9340 0.649  0.829
Noise injection  0.698 0.579 0.751 0.648  9.872 10.179 0.652  0.583

B.3. Hyperparameter Sweep

To understand how stable the NEM-U method is to choices of hyperparameter A\; and A5 , we conducted a hyperparameter
sweep in the neighbourhood of our selected hyperparameters of all models on both datasets. The results can be seen in
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Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, and Table 14. The results indicate that the NEM-U
framework is robust to changes in its loss hyperparameters.

Table 7. Hyperparameter sweep results showing the Relevancy Mass for supervised classifier on the VOC dataset.
)\1= 1 )\1=1.5 /\1=2
A2 =05 0.486 0.479 0.461

Ao=1 0.853 0.823  0.740
A2=15 0.818 0.782  0.706

Table 8. Hyperparameter sweep results showing the Relevancy Mass for DINO on the VOC dataset.
Ai=1 A=15 \=2
A2=05  0.738 0.662 0.553

Mg =1 0.753 0.749 0.717
A2=15 0.798  0.805 0.781

Table 9. Hyperparameter sweep results showing the Relevancy Mass for SimCLR on the VOC dataset.
A1= 1 >\1=1.5 >\1=2
A2=0.5  0.721 0.534 0.534

Ag =1 0.759 0.710  0.600
A2=15 0762 0.702 0.586

C. Visulization of Results
C.1. Comparing Explainability Methods Across Various Models and Images

In this appendix, we have added some visual examples of how the various methods handle images from different data sets
and models, which can be seen in Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9.

C.2. Worst Results of NEM-U

To qualitatively explore the failure modes of NEM-U, we have included the nine images where the cosine similarity
between the original image and the masked image produced by NEM-U were lowest for each pair of model and dataset, see
Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, and Figure 17.

14



Finding NEM-U: Explaining unsupervised representation learning

Table 10. Hyperparameter sweep results showing the Relevancy Mass for SwaV on the VOC dataset.
=1 =15 \=2
A2=0.5  0.749 0.584  0.543

Ao=1 0.665 0.736  0.512
A2=15 0739 0739  0.652

Table 11. Hyperparameter sweep results showing the Relevancy Mass for supervised trained classifier on the COCO dataset.
A=1 =15 M\=2
A2=05  0.713 0.441 0.478

Ag=1 0.784  0.697  0.679
=15 0441 0.656  0.585

Table 12. Hyperparameter sweep results showing the Relevancy Mass for DINO on the COCO dataset.
AM=1 M=15 =2
A2=0.5 0439 0.439  0.443

Ao =1 0.833 0.688  0.646
A=15 0776 0774 0.747

Table 13. Hyperparameter sweep results showing the Relevancy Mass for SimCLR on the COCO dataset.
=1 \=15 A\=2
A2=05  0.684 0.523 0.507

Ap=1 0.691 0.655 0.572
A2=15 0.703 0.650  0.583

Table 14. Hyperparameter sweep results showing the Relevancy Mass for SwaV on the COCO dataset.
=1 =15 M\=2
A2=0.5  0.630 0.504  0.478

Ao =1 0.645  0.641  0.547
A2a=15 0.718 0.644  0.546

NEM-U RELAX U-RELAX Integrated Gradients Gradient Shap Saliency
RR: 0.038, RM: 0.044 RR: 0.089, RM: 0.125 RR: 0.089, RM: 0.138 RR: 0.148, RM: 0.147 RR: 0.104, RM: 0.121 RR: 0.045, RM: 0.073

Figure 4. Comparing XAl methods run on a vision transformer model trained using DINO on an image from the VOC test set. RR denotes
the relevancy rank score for the method and RM represent the relevancy mass.
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NEM-U RELAX U-RELAX Integrated Gradients Gradient Shap Saliency
RR: 0.938, RM: 1.000 RR: 0.944, RM: 0.962 RR: 0.938, RM: 0.981 RR:0.939, RM: 0.928 RR: 0939, RM: 0.923 RR: 0.941, RM: 0.927

Figure 5. Comparing methods run on a ResNet50 model trained using a supervised classification task on an image from the VOC test set.
RR is the relevancy rank score for the method and RM represents the relevancy mass.

NEM-U RELAX U-RELAX Integrated Gradients Gradient Shap Saliency
RR: 0.620, RM: 0.993 RR: 0.733, RM: 0.413 RR: 0.733, RM: 0.528 RR: 0.266, RM: 0.201 RR: 0.239, RM: 0.188 RR: 0.181, R\i 0.156

Figure 6. Comparing methods run on a ResNet50 model trained using SwAV on an image from the VOC test set. RR is the relevancy rank
score for the method and RM represents the relevancy mass.

o % " s {8
NEM-U U-RELAX Integrated Gradients Gradient Shap Saliency
RR: 0.000, RM: 0.007 RR: 0.000, RM: 0.004 RR: 0.000, RM: 0.001 RR: 0.009, RM: 0.005 RR: 0.000, RM: 0.003 RR: 0.000, RM: 0.002

Figure 7. Comparing methods run on a vision transformer model trained using DINO on an image from the COCO validation set. RR is
the relevancy rank score for the method and RM represents the relevancy mass.

NEM-U RELAX U-RELAX Integrated Gradients Gradient Shap Saliency
RR: 0.726, RM: 1.000 RR: 0.782, RM: 0.757 RR: 0.711, RM: 0.870 RR: 0.667, RM: 0.661 RR: 0.692, RM: 0.708 RR: 0.669, RM: 0.690

Figure 8. Comparing methods run on a ResNet50 model trained using a supervised classification task on an image from the COCO
validation set. RR is the relevancy rank score for the method and RM represents the relevancy mass.
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NEM-U RELAX U-RELAX Integrated Gradients Gradient Shap Saliency
RR: 0.691, RM: 0.811 RR: 0.793, RM: 0.606 RR: 0.788, RM: 0.817 RR: 0.265, RM: 0.302 RR: 0.283, RM: 0.314 RR: 0.393, RM: 0.398

Figure 9. Comparing methods run on a ResNet50 model trained using SwAV model on an image from the COCO validation set. RR is the
relevancy rank score for the method and RM represents the relevancy mass.

Latent Distance: (.31 Latent Distance: (.29 Latent Distance: (.29

Latent Distance: .27 Latent Distance: .26 Latent Distance: .26

Latent Distance: (.24 Latent Distance: .24 Latent Distance: 0.21

Figure 10. The nine images from the VOC test set for which the masked image had the largest distance to the original image in latent
space. The distance was measured using cosine similarity. The masks were produced by NEM-U trained to explain a ResNet50 classifier
trained using a supervised classification task.
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Latent Distance: (.54 Latent Distance: (.48

Latent Distance: (.48 Latent Distance: 0.47 Latent Distance: ()46

Latent Distance: (.46 Latent Distance: .46 Latent Distance: (.44

Figure 11. The nine images from the VOC test set for which the masked image had the largest distance to the original image in latent
space. The distance was measured using cosine similarity. The masks were produced by NEM-U trained to explain a vision transformer
trained using DINO.
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Latent Distance: (.59

Latent Distance: (.60

Latent Distance: (.58 Latent Distance: (.58 Latent Distance: ().58

Latent Distance: 0.58 Latent Distance: .58 Latent Distance: .56

Figure 12. The nine images from the VOC test set for which the masked image had the largest distance to the original image in latent
space. The distance was measured using cosine similarity. The masks were produced by NEM-U trained to explain a ResNet50 classifier
trained using SwaV.
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Latent Distance: (.44 Latent Distance: 0.41

Latent Distance: (.40 Latent Distance: (140

Latent Distance: 0.39 Latent i:stﬂnu:'e: 0.37 Latent Distance: (0.33

Figure 13. The nine images from the VOC test set for which the masked image had the largest distance to the original image in latent
space. The distance was measured using cosine similarity. The masks were produced by NEM-U trained to explain a ResNet50 classifier
trained using SimCLR.
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Latent Distance: .50 Latent Distance: (.49

Latent Distance: .49 Latent Distance: 00,47

Latent Dit.ll:'E‘: 0.43 Latent Distance: (.43 Latent Distance: (.42

Figure 14. The nine images from the COCO validation set for which the masked image had the largest distance to the original image in
latent space. The distance was measured using cosine similarity. The masks were produced by NEM-U trained to explain a ResNet50
classifier trained using a supervised classification task.
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Latent Distance: (.52 Latent Distance: .52

Latent Distance: 0.50 Latent Distance: .47 Latent Distance: (.42

Figure 15. The nine images from the COCO validation set for which the masked image had the largest distance to the original image
in latent space. The distance was measured using cosine similarity. The masks were produced by NEM-U trained to explain a vision
transformer trained using DINO.
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R Ve

.

di"'

Latent Distance: (.49 Latent Di:stfmu:'e: 0.49 L:Ltnt Di:stce: .413

Figure 16. The nine images from the COCO validation set for which the masked image had the largest distance to the original image in
latent space. The distance was measured using cosine similarity. The masks were produced by NEM-U trained to explain a ResNet50
classifier trained using SWaV.
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Latent Distance: 0,31 Latent Distance: 0.29 Latent Distance: 0.29

Latent Distance: (.27 Latent Distance: (.26 Latent Distance: (.26

Latent Distance: (.24 Latent Distance: (.24 Latent Distance: .21

Figure 17. The nine images from the COCO validation set for which the masked image had the largest distance to the original image in
latent space. The distance was measured using cosine similarity. The masks were produced by NEM-U trained to explain a ResNet50
classifier trained using SimCLR.
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