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Source videos Videos outpainted by our methods

Figure 1: Video outpainting results by HERO. They include Vertical Outpainting, Central Outpainting
and Horizontal Outpainting results on character portraits, cartoons and landscape videos. More
interesting videos can be found in the supplementary materials.

ABSTRACT

Video outpainting expands the spatial perspective of a video, enabling it to adapt
to various display devices with different aspect ratios. Current diffusion-based
approaches for video outpainting often suffer from quality issues such as blurred
details, local distortion, and temporal instability, significantly impacting the user
experience. The root cause is the insufficient temporal modeling in video outpaint-
ing, which inadequately represents the relationships between frames over time.
To address this issue, a novel approach called HERO (Harnessing the tEmpoRal
modeling for diffusion-based Outpainting) is proposed to effectively tackles these
generated video quality problems. HERO employs two critical components to
enhance temporal modeling: the Temporal Reference Module, which provides
reference features that extend beyond spatial dimensions; and the Interpolation-
based Motion Modelling Module, designed to stabilize generated frames. By
integrating these modules, these quality issues in video outpainting are effectively
addressed. Extensive experiments on multiple benchmarks demonstrate that HERO
outperforms existing methods qualitatively and quantitatively.

1 INTRODUCTION

Video outpainting (Yu et al., 2023; Fan et al., 2023; Wang et al., 2024a) expands a video’s spatial
scope beyond its original perspective, enabling it to adapt to various screen ratios for diverse display
devices and occasions. Unlike image outpainting, which focuses on a single frame, video outpainting
must ensure both content consistency and spatial-temporal coherence to avoid jitter between adjacent
frames. Differing from video inpainting, which focuses on internal areas with rich context and has a
small mask ratio, video outpainting often deals with larger mask areas at frame edges with limited
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(a) Input Videos for video
outpainting.

(b) Videos expaneded by
M3DDM and MOTIA.

(c) Distribution of common
reference features.

(d) The vanilla motion
modeling module.

Figure 2: The video quality issues and their origins in current diffusion-based methods. (a) Videos
to be expanded. (b) Expanded videos by current diffusion-based methods show blurred details and
local distortion. (c) The commonly used reference features visualized by t-SNE (Van der Maaten &
Hinton, 2008). They do not occupy the entire feature plane. (d) The vanilla motion modeling module
performs global attention across all frames without considering the adjacent relations among frames.

context. For instance, the mask ratio on the DAVIS dataset (Caelles et al., 2019) is less than 20%
for inpainting tasks (Zhou et al., 2023), while it reaches 66% for outpainting tasks (Fan et al., 2023).
These complexities pose a greater challenge for video outpainting, thereby attracting considerable
research interest recently.

Research on video outpainting can be categorized into mask-based and diffusion-based approaches.
The mask-based methods (Yu et al., 2023) outpaint videos by predicting the masked content using a
BERT-like (Devlin et al., 2018) learning approach. However, these methods rely only on contextual
video tokens and are unable to generate high-definition videos. On the other hand, diffusion-based
methods leverage significant advancements in image (Ho et al., 2020a; Rombach et al., 2022; Zhang
et al., 2023) and video (Guo et al., 2024; Wang et al., 2023; Hu et al., 2023) generation achieved by
diffusion models. These methods frame video outpainting as a video-to-video generation task (Fan
et al., 2023; Wang et al., 2024a). These approaches have achieved state-of-the-art (SoTA) results.

Despite their advancements, SoTA diffusion-based video outpainting approaches (Fan et al., 2023;
Wang et al., 2024a) still face several problems. These include blurred details, local distortion as
shown in Fig. 2b, and temporal instability, which are evident in the interesting videos provided in
the supplementary materials. A manual analysis of the output videos generated by M3DDM (Fan
et al., 2023) on datasets DAVIS (Caelles et al., 2019) and YouTube-VOS (Xu et al., 2018) revealed
that 38% of the videos are blurry, as detailed in Sec. C. These issues significantly reduce the
audience’s experience and impact the information delivery. The primary cause behind these problems
is insufficient temporal modeling in video outpainting. This refers to an inadequate representation
of temporal relationships between frames, leading to frame distortion or instability. The SoTA
methods (Fan et al., 2023; Wang et al., 2024a) currently use reference conditions such as VAE (Kingma
& Welling, 2013) for textual features and CLIP (Radford et al., 2021) for semantic features. However,
these features are all spatial dimensions and do not include any temporal reference features. Fig. 2c
shows that VAE and CLIP features only occupy the red and pink regions, leaving the cyan and blue
regions empty. The widely used VAE and CLIP references are paradigms for static image synthesis
and editing, which are insufficient for video. Moreover, current video generation methods (Guo et al.,
2024; Hu et al., 2023; Fan et al., 2023; Wang et al., 2024a) depend on a vanilla motion modeling
module (Guo et al., 2024), which performs global attention at the feature pixel level across all frames.
This approach overlooks the relationships between adjacent frames and leads to temporal instability
in generated videos. Such oversight further underscores the inadequacies in temporal modeling.

The challenges in solving the above problems are twofold. Firstly, there are limited established meth-
ods available for incorporating temporal references in video generation. Consequently, researchers
must explore innovative approaches to better capture effective temporal references. Secondly, any
improvements to the motion modeling module in the diffusion network should be minimized to
maximally preserve the internal knowledge of the pre-trained diffusion network.

To overcome these significant challenges, 3D features that capture video-level information and
optical flow features that convey motion dynamics are taken into consideration to enhance temporal
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modeling. Features from these two perspectives encapsulate information beyond spatial dimensions
and compensate for the limitations of the CLIP and VAE models. Additionally, the interpolation
technique can be integrated into the vanilla motion modeling module to enhance the stability of
the generated frames with few learnable parameters. Based on these ideas, a pioneering approach
effectively Harnessing the tEmpoRal modeling for diffusion-based Outpainting (HERO) is proposed
to handle the generated video quality problems. In HERO, a Temporal Reference Module is introduced
in addition to the spatial-based reference modules (VAE and CLIP), providing comprehensive
reference features. Subsequently, an Interpolation-based Motion Modeling Module is designed with
a single learnable scalar to enhance the stability of generated videos.

The key contributions of this paper can be summarized as follows: (1) To the best of our knowledge,
this is the first paper to comprehensively address the insufficient temporal modeling problem in
diffusion-based video outpainting methods. Simultaneously, this paper demonstrates its causes, great
impact, and challenges in addressing them. (2) The proposed HERO can alleviate the insufficient
temporal modelling problem through the Temporal Reference Module, which provides comprehensive
temporal references, and the Interpolation-based Motion Modeling Module, which stabilizes the
generated frames. (3) HERO is validated through extensive quantitative and qualitative experiments,
achieving state-of-the-art performance on multiple video outpainting benchmarks.

2 METHODOLOGY

2.1 PRELIMINARIES

Stable Diffusion. Our approach extends Stable Diffusion (SD) which is derived from the latent
diffusion model (LDM) (Rombach et al., 2022). SD consists of a VAE (Kingma & Welling, 2013)
and a UNet (Ronneberger et al., 2015) augmented by the cross-attention mechanism (Vaswani et al.,
2017). VAE consists of an encoder E and a decoder D. The encoder E of VAE first transforms an
image from pixel space into a low-dimensional latent space to reduce the computational complexity
for UNet: z = E(x). During the training process of SD, the image latent z0 is diffused in T time
steps to produce noise latent zT . Simultaneously, a denoising UNet is trained to predict the applied
noise. The optimization process is defined as follow function:

LLDM = Ezt,ϵ∼N (0,1),t,c[∥ϵ− ϵθ(zt, c, t)∥22], (1)

where ϵ is the noise added to z0, c denotes the conditional information and t is the time step, ϵθ
represents the denoising UNet. In each iteration, the denoising UNet predicts noise on the latent
feature for each timestep t. During inference, z′T is sampled from a random Gaussian distribution at
timestep T and progressively denoised to z′0 using a guided sampling process (e.g., DDPM (Ho et al.,
2020b), DDIM (Song et al., 2021)). Finally, decoder D reconstructs image x′ = D(z′0).

Video Outpainting. Let v ∈ Rt×h×w×3 denotes an input video, where t is the number of frames in
the video, h and w are the height and width of the video and 3 stands for the channel number. Video
outpainting extends the initial height and width of a video to a specified height and width, resulting in
a new video v′ ∈ Rt×h′×w′×3(h′ > h,w′ > w). Video outpainting needs to maintain both content
consistency and spatial-temporal coherence. In the video, the initial perspective is referred to as
the known region, while the extended area is termed as the unknown region.

2.2 MODEL OVERVIEW

HERO contains the Temporal Reference Module and Spatial Reference Module. Fig. 3 (I) shows the
Temporal Reference perspective. The input video is padded to meet the target height and width (from
h × w to h′ × w′) and is then sent into VAE to obtain the 4-channel latent feature fl. fl is sent to
the 3D Reference Net (3D-RefNet) to obtain the video-level features. The padded video is also
transformed into optical flow maps and then concatenated with binary masks. They are then sent to
the Optical Flow Encoder for motion features. Fig. 3 (II) shows the Spatial Reference perspective.
The latent feature fl is concatenated with noise and binary masks. The padded video is also sent to
the CLIP for semantic features. These reference features are sent repsectively to the 3D-UNet which
is commonly used in video generation works (Guo et al., 2024; Hu et al., 2023; Fan et al., 2023;
Wang et al., 2024a). Fig. 3 a⃝ shows the Interpolation-based Motion Modeling Module conducted on
the temporal dimension within adjacent frames with learnable weights.
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Figure 3: The overview of HERO. (I) The temporal reference perspective of HERO. (II) The spatial
reference perspective of HERO. Two perspectives share the same 3D-UNet. a⃝ is the Interpolation-
based Motion Modeling Module conducted on the temporal dimension for frames stability.

2.3 TEMPORAL REFERENCE MODULE

2.3.1 3D-REFNET

3D-RefNet is designed to extract video-level features, inspired by the ReferenceNet (Hu et al., 2023)
which was originally designed for image reference. The structure of 3D-RefNet is almost identical
to that of the 3D-UNet, except that the input is 4-channel for 3D-RefNet while for 3D-UNet it is
9-channel. The input to 3D-RefNet is the latent features extracted by the VAE model, without any
other information concatenated. The weights of 3D-RefNet come from Stable Diffusion (Rombach
et al., 2022) and the weights of the motion modeling module come from AnimateDiff (Guo et al.,
2024). During the forward phase, the feature map v1 ∈ Rt×h×w×c from 3D-RefNet and the feature
map v2 ∈ Rt×h×w×c from 3D-UNet are concatenated along w dimension. Then a self-attention
is performed on this concatenated feature map and the first half of the feature map serves as the
output as in (Hu et al., 2023). During the training phase, the weights of 3D-RefNet and 3D-UNet
are updated independently of each other. It should be noted that 3D-RefNet and ReferenceNet for
image reference differ in the following three respects: in terms of network structure, 3D-RefNet
adds a motion modeling module to capture video-level information; in terms of input, the input
3D-RefNet is multiple frames rather than a single reference image; and in terms of internal operations,
3D-RefNet does not require the tiling and copying of feature maps to align feature dimensions.

2.3.2 OPTICAL FLOW ENCODER (OFE)
Optical flow is widely used in video completion tasks (Zhou et al., 2023; Dehan et al., 2022). It reflects
pixel-level motion features, which provides an alternative perspective for temporal information
compared with 3D-RefNet. This kind of information can be beneficial for video generation and thus
needs a dedicated encoder. On the other hand, ControlNet controls the generation of images with a
condition image in a fine-grained manner. The main network structure of ControlNet is identical to
the encoder in 3D-UNet, which is connected to 3D-UNet through the zero-initialized convolutional
layer. The popular ControlNets support inputs include edge maps, pose key points, and segmentation
maps, etc., but they do not support the optical flow. Therefore, a ControlNet is trained from scratch to
serve as the encoder for optical flow. Specifically, the dense optical flow of the input video is first
estimated and the unknown regions will be filled with zero. It is then concatenated with a binary
mask indicating the known and unknown regions along with channel dimensions to form the input.

2.4 INTERPOLATION-BASED MOTION MODELING MODULE (IM3)

The vanilla motion modeling module is proposed in (Guo et al., 2024) and widely used in video
generation works (Fan et al., 2023; Wang et al., 2024a; 2023; Hu et al., 2023; Tian et al., 2024).
The input feature map of vanilla motion modeling module is reshaped from x ∈ Rb×c×f×h×w into
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(a) M1 (b) M2 (c) M3 (d) MI
Figure 4: In Fig. 4a, 4b, and 4c, the green regions are assigned a value of 1, while the values of all
other regions are set to 0. Fig. 4d is a composite of 4a, 4b, and 4c according to Eq. 2.

x ∈ R(b×h×w)×f×c, where b denotes the batch size, h and w are the height and width of the feature
map, f stands for the frame number and c is the feature dimension. The vanilla motion modeling
module then performs a temporal global self-attention across frames. However, the global attention
making senses in spatial dimension to capture long-range dependencies, may not make sense in
temporal dimension. It is common sense that the closer the two frames are, the more similar they
become. The global attention without such prior introduces more noise, resulting in jitter between
adjacent frames.

To handle this problem, the Interpolation-based Motion Modeling Module is proposed which is
implemented with a learnable aggregation kernel shown in Fig. 4d. This kernel consists of three parts,
i.e., M1, M2 and M3 as shown in Fig. 4(a-c):

MI = αM1 + (1− 2α)M2 +M3, (2)

where M1,M2,M3 ∈ Rt×t are all binary mask and α is a learnable scalar. When α → 0, the
Interpolation-based Motion Modeling Module behaves more like an identity process. When α → 1,
it exhibits the behaviour of an interpolation process.

And then, MI multiplies the features F ∈ R(b×h×w)×t×d from the vanilla motion modeling module
to obtain the refined feature map F′ ∈ R(b×h×w)×t×d as shown in Eq. 3 and in Fig. 3 a⃝.

F′ = MI × F. (3)

Each of the other frames is enhanced by its preceding and following frames. This approach fully
leverages the prior knowledge in the temporal domain. The learnable α, has minimal modifications to
the network structure to keep the latent space of Stable Diffusion, enabling the network to determine
the optimal weights between itself and its neighbours.

2.5 SPATIAL REFERENCE MODULE

Spatial references are indispensable in video outpainting to complete individual frames. The spatial
features are mainly drawn from the CLIP (Radford et al., 2021) and VAE (Kingma & Welling, 2013)
as shown in Fig. 3 (II), as established in most diffusion-based methods (Fan et al., 2023; Wang et al.,
2024a; Ye et al., 2023; Li et al., 2024; Wang et al., 2024b; Shi et al., 2023; Xiao et al., 2023).

CLIP features. The CLIP proposed by OpenAI consists of an image encoder and a text encoder,
where the image encoder is a ViT (Dosovitskiy et al., 2020). The OpenAI CLIP weights are trained
on a wide variety of image and text pairs which are abundantly available on the internet. Under the
supervision of the text, the image feature from OpenAI CLIP contains the semantics of each frame
and thus is adopted in this work. In addition, the Open CLIP (Ilharco et al., 2021) is an open source
implementation of CLIP (Radford et al., 2021) trained on LAION-2B (Schuhmann et al., 2022). It
achieves better performance on the ImageNet benchmark and is adopted in modern image generation
methods, such as IP-Adapter (Ye et al., 2023). Inspired by the design of dual text encoders design in
the SDXL (Podell et al., 2023), the features of these two image encoders are both kept and feed into
the 3D-UNet using the decoupled cross-attention mechanism (Ye et al., 2023) shown as follows.

Z′ = softmax(
QKT

o√
d

)Vo + softmax(
QKT

c√
d

)Vc, (4)

where Q = ZWq,Ko = foW
o
k,Vo = foW

o
v,Kc = fcW

c
k,Vc = fcW

c
v. fo represents the

features of video frames extracted via the OpenCLIP image encoder, whereas fc denotes the video
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𝑡 𝑡 + 2 𝑡 + 4 𝑡 + 6 𝑡 + 8 𝑡 𝑡 + 2 𝑡 + 4 𝑡 + 6 𝑡 + 8

Figure 5: Qualitative results with mask ratio 50%. HERO demonstrates a robust ability to broaden
diverse videos, encompassing landscapes, human figures (full-body, half-body, head-shot), swiftly
moving vehicles, complex backgrounds, telefocus, nearfocus videos and even cartoon videos. Con-
tents outside the yellow lines are outpainted. Central outpainting and horizontal Outpainting results
can be seen in Fig. 9 and 10. Best viewed on screen with zoom.

features extracted from the OpenAI CLIP encoder. Z is the feature map from 3D-UNet and Wq,
Wk, Wv are all learnable parameters.

VAE features. CLIP features are too coarse and do not contain texture information, which is not
enough to describe the spatial information. The solution to remedy this problem is to utilize the
features from the VAE model. The VAE model compresses images from pixel space into latent
space and then restores them into pixel space with minimal loss. Thus, the VAE features contain
rich texture information and can be used in outpainting tasks. Inspired by the image inpainting
methods (Rombach et al., 2022; Razzhigaev et al., 2023), Features from the VAE are concatenated
with the noise and a mask indicating the known and unknown areas, forming a new 9-channel input,
which is then fed into the 3D-UNet.

3 EXPERIMENTS

3.1 DATASETS, BASELINES AND EVALUATION METRICS

Datasets. To validate the effectiveness of HERO, evaluations are conducted on SSV2 (Goyal
et al., 2017), DAVIS (Caelles et al., 2019), YouTube-VOS (Xu et al., 2018). HERO is first trained
and validated on the training and validation split of SSV2 respectively to strictly align with the
MAGVIT (Yu et al., 2023). The training split of SSV2 contains 169K videos while the validation
split contains about 24k. The SoTA results on DAVIS and YouTube-VOS are achieved by M3DDM
(Fan et al., 2023) which is trained on an in-house 5M E-Commerce video data and evaluated on
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Table 1: Video outpainting performance meaured by
FVD on SSV2 dataset. A lower FVD score indicates
better performance.

Task OPC↓ OPV↓ OPH↓ AVG↓
MAGVIT 21.1 16.8 17.0 18.3
M3DDM 19.2 14.5 14.3 16.0
HERO 18.9 9.4 9.1 12.4

Table 2: Comparison with average adjacent
frame similarity (AAFS) on DAVIS. The higher
the value, the more stable the frames.

Method M3DDM MOTIA HERO

AAFS↑ 0.8650 0.8570 0.8768

DAVIS and YouTube-VOS. To align with M3DDM, we collect an equivalent magnitude of video
data from the internet, train HERO on it and then evaluate HERO on the same data of DAVIS and
YouTube-VOS with M3DDM (Fan et al., 2023).

Baselines. Our baselines include the following methods: the optical strategy based Dehan (Dehan
et al., 2022), the masked-based MAGVIT (Yu et al., 2023), the diffusion-based SDM (Fan et al.,
2023), M3DDM (Fan et al., 2023) and MOTIA (Wang et al., 2024a). Please refer to Sec. A for
details of these methods.

Evaluation Metrics. For quantitative alignment with previous works, Mean Squared Error (MSE),
Peak Signal To Noise Ratio (PSNR), structural similarity index measure (SSIM) (Wang et al.,
2004), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) and Fréchet Video
Distance (FVD) (Unterthiner et al., 2018) are adopted. The evaluation protocol is tightly aligned with
M3DDM (Fan et al., 2023) and MAGVIT (Yu et al., 2023).

Implementation details. The weights of 3D-UNet and 3D-RefNet are initialized from Stable
Diffusion 1.5. The weights of the vanilla motion modeling module is initialized from (Guo et al.,
2024). The optical flow encoder is randomly initialized. The optimizer is AdamW (Loshchilov &
Hutter, 2019), and the learning rate is constant at 1e−4 and the weight decay at 1e−2. The frame
number is 16 across all experiments. The experiments are conducted on 16 NVIDIA A100 GPUs
(80GB) with batch size 16 and gradient accumulation 16. HERO is trained for 9k steps on SSV2 and
13k steps for the self-collected video dataset (approximately 3 days). In the training phase, Central
Outpainting (OPC), Vertical Outpainting (OPV), and Horizontal Outpainting (OPH) are trained
using a multi-task approach. The video resolution is set to 256× 256 on DAVIS and Youtube-VOS,
128× 128 on SSV2 to maintain consistency with previous work. It takes 13 seconds to generate a
16-frame video with a resolution of 256× 256 during the sampling stage.

3.2 QUALITATIVE RESULTS.

Fig. 5 demonstrates that HERO can expand various types of videos. In each video, only the middle
50% of the content is real content, while the content on the left and right sides is created by HERO.

3.3 COMPARISONS

Quantitative comparison. The quantitative comparison is first conducted on SSV2. As shown in
Tab. 1, HERO achieves the best performance on all kinds of video outpainting tasks. When compared
with MAGVIT, HERO demonstrates a decrease in average FVD by 5.9, utilizing an identical training
set of SSV2. Moreover, in comparison with M3DDM, HERO also shows a drop in average FVD by
3.6, while training on merely 3.3% of M3DDM’s training set amounting to 16.8K versus 500M.

Substantial research efforts such as M3DDM and MOTIA try to train video outpainting on large-scale
datasets to boost performance. The HERO is also trained on 500M self-collected internet videos to
deliver better performance and then is compared with them quantitatively on DAVIS and Youtube-
VOS. As shown in Tab. 3, HERO achieves the best results on all five metrics for both datasets. These
comparative analyses reveal that the proposed HERO architecture demonstrates clear superiority.

Qualitative comparison. As shown in Figure 6, the qualitative comparison primarily involves the
latest algorithm M3DDM which is the most effective in current open source comparable models.

Video stability comparison. To better compare the stability of the video, the average adjacent
frame similarity (AAFS) is used to describe temporal stability quantitatively. A higher AAFS value
indicates greater video stability. The similarity is calculated using cosine similarity based on CLIP-V
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Table 3: Video outpainting (OPV) performance on DAVIS and YouTube-VOS datasets. ↑ means
“better when higher", and ↓ indicates “better when lower".

Method DAVIS dataset YouTube-VOS dataset

Metric PSNR↑ SSIM↑ MSE↓ LPIPS↓ FVD↓ PSNR↑ SSIM↑ MSE↓ LPIPS↓ FVD↓
Dehan 17.96 0.6272 0.0260 0.2331 363.1 18.25 0.7195 0.02312 0.2278 149.7
SDM 20.02 0.7078 0.0153 0.2165 334.6 19.91 0.7277 0.01687 0.2001 94.81
M3DDM 20.26 0.7082 0.0149 0.2026 300.0 20.20 0.7312 0.01636 0.1854 66.62
MOTIA 20.36 0.7578 — 0.1595 286.3 20.25 0.7636 — 0.1727 58.99
HERO 20.82 0.7604 0.0143 0.1470 216.2 20.45 0.7699 0.01610 0.1608 56.87

𝑡 𝑡 + 2 𝑡 + 4 𝑡 + 6 𝑡 + 8 𝑡 + 10 𝑡 + 12 𝑡 + 14
Figure 6: Qualitative comparisons results. Contents outside the yellow lines are outpainted. These
interesting video files can be found in supplementary materials. Best viewed on screen with zoom.

features. These experiments are conducted on the DAVIS dataset, and the results are as Tab. 2. HERO
has a relative improvement of 1.3% and 2.3% compared to M3DDM and MOTIA, respectively.

3.4 ABLATION STUDY

3.4.1 EFFECTIVE ON INTERPOLATED-BASED MOTION MODELING MODULE

Figure 7: α across 3D-UNet layers.

Ablation studies are conducted on SSV2 test set with only 3k
steps to reduce training time. As demonstrated in Tab. 4, the
removal of the Interpolated-based Motion Modeling Module
from 3D-RefNet results in a deterioration across all five metrics.
Subsequently, its further removal from 3D-UNet aggravates
this degradation, leading to further worsening of all five met-
rics. These findings underscore the indispensable role of the
Interpolated-based Motion Modeling Module in HERO. In ad-
dition, the α values in each layer of 3D-UNet are illustrated.
A clear trend can be seen from Fig. 7: α approaches to be
close to 0 at shallow layers and takes on a value of about 0.3 at
deeper layers. As discussed in Sec. 2.4, this phenomenon shows
that features of adjacent frames tend to fuse at deep layers and
remain independent at shallow layers.
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Table 4: Ablation on the Interpolation-based Motion Modeling Module.

3D-UNet 3D-RefNet SSIM↑ PSNR↑ MSE↓ LPIPS↓ FVD↓
✓ ✓ 0.7908 19.83 0.0142 0.1709 10.03
✓ × 0.7876 19.71 0.0150 0.1767 10.92
× × 0.7853 19.59 0.0160 0.1831 11.01

Table 5: Ablation on Temporal Reference Module.

Method SSIM↑ PSNR↑ MSE↓ LPIPS↓ FVD↓
Naïve Baseline 0.7853 19.59 0.0160 0.1831 11.01

+ OFE w/ t 0.7935 20.08 0.0154 0.1792 10.64
+ OFE w/o t 0.7983 20.13 0.0141 0.1718 10.37

w/o 3D-RefNet 0.7715 18.43 0.0171 0.1976 14.52

3.4.2 EFFECTIVE ON TEMPORAL REFERENCE MODULE

Figure 8: Distribution of complete
spatial-temporal reference features.

The complete spatial-temporal reference features are illustrated
in Fig. 8. It is clear that these reference features fully occupy
the feature plane, as the cyan and blue regions are populated.

To ablate the Temporal Reference Module, a Naïve Baseline
is first set up, and all ablation experiments are compared with
it. The Interpolation-based Motion Modeling Module and the
optical flow encoder are removed in the Naïve Baseline, and
its results are shown in the first block in Tab. 5. It can be seen
that when adding the optical flow encoder, the performance
is improved, demonstrating the effectiveness of the optical
flow encoder. “+ OFE encoder w/ t” synchronizes the OFE
encoder’s and 3D-UNet’s timesteps during training, requiring
iterative feature extraction for each timestep at inference. “+
OFE encoder w/o t” sets the OFE encoder’s timestep to 0 during
training for a single feature extraction at inference which is
more effecient. Results in the second block shows that without
timesteps, the optical flow encoder performs better and greatly

reduces inference time with a single feature extraction. If the 3D-RefNet is removed, the FVD is
increased from 11.01 to 14.52, which illustrates its indispensability.

4 RELATED WORK

4.1 DIFFUSION BASED VIDEO GENERATION

The structural principles of text-to-image models have had a significant influence on the development
of text-to-video models following the successes of diffusion models in text-to-image tasks. Numerous
studies (Esser et al., 2023; Ho et al., 2022; Hong et al., 2023; Khachatryan et al., 2023; Ma et al.,
2024; Qi et al., 2023; Singer et al., 2023; Wu et al., 2023; Yang et al., 2023; Blattmann et al., 2023)
have been conducted to augment text-to-image models with inter-frame attention mechanisms, aiming
to facilitate the generation of videos. Some works achieve video generation by inserting temporal
modules into text-to-image models. Video LDM (Blattmann et al., 2023) proposes multi-stage
training to retain the prior knowledge of text-to-image models, training videos only on the temporal
modules. AnimateDiff (Guo et al., 2024) uses a text-to-image model as the base generator, with an
added motion modeling module to learn motion information. However, the motion modeling module
is still a vanilla version and faces challenges in achieving stable video generation.

4.2 VIDEO OUTPAINTING

Currently, video outpainting technology is still not mature. Dehan (Dehan et al., 2022) proposed
a background estimation technique that combines video object segmentation and video inpainting

9
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methods, while temporal conherence is achieved through the integration of optical flow. However,
in scenarios featuring complex camera movements and the exit of foreground objects from the
frame, their performance frequently suffers. MAGVIT (Yu et al., 2023) introduced a versatile mask-
based model designed for video generation that is also applicable to video outpainting tasks. It
employs a 3D-VectorQuantized (3DVQ) tokenizer for video quantization and utilizes a transformer
for conditional masked token modeling across multiple tasks. MAGVIT represents an inspirational
effort, yet there is considerable room for improvement in its effectiveness. M3DDM (Fan et al., 2023)
has designed an architecture based on the diffusion model, which is trained on massive datasets and
achieves quite impressive results. However, there is a considerable proportion of bad cases with
this approach, as shown in Figure 2b. The primary cause behind these issues is the insufficiency of
reference information.

5 SOCIETAL IMPACTS, LIMITATIONS AND CONCLUSION

Societal Impacts. The proposed HERO is inherently harmless like many other AI technologies.
Nevertheless, there exists the potential for its misuse, such as incorporation into applications with
copyright issues, which could have negative effects on society. Hence, we advocate for the thoughtful
and ethical application of HERO.

Limitations. (1) HERO has not specifically studied the long videos outpainting. When generating
long videos, the coarse-to-fine generation strategy from M3DDM (Fan et al., 2023) or the recursive
generation strategy from Hallo (Xu et al., 2024) can be employed. (2) The 3D-RefNet and the optical
flow will take up more GPU memory. However, the two modules do not significantly increase the
inference time as they do not require recurrent denoising and only need a single forward pass. (3)
The method to integrate optical flow with OFE still has significant potential for enhancement.

Conclusion. This paper proposed a pioneering approach effectively harnessing the temporal modeling
for diffusion-based outpainting (HERO) to handle the generated video quality problem. The Temporal
Reference Module provides videl-level and motion features to assist the video generation, effectively
addressing the limitations of VAE and CLIP. The Interpolation-based Motion Modeling Module
utilizes adjacent frame relations to stabilize the frames with minimal modification to the network
structure. Qualitative and quantitative experiments validate the superiority and robustness of HERO.
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Figure 9: Qualitative results for OPC with a mask ratio of 50%. Contents outside the yellow lines are
outpainted. Best viewed on screen with zoom.

A THE DETAILS OF BASELINES

The baseline includes: 1) Dehan (Dehan et al., 2022) develops a framework dedicated to the task
of video outpainting. Their strategy involve differentiating between foreground and background
elements, then estimating flow and background separately. These components are then integrated to
produce a comprehensive output. 2) MAGVIT deployed mask modeling technology for the training of
a transformer aimed at generating videos within the 3D Vector-Quantized (Esser et al., 2021) (van den
Oord et al., 2017) space. 3) SDM model (Fan et al., 2023) utilizes the initial and terminal frames of
a sequence as conditional inputs, which are integrated with contextual information at the inception
layer of the network. This model has undergone training on video datasets, specifically WebVid (Bain
et al., 2021) and an e-commerce dataset (Fan et al., 2023). 4) M3DDM (Fan et al., 2023) represents a
pioneering approach to video outpainting, incorporating a masking strategy that enables the utilization
of the original source video as masked conditions. Furthermore, it leverages global-frame features
within cross-attention mechanisms to facilitate the accomplishment of comprehensive and extended
information dissemination. The model underwent training utilizing two datasets containing a vast
array of video data, specifically WebVid and e-commerce (Fan et al., 2023), and was fine-tuned on the
corresponding datasets during evaluation. SDM can be considered a simplified version of M3DDM.
5) MOTIA (Wang et al., 2024a) employs spatial-aware insertion and noise travel to better harness
the prior knowledge of the diffusion model as well as the video patterns in source videos.

B ADDITIONAL RESULTS

We show the results of Central Outpainting (OPC) and Horizontal Outpainting (OPH) with mask
ratio 50% in Figure 9 and 10. For OPC, the content on top,bottom,left and right sides of the video is
created by HERO. For OPH, the top and bottom parts of the video are created by HERO.

C PROPORTION OF BAD CASES OF BASELINES

We manually viewed the output of M3DDM (Fan et al., 2023) on DAVIS and YouTube-VOS one by
one, and count the ratio of generated video blur respectively and show them in Tab. 6
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Figure 10: Qualitative results for OPH with a mask ratio of 50%. Contents outside the yellow lines
are outpainted. Best viewed on screen with zoom.

Table 6: The proportion of bad cases with blurred details in M3DDM.

Dataset mask ratio = 0.666 mask ratio = 0.25

DAVIS dataset 0.38 0.12
YouTube-VOS dataset 0.24 0.06

D ABLATION OF CLIP ENCODERS

The CLIP encoder is also ablated in Tab. 7. It shows that both CLIP encoders are useful to HERO.

Table 7: Ablation on CLIP encoders.

Method SSIM↑ PSNR↑ MSE↓ LPIPS↓ FVD↓
only Open CLIP Encoder 0.7840 19.52 0.0159 0.1853 11.99
only OpenAI CLIP Encoder 0.7836 19.47 0.0163 0.1849 12.01

Both CLIPs 0.7853 19.59 0.0160 0.1831 11.01
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