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A APPENDIX: ADDITIONAL PROOF DETAILS

In this section, we (1) provide formal proof for CMAB’s constant computation updates property,
(2) include practical considerations to avoid numerical issues in the computation, (3) show that
CMANPs uphold context and target invariance properties, and (4) include complexity analysis for
CMANP-AND.

A.1 CMAB’S CONSTANT COMPUTATION UPDATES PROOF

Recall, CMAB works as follows:

CMAB(LI ,D) = SA(CA(LI , SA(CA(LB ,D )) ))

where SA represents SelfAttention and CA represents CrossAttention. The two cross-attentions
have a linear complexity of O(N |LB |) and a constant complexity O(|LB ||LI |), respectively where
N = |D|. The self-attentions have constant complexities of O(|LB |2) and O(|LI |2), respectively.
As such, the total computation required to compute the output of the block is O(N |LB |+ |LB |2 +
|LB ||LI |+ |LI |2) where |LB | and |LI | are hyperparameter constants which bottleneck the amount
of information which can be encoded.

Importantly, since |LB | and |LI | are constants (hyperparameters), CMAB’s complexity is constant
except for the contributing complexity part of the first attention block: CrossAttention(LB ,D),
which has a complexity of O(N |LB |). To achieve constant computation updates, it suffices that
the updated output of this cross-attention can be updated in constant computation per datapoint.
Simplified, CrossAttention(LB ,D) is computed as follows:

emb = CrossAttention(LB ,D) = softmax(QKT )V

where K and V are key, value matrices respectively that represent the embeddings of the context
dataset DC and Q is the query matrix representing the embeddings of the block-wise latent vectors
LB . When an update withDU new datapoints occurs, |DU | rows are added to the key, value matrices.
However, the query matrix is constant due to LB being a fixed set of latent vectors whose values are
learned.

Without loss of generality, for simplicity, we consider the j− th output vector of the cross-attention
(embj). Let si = Qj,:(Ki,:)

T and vi = Vi,:, then we have the following:

embj =

N∑
i=1

exp(si)

C
vi

where C =
∑N

i=1 exp(si). Performing an update with a set of new inputs DU , results in adding
|DU | rows to the K,V matrices:

emb′j =

N+|DU |∑
i=1

exp(si)

C ′ vi

where C ′ =
∑N+|DU |

i=1 exp(si) = C +
∑N+|DU |

i=N+1 exp(si). As such, the updated embedding emb′j
can be computed via a rolling average:

emb′j =
C

C ′ × embj +

N+|DU |∑
i=N+1

esi

C ′ vi

Computing emb′j and C ′ via this rolling average only requires O(|DU |) operations when given C
and emb as required. In practice, however, this is not stable. The computation can quickly run into
numerical issues such as overflow problems.

Practical Implementation: In practice, instead of computing and storing C and C ′, we instead
compute and store log(C) and log(C ′).
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The update is instead computed as follows: log(C ′) = log(C) + softplus(T ) where T =

log(
∑N+|DU |

i=N+1 exp(si − log(C))). T can be computed efficiently and accurately using the log-
sum-exp trick in O(|DU |). This results in an update as follows:

emb′j = exp(log(C)− log(C ′))× embj +

N+|DU |∑
i=N+1

exp(si − log(C ′))vi

This method of implementation avoids the numerical issues that will occur while resulting in com-
puting the same emb′. We detail how to derive the practical implementation below:

Practical Implementation (Derivation):

C =

N∑
i=1

exp(si) C ′ =

N+|DU |∑
i=1

exp(si)

log(C ′)− log(C) = log(

N+|DU |∑
i=1

exp(si))− log(

N∑
i=1

exp(si))

log(C ′) = log(C) + log(

∑N+|DU |
i=1 exp(si)∑N

i=1 exp(si)
)

log(C ′) = log(C) + log(1 +

∑N+|DU |
i=N+1 exp(si)∑N

i=1 exp(si)
)

log(C ′) = log(C) + log(1 +

∑N+|DU |
i=N+1 exp(si)

exp(log(C))
)

log(C ′) = log(C) + log(1 +

N+|DU |∑
i=N+1

exp(si − log(C)))

Let T = log(
∑N+|DU |

i=N+1 exp(si − log(C))). Note that T can be computed efficiently using the log-
sum-exp trick in O(|DU |). Also, recall the softplus function is defined as follows: softplus(k) =
log(1 + exp(k)). As such, we have the following:

log(C ′) = log(C) + log(1 + exp(T ))

= log(C) + softplus(T )

Recall:

emb′j =
C

C ′ × embj +

N+|DU |∑
i=N+1

exp(si)

C ′ vi

Re-formulating it using log(C) and log(C ′) instead of C and C ′ we have the following update:

emb′j = exp(log(C)− log(C ′))× embj +

N+|DU |∑
i=N+1

exp(si − log(C ′))vi

which only requiresO(|DU |) computation (i.e., constant computation per datapoint) while avoiding
numerical issues.

A.2 ADDITIONAL PROPERTIES

In this section, we show that CMANPs uphold the context and target invariance properties.
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Property: Context Invariance. A Neural Process pθ is context invariant if for any choice of per-
mutation function π, context datapoints {(xi, yi)}Ni=1, and target datapoints xN+1:N+M ,

pθ(yN+1:N+M |xN+1:N+M , x1:N , y1:N ) = pθ(yN+1:N+M |xN+1:N+M , xπ(1):π(N), yπ(1):π(N))

Proof Outline: Since CMANPs retrieve information from a compressed encoding of the context
dataset computed by CMAB (Constant Memory Attention Block). It suffices to show that CMABs
compute their output while being order invariant in their input (i.e., context dataset in CMANPs)
(D).

Recall CMAB’s work as follows:

CMAB(LI ,D) = SA(CA(LI ,SA(CA(LB ,D))))

where LI is a set of vectors outputted by prior blocks, LB is a set of vectors whose values are learned
during training, and D are the set of inputs in which we wish to be order invariant in.

The first cross-attention to be computed is CA(LB ,D). A nice feature of cross-attention is that its
order-invariant in the keys and values; in this case, these are embeddings of D. In other words, the
output of CA(LB ,D) is order invariant in the input data D.

Since the remaining self-attention and cross-attention blocks take as input: LI and the output of
CA(LB ,D), both of which are order invariant inD, therefore the output of CMAB is order invariant
in D.

As such, CMANPs are also context invariant as required.

Property: Target Equivariance. A model pθ is target equivariant if for any choice of permutation
function π, context datapoints {(xi, yi)}Ni=1, and target datapoints xN+1:N+M ,

pθ(yN+1:N+M |xN+1:N+M , x1:N , y1:N ) = pθ(yπ(N+1):π(N+M)|xπ(N+1):π(N+M), x1:N , y1:N )

Proof Outline: The vanilla variant of CMANPs makes predictions similar to that of LBANPs (Feng
et al., 2023) by retrieving information from a set of latent vectors via cross-attention and uses an
MLP (Predictor). The architecture design of LBANPs ensure that the result is equivalent to mak-
ing the predictions independently. As such, CMANPs preserve target equivariance the same way
LBANPs do.

However, for the Autoregressive Not-Diagonal variant (CMANP-AND), the target equivariance is
not held as it depends on the order in which the datapoints are processed. This is in common with
that of prior methods by Nguyen & Grover (2022) and Bruinsma et al. (2023).

A.3 COMPLEXITY ANALYSIS FOR CMANP-AND

For a batch of M datapoints and a prediction block size of bQ (hyperparameter constant), there
are ⌈MbQ ⌉ batches of datapoints whose predictions are made autoregressively. Each batch incurs a
constant complexity of O(bQ)2 due to predicting a full covariance matrix. As such for a batch of
M target datapoints, CMANP-AND requires a sub-quadratic total computation of O(⌈MbQ ⌉b

2
Q) =

O(MbQ) with a sequential computation length of O(MbQ ). Crucially, CMANP-AND only requires
constant memory in |DC | and linear memory in M , making it significantly more efficient than prior
works which required at least quadratic memory.

B APPENDIX: ADDITIONAL EXPERIMENTS AND ANALYSES

In this section, we (1) showcase the versatility of CMABs by applying them to Temporal Point
Processes, (2) show results for CMANPs on Contextual Bandits, a setting where the amount of data
increases over time, (3) include a memory complexity table which includes all baselines, and (4)
analyse the time cost and performance relative to several hyperparameters.
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Mooc Reddit
RMSE NLL ACC RMSE NLL ACC

THP 0.202 ± 0.017 0.267 ± 0.164 0.336 ± 0.007 0.238 ± 0.028 0.268 ± 0.098 0.610 ± 0.002
CMHP 0.168 ± 0.011 -0.040 ± 0.620 0.237 ± 0.024 0.262 ± 0.037 0.528 ± 0.209 0.609 ± 0.003

Table 4: Temporal Point Processes Experiments.

B.1 APPLYING CMABS TO TEMPORAL POINT PROCESSES (TPPS)

In this section, we highlight the effectiveness of our proposed Constant Memory Attention Block by
applying it to settings beyond that of Neural Processes. Specifically, we apply CMABs to Temporal
Point Processes (TPPs). In brief, Temporal Point Processes are stochastic processes composed of
a time series of discrete events. Recent works have proposed to model this via a neural network.
Notably, models such as THP (Zuo et al., 2020) encode the history of past events to predict the
next event, i.e., modelling the predictive distribution of the next event pθ(τl+1|τ≤l) where θ are
the parameters of the model, τ represents an event, and l is the number of events that have passed.
Typically, an event comprises a discrete temporal (time) stamp and a mark (categorical class).

B.1.1 CONSTANT MEMORY HAWKES PROCESSES (CMHPS)

Building on CMABs, we introduce the Constant Memory Hawkes Process (CMHPs) (Figure 5),
a model which replaced the transformer layers in Transformer Hawkes Process (THP) (Zuo et al.,
2020) with Constant Memory Attention Blocks. However, unlike THPs which summarise the infor-
mation for prediction in a single vector, CMHPs summarise it into a set of latent vectors. As such, a
flattening operation is added at the end of the model. Following prior work (Bae et al., 2023; Shchur
et al., 2020), we use a mixture of log-normal distribution as the decoder for both THP and CMHP.

Figure 5: Constant Memory Hawkes Processes

B.1.2 CMHPS: EXPERIMENTS

In this experiment, we compare CMHPs against THPs on standard TPP datasets: Mooc and Reddit.

Mooc Dataset. comprises of 7, 047 sequences. Each sequence contains the action times of an
individual user of an online Mooc course with 98 categories for the marks.

Reddit Dataset. comprises of 10, 000 sequences. Each sequence contains the action times from the
most active users with marks being one of the 984 the subreddit categories of each sequence.

The results (Table 4) suggest that replacing the transformer layer with CMAB (Constant Memory
Attention Block) results in a small drop in performance. Crucially, unlike THP, CMHP has the
ability to efficiently update the model with new data as it arrives over time which is typical in time
series data such as in Temporal Point Processes. CMHP only pays constant computation to update
the model unlike the quadratic computation required by THP.

B.2 ADDITIONAL CMANPS EXPERIMENTS: CONTEXTUAL BANDITS

In the Contextual Bandit setting introduced by Riquelme et al. (2018), a unit circle is divided into 5
sections which contain 1 low reward section and 4 high reward sections δ defines the size of the low
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Method δ = 0.7 δ = 0.9 δ = 0.95 δ = 0.99 δ = 0.995
Uniform 100.00 ± 1.18 100.00 ± 3.03 100.00 ± 4.16 100.00 ± 7.52 100.00 ± 8.11

CNP 4.08 ± 0.29 8.14 ± 0.33 8.01 ± 0.40 26.78 ± 0.85 38.25 ± 1.01
CANP 8.08 ± 9.93 11.69 ± 11.96 24.49 ± 13.25 47.33 ± 20.49 49.59 ± 17.87

NP 1.56 ± 0.13 2.96 ± 0.28 4.24 ± 0.22 18.00 ± 0.42 25.53 ± 0.18
ANP 1.62 ± 0.16 4.05 ± 0.31 5.39 ± 0.50 19.57 ± 0.67 27.65 ± 0.95
BNP 62.51 ± 1.07 57.49 ± 2.13 58.22 ± 2.27 58.91 ± 3.77 62.50 ± 4.85

BANP 4.23 ± 16.58 12.42 ± 29.58 31.10 ± 36.10 52.59 ± 18.11 49.55 ± 14.52
TNP-D 1.18 ± 0.94 1.70 ± 0.41 2.55 ± 0.43 3.57 ± 1.22 4.68 ± 1.09
LBANP 1.11 ± 0.36 1.75 ± 0.22 1.65 ± 0.23 6.13 ± 0.44 8.76 ± 0.15

CMANP (Ours) 0.93 ± 0.12 1.56 ± 0.10 1.87 ± 0.32 9.04 ± 0.42 13.02 ± 0.03

Table 5: Contextual Multi-Armed Bandit Experiments with varying δ. Models are evaluated accord-
ing to cumulative regret (lower is better). Each model is run 50 times for each value of δ.

reward section while the 4 high reward sections have equal sizes. In each round, the agent has to
select 1 of 5 arms that each represent one of the regions. For context during the selection, the agent
is given a 2-D coordinate X and the actions it selected and rewards it received in previous rounds.

If ||X|| < δ, then the agent is within the low reward section. If the agent pulls arm 1, then the
agent receives a reward of r ∼ N (1.2, 0.012). Otherwise, if the agent pulls a different arm, then it
receives a reward r ∼ N (1.0, 0.012). Consequently, if ||X|| ≥ δ, then the agent is within one of the
four high-reward sections. If the agent is within a high reward region and selects the corresponding
arm to the region, then the agent receives a large reward of N ∼ N (50.0, 0.012). Alternatively,
pulling arm 1 will reward the agent with a small reward of r ∼ N (1.2, 0.012). Pulling any of the
other 3 arms rewards the agent with an even smaller reward of r ∼ N (1.0, 0.012).

During each training iteration, B = 8 problems are sampled. Each problem is defined by {δi}Bi=1
which are sampled according to a uniform distribution δ ∼ U(0, 1). N = 512 points are sampled
as context datapoints and M = 50 points are sampled for evaluation. Each datapoint comprises of a
tuple (X, r) where X is the coordinate and r is the reward values for the 5 arms. The objective of the
model during training is to predict the reward values for the 5 arms given the coordinates (context
datapoints).

During the evaluation, the model is run for 2000 steps. At each step, the agent selects the arm
which maximizes its UCB (Upper-Confidence Bound). After which, the agent receives the reward
value corresponding to the arm. The performance of the agent is measured by cumulative regret.
For comparison, we evaluate the modes with varying δ values and report the mean and standard
deviation for 50 seeds.

Results. In Table 5, we compare CMANPs with other NP baselines, including the recent state-
of-the-art methods TNP-D, EQTNP, and LBANP. We see that CMANP achieves competitive per-
formance with state-of-the-art for δ ∈ {0.7, 0.9, 0.95}. However, the performance degrades as δ
reaches extreme values close to the limit such as 0.99 and 0.995 – settings that are at the edge of the
training distribution.

B.3 ADDITIONAL ANALYSES

Memory Complexity: In Table 6, we include a comparison of CMANPs with all NP baselines,
showing that CMANPs are amongst the best in terms of memory efficiency when compared to
prior NP methods. Notably, the methods with a similar memory complexity to CMANPs perform
significantly worse in terms of performance across the various experiments (Tables 2 and 3)). As
such, CMANPs provide the best trade-off in terms of memory and performance.

Time Cost and Performance Scatterplot: In Figure 6, we evaluate the empirical time cost of
CMANP-AND with varying number of context datapoints (N = |DC |), number of target datapoints
(M ), and block size (bQ). The number of context datapoints and the number of target datapoints are
shown as labels in the scatterplot. The colour of the points on the scatterplot represents its respective
block size. Depending on the amount of available resources (e.g., time), the value of the block size
can be chosen equivalently.
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Conditioning Querying Updating
In Terms of |DC | |DC | M |DC | |DU |

CNP
CANP

NP
ANP
BNP

BANP
TNP-D N/A N/A N/A
LBANP

CMANP (Ours)

TNP-ND N/A N/A N/A
LBANP-ND

CMANP-AND (Ours)

Table 6: Comparison of Memory Complexities of Neural Processes with respect to the number
of context datapoints |DC |, number of target datapoints in a batch M , and the number of new
datapoints in an update |DU |. (Green) Checkmarks represent requiring constant memory, (Orange)
half checkmarks represent requiring linear memory, and (Red) Xs represent requiring quadratic or
more memory. A table with all baselines are included in the Appendix.

Figure 6: Scatterplot comparing the empirical time cost of CMANP-AND with respect to the block
size (bQ), number of context datapoints (N ), and number of target datapoints (M ).
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Figure 7: Additional Analyses Graphs

(a) y = sin(x) + sin(10/3) ∗ x (b) y = e−x ∗ sin(π ∗ x)/2 (c) y = −x ∗ sin(3 ∗ x)

Figure 8: CMANPs 1-D Regression Visualizations

Generalisation Ability: In Figure 7, we evaluated CMANP-AND’s potential to generalize to set-
tings with significantly more context datapoints than originally trained on. During training, the
model was trained on tasks with a maximum of 800 context datapoints. In contrast, during eval-
uation, we conditioned on up to 2000 context datapoints and evaluated on 800 target datapoints.
Empirically, we found that the model’s performance grows consistently as the number of context
datapoints increases. However, the performance slows down at large number of contexts. We hy-
pothesize that the cause of the saturation is due to two main factors: (1) the information gained from
new context datapoints is dependent on the size of the current context dataset. For example, adding
400 new datapoints to a context dataset of size 400 results in 100% more data. Alternatively, adding
400 new datapoints to a context dataset of size 1600 results in 25% more data. As such, it is expected
to see such saturation with a linear x-axis scaling. (2) in this case, CelebA (64 x 64) comprising of
only 4096 pixels in total. 2000 comprises of a substantial amount of the data, i.e., approximately
half. As such, saturation is expected as the amount of information gained by additional datapoints
is minimal.

Effect of Block Size (bQ) on Empirical Time Cost: In Figure 7, we evaluated the time required
for CMANP-AND with respect to the block size (bQ). The results are as expected, showing that the
time required during deployment is lower as the block size increases. In the main paper, we showed
that lower block sizes improve the model’s performance. In conjunction, these plots show that there
is a trade-off between the time cost and performance. These results suggest that during deployment
it is advisable to select smaller block sizes if allowed for the time constraint.

Visualizations: In Figures 8 and 10, we show visualizations for the 1-D regression and Image
Completion tasks respectively. Figure 9 show out-of-distribution visualizations where the context
datapoints are only sampled from part of the distribution.

Number of Latents Comparison with LBANPs: A major factor that affects the performance in
iterative attention-based models is the size of the bottleneck (i.e., the number of latents). Feng
et al. (2023) showed that the performance of LBANPs (iterative attention based Neural Process) can
change significantly depending on |LLBANPs| (the number of latents). As such, for the sake of
fairness, in our paper, we similarly set the number of latents in CMANPs to match the same number
of latents used in LBANPs’ paper, i.e., |LI | = |LB | = |LLBANPs|.

18



Under review as a conference paper at ICLR 2024

(a) y = sin(x) + sin(10/3) ∗ x (b) y = e−x ∗ sin(π ∗ x)/2 (c) y = −x ∗ sin(3 ∗ x)

Figure 9: CMANPs 1-D Out-of-Distribution Regression Visualizations. The model is evalu-
ated between [−2.0, 2.0]. However, context datapoints are sampled from only (a) [−1.0, 2.0], (b)
[−2.0, 1.0], and (c) [−2.0,−1.0] ∪ [1.0, 2.0].

Figure 10: CMANPs Image Completion Visualizations
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Num Latents CMANPs LBANPs
8 3.49± 0.02 3.54± 0.01

16 3.60± 0.03 3.64± 0.02
32 3.73± 0.03 3.77± 0.01
64 3.79± 0.06 3.88± 0.01
128 3.92± 0.03 3.97± 0.02

Table 7: Comparison of CMANPs with LBANPs for varying number of latents on the CelebA
(32x32) image completion task. The number of latents in CMANPs matches the same number
of latents used in LBANPs’ paper, i.e., |LI | = |LB | = |LLBANPs|. We see that CMANPs are
competitive with LBANPs performing slightly worse. However, unlike LBANPs, CMANPs (1)
computes their output in constant memory, and (2) perform updates in constant computation given
new context tokens (in this case, pixels)

(a) Runtime analysis of the update process. (b) Runtime analysis of the query process.

Figure 11: Analyses Graphs comparing the runtime of CMANPs with various baselines. (a) Com-
parison of the update procedure of CMAB-based NP (CMANPs) with Perceiver’s iterative attention-
based NP model (LBANPs) and a transformer-based NP model (EQTNP). CMANP (fast) refers to
the CMAB’s efficient update mechanism. CMANP (slow) refers to the traditional update mecha-
nism. (b) Comparison of the query/inference process of CMANPs with LBANPs (Perceiver’s iter-
ative attention-based model), TNPs (Transformer-based model), and EQTNPs (Transformer-based
model with an efficient query mechanism).

For completeness, we have included in Table 7 a comparison of the performance of CMANPs and
LBANPs for varying number of latents for the CelebA (32x32) image completion task. We see
that CMANPs are competitive with LBANPs performing slightly worse. However, unlike LBANPs,
CMANPs (1) computes their output in constant memory, and (2) perform updates in constant com-
putation given new context tokens (in this case, pixels).

Empirical Time Comparison with Baselines: In Figure 11a, we compare CMANP using the
efficient update process with CMANP using the traditional update process, showing that the effi-
cient update process is initially similar in runtime to the traditional update process. However, as
the number of context datapoints increases (i.e., updates are performed) over time, the traditional
update process requires linear runtime while our proposed efficient update process still only requires
constant runtime.

In Figure 11a, we also compare the runtime of the update process of CMAB-based NP (CMANPs)
with Perceiver’s iterative attention-based NP model (LBANPs) and a transformer-based NP model.
We see that the CMAB-based model only requires a constant amount of time to perform the up-
date. In contrast, Perceiver’s iterative attention-based model’s update runtime scales linearly and
Transformer model’s update runtime scales quadratically.

In Figure 11b, we compare the querying (inference) runtime of CMANP with LBANPs (Perceiver’s
iterative attention-based model), TNPs (Transformer-based model). We see that CMANPs and
LBANPs stay constant while the transformer-based model (TNP) scales quadratically in runtime.

20



Under review as a conference paper at ICLR 2024

Figure 12: Comparison of our proposed Constant Memory Attention Block and that of LBANP’s
Attention Block (i.e., Perceiver’s iterative attention). The green blocks indicate constant complex-
ity. Naively computing the outputs, the white blocks indicate linear complexity. CMAB, however,
can compute its white cross attention block in constant memory via a rolling average. LBANP’s
Attention block (Perceiver’s iterative attention) cannot compute their white cross attention block in
constant memory.

We would like to note, however, that runtime is highly dependent on the efficiency of the imple-
mentation and the hardware. Since our work focused primarily on the memory aspect rather than
runtime, our implementation was that of a simple sequential version of CMABs and CMANPs.
However, CMANPs have an architecture which allows for several modules within CMABs to be
parallelized when performing updates for improved runtime. As such, we expect that an optimized
codebase will be able to significantly improve CMAB’s and CMANP’s runtime.

C APPENDIX: DISCUSSION

In this section, we (1) compare Perceiver’s iterative attention with CMABs, detailing why Perceiver
cannot achieve the efficiency properties of CMAB, (2) compare the likelihood computation of Au-
toregressive Not-Diagonal extension with Not-Diagonal extension, and (3) compare NPs with other
existing methods for uncertainty estimation.

C.1 COMPARISON OF ITERATIVE ATTENTION WITH CMABS

Figure 12 compares Perceiver’s iterative attention (used in LBANPs) with CMABs (used in
CMANPs). In this subsection, we detail why Perceiver’s iterative attention cannot achieve com-
puting its output in constant memory and performing updates in constant computation. Notably, the
property of constant memory is dependent on constant computation updates. Below, we detail why
Perceiver’s iterative attention does not have the constant computation updates property. Previously,
we proved that the output of CrossAttention can be updated in constant computation per datapoint
via a rolling summation given that the query vectors are constants. The efficiency gains revolve
around CMABs’ block-wise learnable latent vectors denoted as LB being a learned constant.

When stacked, CMABs work as follows: Li+1 = SA(CA(Li, L
′
B)) where L′

B = SA(CA(Li
B ,D))

and Li
B denote the block-wise latent vectors for the i-th CMAB.

Perceiver’s iterative attention block works as follows: Li+1 = SA(CA(Li,D)).

When new datapoints DU is added to the input, i.e., D ← D∪DU , the input latents (Lupdated
i ̸= Li

where i > 0) change and is thus not a constant. As such, Perceiver’s iterative attention do not allow
for (1) constant computation updates and (2) computing output in constant memory, making it more
expensive in terms of memory compared to CMABs.

For CMABs, computing Li+1 = SA(CA(Li, L
′
B)) is always constant in computation since |Li| and

|L′
B | are constant in size. Computing the updated output: Li

B = SA(CA(LB ,D∪DU )) can always
be computed in constant computation because LB is a constant.
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C.2 COMPARISON OF THE LIKELIHOOD COMPUTATION OF AUTOREGRESSIVE
NOT-DIAGONAL EXTENSION WITH NOT-DIAGONAL EXTENSION:

In brief, the Autoregressive Not-Diagonal extension is different from Not-Diagonal extension in
that the predictions are made autoregressively which allows for more flexible distributions than
prior Not-Diagonal variants. As such, it is expected that the autoregressive not-diagonal variant’s
likelihood is higher than that of the non-autoregressive baselines which only model an unimodal
gaussian distribution. Consider the following didactic example where BQ = 1 (the block prediction
size).

Since -AND feeds earlier samples back into the model for making predictions, the likelihood of the
target datapoints: {(xi, yi)}Mi=1 for our -AND model is computed as follows:

log pAND(y1:M |x1:M , Dcontext) = log

M∏
i=1

p(yi|x1:i−1, y1:i−1, xi, Dcontext)

=

M∑
i=1

log p(yi|x1:i−1, y1:i−1, xi, Dcontext)

In contrast, consider the likelihood of -ND: log pND(y1:M |x1:M , Dcontext). By Boole’s Inequality
(or Union Bound), we have that

log pND(y1:M |x1:M , Dcontext) ≤
M∑
i=1

log p(yi|x1:M , Dcontext) =

M∑
i=1

log p(yi|xi, Dcontext)

(x1:i−1, y1:i−1) provides relevant information for predicting the value of the function at xi, e.g.,
nearby pixel values in image completion. As a result, it is likely the case that:

p(yi|xi, Dcontext) ≤ p(yi|x1:i−1, y1:i−1, xi, Dcontext)

Summing from i = 1 . . .M , this means:

log pND(y1:M |x1:M , Dcontext) ≤ log pAND(y1:M |x1:M , Dcontext)

As such, it is expected that the autoregressive not-diagonal variant’s likelihood is higher than that of
the non-autoregressive baselines.

C.3 COMPARISON OF NPS WITH OTHER EXISTING METHODS FOR UNCERTAINTY
ESTIMATION

Other popular methods which can perform uncertainty estimation, include and are not limited to
MC-Dropout, Ensembles, Gaussian Processes (GPs), and Bayesian Neural Networks (BNNs).

Ensembles is an approximate Bayesian method which trains a group of neural networks on the same
set of datapoints. The predictions of this group of neural networks are used to provide uncertainty
predictions. Ensembles require retraining several models with gradient descent when new datapoints
are received which is very costly.

GPs specify a Gaussian distribution over the function values that fit the datapoints. However, GPs
scale cubically with the number of datapoints, making it only practical in settings with a small
number of datapoints.

Bayesian Neural Networks is a stochastic neural network with a prior over weights trained using
Bayesian inference. BNNs suffer their own respective challenges such as difficulty in tuning, diffi-
culty in specifying weight priors, and cold posteriors. They also often perform worse compared to
approximate bayesian methods.

22



Under review as a conference paper at ICLR 2024

D APPENDIX: IMPLEMENTATION, HYPERPARAMETER DETAILS, AND
COMPUTE

D.1 IMPLEMENTATION AND HYPERPARAMETER DETAILS

We use the implementation of the baselines from the official repository of TNPs
(https://github.com/tung-nd/TNP-pytorch) and LBANPs (https://github.com/BorealisAI/latent-
bottlenecked-anp). The datasets are standard for Neural Processes and are available in the same
link. We follow closely the hyperparameters of TNPs and LBANPs. In CMANP, the number of
blocks for the conditioning phase is equivalent to the number of blocks in the conditioning phase of
LBANP. Similarly, the number of cross-attention blocks for the querying phase is equivalent to that
of LBANP. We used an ADAM optimizer with a standard learning rate of 5e − 4. We performed
a grid search over the weight decay term {0.0, 0.00001, 0.0001, 0.001}. Consistent with prior
work (Feng et al., 2023) who set their number of latents L = 128, we also set the number of latents
to the same fixed value LI = LB = 128 without tuning. Due to CMANPs and CMABs architecture,
they allow for varying embedding sizes for the learned latent values (LI and LB). For simplicity,
we set the embedding sizes to 64 consistent with prior works (Nguyen & Grover, 2022; Feng et al.,
2023). The block size for CMANP-AND is set as BQ = 5. During training, CelebA (128x128),
(64x64), and (32x32) used a mini-batch size of 25, 50, and 100 respectively. All experiments
are run with 5 seeds. For the Autoregressive Not-Diagonal experiments, we follow TNP-ND and
LBANP-ND (Nguyen & Grover, 2022; Feng et al., 2023) and use cholesky decomposition for
our LBANP-AND experiments. Focusing on the efficiency aspect, we follow LBANPs in the
experiments and consider the conditional variant of NPs, optimizing the log-likelihood directly.

D.2 COMPUTE

All experiments were run on a Nvidia GTX 1080 Ti (12 GB) or Nvidia Tesla P100 (16 GB) GPU.
1-D regression experiments took 4 hours to train. EMNIST took 2 hours to train. CelebA (32x32)
took 16 hours to train. CelebA (64x64) took 2 days to train. CelebA (128x128) took 3 days to train.

D.3 COMPARISON OF MODEL PARAMETERS

Each CMAB consists of 2 self-attention blocks and 2 cross-attention blocks compared to LBANP’s
attention block which consists of 1 self-attention block and 1 cross-attention block. In our exper-
iments, the models have 6 encoder layers (e.g., 6 CMABs) and 6 querying decoder layers (i.e.,
CrossAttention). As a result, CMANP uses an overall 30 attention blocks and LBANP uses an
overall 18 attention blocks, i.e., CMANP uses approximately 67% more parameters than LBANPs.
Although CMANPs use more parameters than LBANPs, CMANPs ultimately use less memory (only
constant!) since the number of inputs is the bottleneck in terms of memory usage for attention-based
methods.

D.4 RUNTIME

Previously, we analyzed the runtime for our method. Unfortunately, comparing the runtime of
existing baselines is difficult as they have been optimized differently, making it hard to compare
the runtimes fairly. NP models such as LBANPs and CMANPs have an architecture which inter-
leaves modules, allowing for different modules to be computed in parallel at the same time for
improved efficiency. For example, CMANPs compute encodings of the context dataset via: Li =
CrossAttention(SelfAttention(Li−1,DC) and retrieves information from this context dataset for
prediction via: Xi

query = CrossAttention(Xi−1
query, Li). In an optimized codebase, computing Li+1

and Xquery
i can actually be computed in parallel, resulting in a significantly more efficient model

in terms of runtime. However, the publicly available codebase for LBANPs does not support this.
Another example is that of Conditional Neural Processes (CNPs), a variant of NPs which leverages
DeepSets. CNPs are able to efficiently compute updates via a rolling averaging mechanism. How-
ever, the available codebases do not support this by default either. Specialized implementations for
comparing the runtime of NP methods are outside the scope of our work. Nonetheless, we detail
below how to implement an efficient version of CMANPs.
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D.5 EFFICIENT IMPLEMENTATION

In our code, we implemented a sequential variant of CMANPs that computes each CrossAttention
and Self-Attention module sequentially. However, computing parts of the stacked CMAB blocks
in a model can be done in parallel to improve the processing speed. All CMAB blocks can com-
pute the following costly operation L′

B = SelfAttention(CrossAttention(LB ,DC)) in parallel. In
addition, CMAB can perform all updates to L′

B in parallel as well. This is particularly important
for the Autoregressive Not-Diagonal extension. When the prediction block size (bQ) decreases, this
corresponds to performing more CMAB updates since the predictions are made autoregressively.
As such, a properly optimized codebase which computes in parallel would significantly reduce the
runtime. Note that using the model this way would still be constant memory since the number of
stacked CMAB blocks is a fixed hyperparameter.
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