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ABSTRACT

Current research in online time series forecasting (OTSF) faces two significant
issues. The first is information leakage, where models make predictions and are
then evaluated on historical time steps that have already been used in backprop-
agation for parameter updates. The second is practicality: while forecasting in
real-world applications typically emphasizes looking ahead and anticipating fu-
ture uncertainties, prediction sequences in this setting include only one future step
with the remaining being observed time points. This necessitates a redefinition
of the OTSF setting, focusing on predicting unknown future steps and evaluating
unobserved data points. Following this new setting, challenges arise in leveraging
incomplete pairs of ground truth and predictions for backpropagation, as well as
in generalizing accurate information without overfitting to noise from recent data
streams. To address these challenges, we propose a novel dual-stream framework
for online forecasting (DSOF): a slow stream that updates with complete data
using experience replay, and a fast stream that adapts to recent data through tem-
poral difference learning. This dual-stream approach updates a teacher-student
model learned through a residual learning strategy, generating predictions in a
coarse-to-fine manner. Extensive experiments demonstrate its improvement in
forecasting performance in changing environments. Our code is publicly avail-
able at https://github.com/yyalau/iclr2025_dsof.

1 INTRODUCTION

Accurate forecasts benefit diverse applications like electricity consumption monitoring (Zhu et al.,
2024), climate modeling (Mudelsee, 2019), retail (Böse et al., 2017), and stock markets forecasting
(Feng et al., 2019). Consequently, significant efforts have focused on better forecasting performance
by enhancing deep neural networks to identify complex dependencies in time series data (Zhou
et al., 2021; Nie et al., 2023; Wu et al., 2023). An emerging area is online time series forecasting
(OTSF) (Anava et al., 2013; Pham et al., 2023), where the forecasting model generates time series
sequences using a moving window of 1 and updates the model immediately after corresponding
ground truth sequences arrive. This incremental update adapts the model to real-world complications
like dynamic datasets and distribution shifts.

1.1 REDEFINING THE ONLINE TIME SERIES FORECASTING SETTING

Existing works that endeavor to improve OTSF model accuracies (Pham et al., 2023; Zhang et al.,
2023; 2024a) follow a uniform task setting: at time t = i, the model receives input data with
timestamps from t = i−L−H +2 to t = i−H +1 and generates predictions from t = i−H +2
to t = i + 1; at the next timestamp t = i + 1, the actual data for t = i + 1 becomes available,
allowing the model to evaluate its previous prediction and adjust its parameters based on this new
ground truth. For instance, as illustrated in Figure 1, if the input and output windows are of lengths
L = 5 and H = 4 respectively, at time t = 10, the model first takes in data with timestamps from
t = 3 to t = 7 and predicts values from t = 8 to t = 11. Once the actual data for t = 11 is available,
the model’s predictions are evaluated against the ground truth. Subsequently, the ground truth from
t = 8 to t = 11 is used in backpropagation to update the model’s parameters. At t = 12, the same
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procedure performed at t = 11 is repeated, advancing predictions by one unit of time. This setting
aligns with the conventions of online supervised learning for regression and classification tasks (Hoi
et al., 2021): it allows immediate updating of model parameters at the subsequent time step. As the
farthest value prediction is one timestamp ahead of the current time, all ground truth data for the
predicted sequence is available at the next timestamp.

We raise two concerns about the mentioned setting. First, there is an issue of information leakage.
Originally defined in data mining as the use of external data outside the training dataset (Kaufman
et al., 2011), information leakage, formally described in Section C, occurs here because the eval-
uation at t = 12 contains data points from t = 9 to t = 11, which have already been utilized to
optimize the model parameters at t = 11. This overlap of time steps leads to biased evaluation
outcomes, resulting in an overestimation of the model’s effectiveness in real-world applications.
Second, we question whether it aligns with the general conception of forecasting: forecasting tasks
are designed to predict future events (Petropoulos et al., 2022). However, in this scenario, the model
only forecasts one future step at any given timestamp. For example, at t = 10, it predicts values
from t = 8 to t = 11, even though the ground truth from t = 8 to t = 10 is already known.

At t = 10,
t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12 t = 13
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Figure 1: Overview of the data streaming framework in existing online forecasting studies. For
illustration, in this figure, we set the lookback window to L = 5 and forecast horizon to H = 4.
Information leak occurs because ground truth from t = 9 to t = 11 was already used in backpropa-
gation at t = 11 and is re-evaluated at t = 12.

Consequently, we redefine the OTSF problem to meet two key criteria: the model is evaluated only
on time steps without backpropagation for updates, and the output window H should be equal to
the number of unknown future time steps to forecast. For example, as illustrated in Figure 2, with
input window L = 5 and output window H = 4, at t = 10, the model takes in data from t = 6 to
t = 10 for forecasting values from t = 11 to t = 14. At t = 11, the model can only be updated with
ground truths with timestamps up to t = 11. The prediction sequence generated at t = 10 can only
be evaluated on or after t = 14, when all actual data from t = 11 to t = 14 is available.

1.2 CHALLENGES AND PROPOSED SOLUTION FOR THE NEW SETTING

A consequent challenge of this new setting is that at t = 11, the sequence predicted at t = 10 cannot
be fully updated in a supervised manner due to the absence of ground truth from t = 12 to t = 14.
This limitation would prevent the model from effectively learning the most up-to-date information in
a fully supervised manner, as is typically observed in conventional time series forecasting (Benidis
et al., 2022). Moreover, sparse supervisory signals offer limited feedback, hindering the model’s
ability to learn complex patterns. This can make the model overly sensitive to limited data, which
may increase the chance of overfitting if recent data contains noise or anomalies. To address the
challenges of the new setting, we further propose an online training framework, called DSOF, that
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Figure 2: Overview of the redefined OTSF setting. At t = 10, the model only forecasts the unknown
H future steps from t = 11 to t = 14. At t = 11, it can only update using ground truth observations
up to t = 11. Predictions made at t = 10 can only be evaluated on or after t = 14, once all actual
data from t = 11 to t = 14 are available.

leverages the latest and most immediate knowledge from the data stream while maintaining accurate
generalization in the data distribution.

Our proposed DSOF framework employs fast and slow streams to update a teacher-student model
built on the residual learning approach. Given an input data sequence, the teacher model generates
coarse predictions based on historical patterns, while the lightweight student model refines these
predictions using real-time feedback. This dual-stream mechanism benefits the online training pro-
cess in adaptability and stability. The fast stream, inspired by temporal difference (TD) learning’s
intermediate updates in reinforcement learning, leverages the latest information from data streams to
improve near-future forecasts without waiting for the complete ground truth sequence. Meanwhile,
the slow stream conducts experience replay (ER) to stabilize training, penalizes overfitting the noise
in the incoming data, and ultimately learn accurate generalization of the data distribution. Through
extensive experiments, we observe an overall improvement in prediction performance using this
integrated strategy across various datasets and forecasting horizons.

1.3 CONTRIBUTIONS

In summary, our contributions are as follows:

• We redefine the OTSF setting by restricting the model from predicting and evaluating time
steps for which it has already received ground truth feedback. This approach eliminates
information leakage and aligns more closely with the forecasting concept as applied in
real-world scenarios.

• We develop a novel framework, DSOF, which employs a dual-stream mechanism to inte-
grate real-time data with previously collected data streams for updating model parameters.
This approach ensures the maintenance of accurate, current knowledge while also provid-
ing robustness and training stability in dynamic environments.

• We conduct extensive experiments to validate that our framework significantly enhances
forecasting performance through online updates. Additionally, we provided comprehen-
sive empirical studies that explore various design choices for online training of forecasting
models, offering insights into optimizing performance and adaptability in real-time scenar-
ios.
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2 PRIOR WORKS

Concept Drift. Underlying dynamics in real-world time series change over time, leading to differ-
ences between training and test data distributions (Tsymbal, 2004). This poses a major challenge
for deep neural networks (DNNs) in time series forecasting. To improve DNN robustness against
such non-stationarity during test time, various model-agnostic methods and architectural innovations
have been introduced. Li et al. (2022) introduced a dynamic data generator for predicting future data
distributions, so that models can train on anticipated rather than current distributions. RevIN (Kim
et al., 2022) employs reversible instance normalization to adjust for changing statistical properties
over time. Building on this, Liu et al. (2023) proposed Slice-level Adaptive Normalization (SAN),
which normalizes local temporal slices to handle non-stationarity more granularly. Dish-TS (Fan
et al., 2023), using a Dual-CONET framework, can better handle the distributional differences be-
tween input and output spaces by separately modeling the distributions of each space. From an ar-
chitectural perspective, Non-Stationary Transformers, proposed by Liu et al. (2022), combine series
stationarization with de-stationary attention to balance predictability and complexity. Additionally,
Koopman-based neural operators (Wang et al., 2023; Liu et al., 2024b) have been incorporated to
deep learning architectures to better adapt to shifting data distributions. Despite their advancements,
however, these methods mainly address evolving trends and fail to learn new patterns that emerge
during test time, necessitating research into real-time online learning for non-stationary time series
forecasting.

Online Forecasting. Unlike traditional forecasting tasks, where training and evaluation are separate
phases, online forecasting involves continuous learning over multiple rounds. Anava et al. (2013)
pioneered an online forecasting model by updating the parameters of the traditional ARMA model
using regret minimization techniques. However, statistical models like ARMA have limited ca-
pacity to capture complex temporal dependencies, prompting a shift towards deep learning models
for better performance. Pham et al. (2023) proposed FSNet by extending the temporal convolu-
tion network (TCN) (Bai et al., 2018) through the introduction of calibration module for weight
adjustments and an associative memory for recalling events, enabling quick adaptation to recent
changes. As previous models mainly employed only cross-variable approaches, Zhang et al. (2023)
proposed OneNet, which integrates cross-variable and cross-time models to capture complex time
series dependencies. However, none of the mentioned methods explicitly detect concept drift. The
Detect-and-Adapt method (Zhang et al., 2024a) was proposed to first identify concept drift and then
adapt the model using a different learning scheme, balancing rapid adjustments with sustained per-
formance. Additionally, research on reducing the computational cost of online updates has emerged,
utilizing techniques like hyperdimensional computing (Mejri et al., 2024) and the Moore-Penrose
inverse (Zhang et al., 2024b) for quicker online forecasting on lightweight devices. Nonetheless,
all of these deep learning approaches failed to address the issue of information leakage when using
online learning for time series forecasting tasks, allowing the model to predict and evaluate data
points that have already been observed.

3 METHODOLOGY

In this section, we introduce our proposed framework, DSOF, which facilitates the online training
of time series deep learning models through fast and slow data streams. We describe how this dual-
stream mechanism is utilized to update the teacher-student model.

3.1 PROBLEM DEFINITION

Terminology. Consider a time series dataset X = (x1, · · · ,xNdata) ∈ RNdata×n, compris-
ing Ndata observations, each with n dimensions, where xi ∈ Rn represents the data point at
time i. Given a look-back window of length L that ends at time i, denoted as Xi−L+1:i =
(xi−L+1,xi−L+2, · · · ,xi), the task is to predict the following H time steps of the series.
The model’s prediction at time i for the subsequent H steps is represented as X̂

(i)
i+1:i+H =

(x̂i+1, x̂i+2, · · · , x̂i+H) = f (i)(Xi−L+1:i).

Training Phases. We divide the dataset into two segments, using each segment in different training
phases. In the first phase, referred to as the batch learning phase, uses data with timestamps up
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to Nbatch to train the model in a batch learning manner. In the second phase, referred to as the
online learning phase, we use data points with timestamps after Nbatch to simulate a real-world
scenario of sequential data streaming, updating the model in real time. Generating sequences with
a moving window of 1, consequently, the number of online data sequences is given by Nonline =
Ndata −Nbatch −H + 1.

Redefined Setting in the Online Phase. As mentioned in Section 1.1, we redefine the OTSF prob-
lem so that the model is evaluated only on time steps without backpropagation for updates, and the
output window size should align with the number of unknown future steps to forecast. Formally,
with input window L and output window H , at t = i, the model takes in data from t = i − L + 1
to t = i and forecasts values from t = i + 1 to t = i + H . At t = i + 1, the model can only be
updated with ground truths with timestamps t ≤ i + 1. The prediction sequence generated at t = i
is evaluated only at t ≥ i+H , when all actual data from t = i+ 1 to t = i+H is available.

Objective and Evaluation Criterion. Our objective is to minimize the cumulative mean-squared
loss, which also serves as the evaluation criterion, expressed as in Equation 1. It is important to
note that the model does not evaluate the predicted time steps that have already been observed.
Specifically, at time i, the prediction X̂i+1:i+H is made without access to the ground truth for any
time step greater than t = i. The entire prediction sequence is evaluated only on or after t = i+H ,
when all ground truth points are available.

min
1

Nonline

Ndata−H∑
i=Nbatch

∥f (i)(Xi−L+1:i)−Xi+1:i+H∥22 (1)

3.2 TWO MODELS: RESIDUAL LEARNING STRATEGY

The framework comprises a teacher-student model that is built on the residual learning strategy.
The teacher model, with parameters denoted as θ(T ), usually a robust backbone like DLinear (Zeng
et al., 2023) or PatchTST (Nie et al., 2023), generates coarse predictions for given input sequences,
as in Equation 2.

X̂
(T,i)
i+1:i+H = f

(i)
T (Xi−L+1:i;θ

(T )) (2)

The student model, with its parameters represented as θ(S), often a lightweight model such as a
Multi-Layer Perceptron (MLP), refines these coarse predictions. By concatenating the lookback
sequence and the teacher model’s predictions as inputs, as indicated in Equation 3, the student
model estimates the error between the teacher’s predictions and the ground truth data.

X̂
(S,i)
i+1:i+H = f

(i)
S (Concat(Xi−L+1:i, X̂

(T,i)
i+1:i+H);θ(S)) (3)

The final forecasting prediction is obtained by summing the predictions from both models, as
demonstrated in Equation 4.

X̂
(i)
i+1:i+H = f (i)(Xi−L+1:i;θ

(T ),θ(S)) = X̂
(T,i)
i+1:i+H + X̂

(S,i)
i+1:i+H (4)

3.3 TWO DATA STREAMS: FAST AND SLOW

This section presents the two data streams for updating the teacher-student model in Section 3.2: a
slow stream using complete ground truth via ER and a fast stream incorporating latest data through a
TD learning-inspired method. The term “TD” indicates that our approach is inspired by TD learning
in reinforcement learning, particularly in estimating the ground truth values at the next time step,
addressing the challenge of missing ground truth in the redefined OTSF setting.

3.3.1 SLOW DATA STREAM WITH EXPERIENCE REPLAY

ER is a common approach to address catastrophic forgetting in continual learning. Unlike continual
learning which aims for effective performance on both previously learned and newly acquired tasks
(Rolnick et al., 2019), and reinforcement learning which seeks to break correlations from samples
taken at adjacent trajectories to enhance network convergence (Mnih et al., 2015), our focus is on
adapting to the evolving temporal domain, aligning with the objective of minimizing cumulative
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mean squared error (MSE). Thus, instead of promoting diversity in sample patterns, the replay
buffer B retains only the most recent samples.

The replay buffer has a fixed size NB, and operates on a first-in, first-out basis. At time t = i,
upon receiving the ground truth data xi, the buffer appends the pairing of the input sequence
Xi−H−L−1:i−H and output sequence Xi−H+1:i. If the buffer exceeds NB, the oldest sample, with
the input sequence Xi−NB−H−L+1:i−NB−H and output sequence Xi−NB−H+1:i−NB , is removed.
This process is referred to as the slow update stream, as it waits for all ground truth values of the
output horizon to arrive before adding the data stream to the buffer. This setup resembles a time-
delayed environment in reinforcement learning (Liotet et al., 2022; Wu et al., 2024), where new
predictions must be made despite delayed feedback from the environment.

3.3.2 FAST DATA STREAM WITH TEMPORAL DIFFERENCE LOSS

Performing ER in Section 3.3.1 requires complete ground truth data for all time steps in the data
stream. A major drawback is that with a large prediction length H , we must wait for H time steps for
all ground truth values to arrive, before adding the sequence to the replay buffer B. However, in the
presence of concept drift, we aim to update the model with immediate observations — even without
complete ground truth for the entire forecasting horizon — to improve near-future predictions.

At time i − 1, the teacher-student model generates X̂(i−1)
i:i+H−1. Right after the prediction, at time i,

the ground truth xi becomes available. To compensate for the absence of ground truth for the future
timestamps t = i+ 1 to t = i+H − 1, the teacher model’s prediction at time t = i, i.e. X̂(T,i)

i+1:i+H ,

is utilized to generate the pseudo labels X̃(i)
i:i+H−1, as outlined in Equation 5.

X̃
(i)
i:i+H−1 = [xi, X̂

(T,i)
i+1,i+H−1] (5)

In practice, the pseudo labels can be generated with different proportions of ground truth data and
teacher model predictions. Consequently, we extend Equation 5 by introducing a parameter k,
which signifies the use of the latest k ground truth data points along with the initial H − k steps of
predictions from the teacher model to form the pseudo label. The impact of using different k values,
as well as utilizing multiple k values, are discussed in Section A.6.2.

It is assumed that the teacher model’s predictions for the distant future are considerably more un-
certain and less significant to the current prediction than those for the near future. Considering the
temporal nature of time series data, we introduce a geometric decay factor γ, to reduce the influence
of prediction errors and pseudo labels for each step further from the current observation, as outlined
in Equation 6. We further elaborate on establishing the relationship between the TD approach used
in our method and that found in reinforcement learning in Section B.

ℓ
(i−1)
TD (X̂

(i−1)
i:i+H−1, X̃

(i)
i:i+H−1) =

1

H

H∑
j=1

γj−1∥x̂(i)
j − x̃

(i)
j ∥

2 (6)

3.4 OVERVIEW OF THE FRAMEWORK IN ONLINE TRAINING

This section outlines our framework in the online training stage, with a detailed algorithm presented
in Algorithm 1. During the online training phase, upon receiving each new data point, we first
update the replay buffer B and then conduct an ER, as detailed in Section 3.3.1. This process
involves randomly selecting a small batch of size Nb from the buffer to train and update the teacher-
student model. By default, ER is performed whenever a new data point arrives, but this frequency
can be adjusted — for instance, it can be triggered twice per new data point or once for every
two data points. After completing ER, the student model is updated using the TD loss described
in Section 3.3.2. To maintain training stability, the teacher model’s parameters θ(T ) remain fixed,
while the student model is updated with pseudo labels.
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Algorithm 1 Overview of DSOF during the online training phase.
1: Initialize:

Replay Buffer B ← ∅ with capacity NB
Batch Size Nb

Learning rates αT , αS , αO

2: for i = Nbatch + 1 to Ndata −H do
3: Received ground truth xi.
4: B ← B ∪ {(Xi−H−L+1:i−H , Xi−H+1:i)} ▷ Append the newest sequence.
5: if |B| ≥ NB then ▷ The buffer exceeds its capacity.
6: B: B←B \{(Xi−NB−H−L+1:i−NB−H , Xi−NB−H+1:i−NB )} ▷ Remove the oldest sequence.
7: end if
8: if |B| ≥ Nb then ▷ The buffer has enough sequences to sample.
9: θ(T ),θ(S) ← EXPERIENCE REPLAY UPDATE(B,θ(T ),θ(S))

10: end if

11: θ(S) ← TEMPORAL DIFFERENCE UPDATE(Xi−L:i, X̂
(i−1)
i:i+H−1,θ

(T ),θ(S))

12: X̂
(i)
i+1:i+H = f (i)(Xi−L+1:i;θ

(T ),θ(S)) ▷ Teacher-student model forecasts the next step.
13: end for

14: procedure EXPERIENCE REPLAY UPDATE(B,θ(T ),θ(S))
15: (XL,XH) ∼ B ▷ Sample a mini-batch from the buffer.
16: X̂H = f (i−1)(XL;θ

(T ),θ(S)) (Equation 4) ▷ Teacher-student model makes a prediction.
17: θ(T ) ← θ(T ) − αT∇θ(T )ℓ(X̂H ,XH) ▷ Update teacher model’s parameters.
18: θ(S) ← θ(S) − αS∇θ(S)ℓ(X̂H ,XH) ▷ Update student model’s parameters.
19: return θ(T ),θ(S)

20: end procedure

21: procedure TEMPORAL DIFFERENCE UPDATE(Xi−L+1:i, X̂
(i−1)
i:i+H−1,θ

(T ),θ(S))
22: Freeze the teacher parameters θ(T ).
23: X̂

(T,i)
i+1:i+H = f

(i)
T (Xi−L+1:i;θ

(T )) (Equation 2) ▷ Teacher model makes a prediction utilizing xi.

24: X̃
(i)
i:i+H−1 = [xi, X̂

(T,i)
i+1:i+H−1] (Equation 5) ▷ Generate the pseudo-label.

25: Compute the temporal difference loss ℓ(i−1)
TD (X̂

(i−1)
i:i+H−1, X̃

(i)
i:i+H−1) using Equation 6.

26: θ(S) ← θ(S) − αO∇θ(S)ℓ
(i−1)
TD (X̂

(i−1)
i:i+H−1, X̃

(i)
i:i+H−1) ▷ Update student model’s parameters.

27: return θ(S)

28: end procedure

4 EXPERIMENTS

In this section, we demonstrate the effectiveness and adaptability of our proposed method. Our
experiments involve comparing our framework against batch learning approaches, utilizing a diverse
range of model architectures as baselines. We also evaluate the effectiveness of our method against
other online learning frameworks, which we have modified to avoid information leakage. Further
analyses are conducted in Section A.

4.1 GENERAL FORECASTING RESULTS

In this section, DSOF is compared to batch learning, demonstrating the advantages of online training
and the framework’s ability to adapt batch methods to online scenarios for improved performance.

Datasets. We utilize benchmarks from Autoformer (Wu et al., 2021), which are primarily designed
for long-term forecasting tasks. For our experiments, we adhere to the data distribution outlined in
Pham et al. (2023), splitting the dataset chronologically into 20% for training, 5% for validation,
and 75% for testing, to simulate the temporal distribution shift in real world scenarios. The datasets
used in our experiments include the following: the Electricity (ECL) dataset tracks the electricity
consumption of 321 clients from 2012 to 2014; the ETT benchmark tracks oil temperature and six
power load features over two years, with ETTh2 recorded hourly and ETTm1 at 15-minute inter-
vals; the Exchange (Ex.) dataset includes daily exchange rates for eight countries from 1990 to
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2016; the Weather dataset, collected every 10 minutes throughout 2020, features 21 meteorological
indicators, such as air temperature and humidity; the Traffic dataset provides hourly road occupancy
rates from the California Department of Transportation, reflecting measurements from various sen-
sors on freeways in the San Francisco Bay Area. Detailed information about the datasets, including
the number of features and timesteps, is presented in Table 1.

Table 1: Statistics of benchmark datasets used.

Electricity ETTh2 ETTm1 Exchange Traffic Weather

Features 321 7 7 7 862 21
Timesteps 26304 14400 57600 7396 17544 52696

Baselines. We set prediction lengths H to 1, 24, and 48, with a lookback length of 96, following
the experimental setting used in the previous works (Pham et al., 2023; Zhang et al., 2023). In our
results, batch learning depends exclusively on the teacher model, whereas our method integrates a
three-layered MLP with a hidden dimension of 16 as the student model, built on top of the teacher
model. A variety of backbone architectures for the teacher model are utilized for comparison with
batch learning. These included linear backbones such as DLinear (Zeng et al., 2023), FITS (Xu
et al., 2024), and TimeMixer (Wang et al., 2024). Additionally, we employed convolution back-
bones including FSNet (Pham et al., 2023) and OneNet (Zhang et al., 2023). Lastly, for transformer
backbones, we used iTransformer (iTrans.) (Liu et al., 2024a), PatchTST (Nie et al., 2023), and
Non-Stationary Transformer (NSTrans) (Liu et al., 2022).

Results. To account for variability from random weight initialization, we ran experiments with five
random seeds. Table 2 reports the average MSE, while standard deviations are in Section E.1. Our
framework generally outperforms batch learning across datasets and architectures, effectively ad-
dressing distribution shifts in online forecasting. Notably, on the ECL dataset, FSNet and NSTrans-
former as teacher models achieve over a 50% MSE reduction. However, in some cases, batch
learning outperforms online approaches. One possible factor affecting performance could be the
normalization choices and hyperparameters of the backbone, which are kept the same as in batch
learning and not further optimized for online learning.

Visualizations. Figure 3 presents visualizations of forecasting results, illustrating a 48-step predic-
tion sequence on the Traffic dataset. It is observed that at step 300, where the distribution closely
resembles the training distribution, the performance of batch learning is similar to that of online
learning. However, at later time steps, such as 5000 and beyond, the performance of online learning
surpasses that of batch learning.

4.2 EVALUATING OTSF FRAMEWORKS WITHOUT INFORMATION LEAKAGE

Baselines. Previous works, such as FSNet (Pham et al., 2023) and OneNet (Zhang et al., 2023),
adopted a different OTSF setting that suffers from information leakage, leading to an overestimation
of model effectiveness during evaluation. To ensure a fair comparison, we modified this setting to
eliminate information leakage by delaying ground truth feedback. At time t = i, the model receives
data from t = i − L + 1 to t = i, and generates prediction with time steps from t = i + 1 to
t = i+H . Unlike before, where predictions were evaluated and immediately backpropagated using
the ground truth at t = i+ 1 , this procedure is performed after H steps, specifically at t = i+H .
Here, we name this framework as “Delayed Gradient” (DGrad).

We also incorporated continual learning methods, TFCL (Aljundi et al., 2019) and DER++ (Buzzega
et al., 2020), for comparison. However, these approaches are not tailored for time series forecasting.
They were originally utilized in vision tasks rather than forecasting and do not account for labels
with temporal contexts. Consequently, the techniques they propose may also be susceptible to infor-
mation leakage. We mitigate this risk by delaying the ground truth feedback, employing the same
strategy as in DGrad.

While DSOF includes a student model, the methods, DGrad, TFCL, and DER++ do not. To ensure
a fair comparison, we additionally present an alternative version of DSOF that excludes the student
model. In this version, instead of combining the outputs from both the teacher and student models,
we rely solely on the teacher model’s output — this modifies the prediction results from Equation 4
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Table 2: Comparison of MSE results between our framework and batch learning across various
datasets and backbones. Our method integrates a MLP as the student model built on top of the
teacher model, while batch learning relies exclusively on the teacher model. The better results from
the two settings are highlighted in bold.

DLinear FITS FSNet OneNet iTrans. PatchTST NSTrans.

H Batch
Learn.

DSOF Batch
Learn.

DSOF Batch
Learn.

DSOF Batch
Learn.

DSOF Batch
Learn.

DSOF Batch
Learn.

DSOF Batch
Learn.

DSOF

E
C

L 1 2.842 2.065 2.870 2.235 3.8e+2 2.330 3.2e+1 4.733 1.976 2.430 4.770 2.244 3.9e+1 2.703
24 1.5e+1 4.737 4.509 4.597 4.7e+2 5.475 8.5e+1 4.510 4.119 5.155 1.7e+1 5.169 4.0e+1 8.668
48 2.7e+1 6.181 5.257 5.433 4.8e+2 7.000 1.5e+2 5.943 4.936 6.015 1.7e+1 6.665 3.8e+1 9.981

E
T

T
h2 1 0.470 0.365 0.522 0.375 1.1e+1 0.431 2.531 0.548 0.872 0.384 0.915 0.382 3.088 0.415

24 2.269 1.701 2.189 1.757 1.9e+1 3.114 7.017 2.363 2.688 1.869 5.213 1.925 3.973 2.127
48 3.389 3.082 3.275 2.988 2.3e+1 5.318 9.790 4.037 3.769 3.465 6.566 4.473 4.840 4.729

E
T

T
m

1 1 0.112 0.105 0.123 0.111 0.190 0.121 0.156 0.096 0.179 0.152 0.155 0.108 1.101 0.141
24 0.628 0.525 0.732 0.542 1.500 0.609 1.094 0.418 1.049 0.618 1.170 0.582 1.503 0.904
48 0.818 0.695 0.900 0.716 2.279 0.843 1.588 0.554 1.320 0.856 2.103 0.805 1.547 1.119

E
x.

1 0.009 0.009 0.012 0.011 0.034 0.010 0.024 0.009 0.011 0.010 0.024 0.011 0.234 0.015
24 0.098 0.095 0.095 0.093 0.754 0.120 0.487 0.152 0.117 0.110 0.443 0.103 0.335 0.127
48 0.194 0.192 0.178 0.176 1.366 0.270 0.815 0.289 0.209 0.218 1.107 0.213 0.449 0.280

Tr
af

fic 1 0.302 0.302 0.342 0.313 0.599 0.228 0.265 0.264 0.243 0.242 0.280 0.232 0.762 0.257
24 0.649 0.608 0.617 0.607 0.761 0.366 0.576 0.327 0.459 0.422 0.573 0.432 1.102 0.565
48 0.769 0.681 0.707 0.680 0.824 0.403 0.683 0.369 0.517 0.457 0.621 0.454 1.001 0.604

W
ea

th
er 1 0.357 0.337 0.359 0.341 0.728 0.388 0.478 0.296 0.474 0.336 0.423 0.361 2.489 0.336

24 1.182 1.043 1.236 1.086 1.760 1.020 1.377 0.671 1.492 1.019 1.494 0.877 2.881 1.037
48 1.702 1.447 1.634 1.434 2.620 1.415 2.699 0.909 1.740 1.435 2.033 1.308 3.039 1.419

to Equation 7, while keeping other parts of the algorithm unchanged. We denote this version as
“DSOF (w/o θ(S))”.

X̂
(i)
i+1:i+H = X̂

(T,i)
i+1:i+H = f

(i)
T (Xi−L+1:i;θ

(T )) (7)

Results. Similar to the comparison with batch learning in Section 4.1, experiments were repeatedly
trained using five different random seeds. Table 3 shows the results, where DSOF, with or without
the student model, consistently ranks among the top two methods. Notably, for ECL at a prediction
length of 48, our approach reduces MSE by at least 15%, regardless of the teacher model used,
outperforming both the baseline and typical continual learning methods.

In some cases, omitting the student model yields better results. While its inclusion does not always
guarantee optimal performance, our study in Section A.7 suggests it is less sensitive to learning rate
variations, reducing hyperparameter tuning efforts.

5 CONCLUSION

In summary, we first redefined the online forecasting setting to eliminate information leakage, ensur-
ing that the model does not predict or evaluate time steps for which it has already received ground
truth feedback. We then introduced a model-agnostic framework, called DSOF, enabling various
types of models to adapt to temporal shifts in real-time data. Our extensive experiments demonstrate
that DSOF significantly improves forecasting performance through ongoing updates. Particularly,
when compared to batch learning, the ECL dataset demonstrates the most significant improvement,
with teacher model backbones such as FSNet and NSTransformer, achieving over a 50% reduction
in MSE. Additionally, we have provided detailed ablation studies on design choices for training
forecasting models online, offering valuable insights for better forecasting performance and adapt-
ability. However, there are still areas to explore, such as identifying better model architectures suited
for online forecasting, using more advanced semi-supervised techniques to generate pseudo labels,
improving ER methods, and extending forecasting to longer time periods.
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Figure 3: Visualization of the online learning process for Traffic at steps 300, 5000 and 12000.

Table 3: Comparison of the MSE results between DGrad, i.e. the modified online training frame-
works from earlier studies (Pham et al., 2023; Zhang et al., 2023), as well as TFCL (Aljundi et al.,
2019) and DER++ (Buzzega et al., 2020). All configurations have been modified to prevent infor-
mation leakage.

ECL ETTh2 Traffic

Teacher
Model

Student
Model

Framework 1 24 48 1 24 48 1 24 48

D
L

in
ea

r

✗ DGrad 2.187 9.954 1e+01 0.386 3.038 6.251 1e+15 1.189 1.461
✗ TFCL 3.033 6.897 9.746 0.718 2.240 3.457 0.324 0.697 0.745
✗ DER++ 2.172 5.369 7.339 0.385 1.986 3.168 0.300 0.623 0.709
✗ DSOF (w/o θ(S)) 2.066 4.759 6.250 0.365 1.694 3.015 0.299 0.603 0.685
MLP DSOF 2.065 4.737 6.181 0.365 1.701 3.082 0.302 0.608 0.681

FS
N

et

✗ DGrad 3.197 5e+01 5e+01 0.470 2.956 5.359 1e+18 0.470 0.574
✗ TFCL 2.968 7.482 8.512 0.726 3.469 6.256 0.315 0.418 0.467
✗ DER++ 2.902 1e+01 1e+01 0.432 2.726 5.239 0.286 0.411 0.449
✗ DSOF (w/o θ(S)) 2.567 5.611 7.130 0.427 2.944 4.846 0.265 0.364 0.394
MLP DSOF 2.330 5.475 7.000 0.431 3.114 5.318 0.228 0.366 0.403

Pa
tc

hT
ST

✗ DGrad 3.863 9.453 8.607 0.392 2.759 5.721 0.251 0.446 0.480
✗ TFCL 3.805 7.653 1e+01 0.714 3.275 7.763 0.272 0.558 0.607
✗ DER++ 3.403 6.846 8.025 0.386 2.163 5.849 0.242 0.478 0.502
✗ DSOF (w/o θ(S)) 3e+03 5.253 6.427 0.373 1.838 3.568 0.231 0.434 0.459
MLP DSOF 2.244 5.169 6.665 0.382 1.925 4.473 0.232 0.432 0.454
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Table 4: Wall time comparison across various frameworks and datasets, measured in milliseconds
per iteration (ms/itr). Lower values indicate higher efficiency.

ECL ETTh2 Traffic

Framework Mean SD Mean SD Mean SD

DGrad 5.58 0.18 4.63 0.14 11.03 1.06

DER++ 13.79 1.08 12.71 3.50 23.82 3.37

TFCL 23.28 1.69 13.02 0.33 30.89 2.76

DSOF (w/o θ(S)) 23.16 1.40 8.13 0.12 51.66 29.09

DSOF 30.76 1.06 12.04 0.16 63.96 12.42

Table 5: Processor time comparison across various frameworks and datasets, measured in ms/itr.
Lower values indicate higher efficiency.

ECL ETTh2 Traffic

Framework Mean SD Mean SD Mean SD

DGrad 4.90 0.36 3.67 0.18 166.87 19.09

DER++ 193.29 17.46 155.89 26.68 373.74 30.84

TFCL 337.87 17.38 137.98 3.51 551.64 79.99

DSOF (w/o θ(S)) 358.31 18.71 7.32 0.32 596.36 58.51

DSOF 478.45 31.96 10.91 1.20 800.70 10.74

A MODEL DESIGN CHOICES AND ANALYSIS

This section examines the effects of different learning strategies on the teacher-student model. It also
analyzes experience replay (ER) parameters, including buffer size and update frequency, and it ex-
amines the impact of temporal difference (TD) loss on mean squared error (MSE) results. Addition-
ally, it also compares how the framework performs with and without the student model, specifically
by examining the influence of the learning rate.

A.1 COMPUTATIONAL COST COMPARISON OF ONLINE TRAINING FRAMEWORKS

A.1.1 RUNTIME COMPARISON

Online learning consists of two phases: training with batches of data and testing with streaming
data. We focus on the testing phase, where the model updates parameters each time a new sample
arrives. We measure the time each framework takes to perform an online update per sample using
an Intel Xeon Silver 4214R processor (12 cores, 24 threads, 2.40 GHz) and an NVIDIA GeForce
RTX 3090 GPU (24GB memory).

In this experiment, the teacher model used in DSOF is DLinear. The mean and standard deviation of
the runtime are calculated over 250 runs. Wall time and processor time are reported in Table 4 and
Table 5, respectively, in milliseconds per iterations (ms/itr). For instance, 100 ms/itr indicates that
the framework can perform parameter updates for one sample in 100 ms. Therefore, a lower number
indicates better performance. Both tables show that our method, DSOF, is less efficient compared to
others, highlighting a weakness of our approach. This inefficiency is especially evident in the Traffic
dataset, which, as stated in Table 1, has a significantly larger feature dimensionality than ECL and
ETTh2.
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Table 6: Comparison of GPU memory usage during the online phase across different online learning
frameworks (measured in MiB).

Framework ECL ETTh2 Traffic

DGrad 386 346 436

DER++ 424 346 542

TFCL 392 346 440

DSOF (w/o θ(S)) 386 346 436

DSOF 400 348 508

A.1.2 GPU MEMORY USAGE COMPARISON

One downside of our approach compared to other online learning frameworks is that it involves
using a student model for residual learning, which adds extra model parameters. As in the other
experiments conducted in this study, the student model is a 3-layered MLP with a hidden size of
16, and the replay batch size in the ER procedure is set to 32. Using DLinear as the teacher model
for DSOF, the GPU memory is evaluated during the online phase, as shown in Table 6, with units
measured in mebibytes (MiB). The results suggest that our method does not require significantly
more GPU memory.

A.2 COMPONENTS OF THE FRAMEWORK: EXPERIENCE REPLAY AND TEMPORAL
DIFFERENCE LOSS

A.2.1 QUANTITATIVE RESULTS

Experiments are conducted to investigate the necessity of ER and TD loss. Table 7 summarizes the
comparison between the MSE performances with and without ER and TD loss. The first row of the
table, which represents the setting without either ER or TD loss, corresponds to the method, DGrad,
mentioned in Section 4.2. These results verify that both components are critical for the effectiveness
of our approach.

Table 7: Impact of ER and TD loss components on model performance.

ECL ETTh2 Traffic

Teacher
Model

Student
Model

ER TD 1 24 48 1 24 48 1 24 48

DLinear MLP

✗ ✗ 2.842 14.705 26.795 0.470 2.269 3.389 0.302 0.649 0.769
✗ ✓ 2.118 13.530 30.725 0.523 2.199 3.535 0.300 0.650 0.762
✓ ✗ 2.068 5.038 6.405 0.372 1.748 3.255 0.302 0.605 0.682
✓ ✓ 2.065 4.737 6.181 0.365 1.701 3.082 0.302 0.608 0.681

FSNet MLP

✗ ✗ 381.629 473.965 481.403 10.555 19.326 23.412 0.599 0.761 0.824
✗ ✓ 33.746 282.664 314.527 2.296 13.387 11.011 0.400 0.667 0.764
✓ ✗ 2.228 5.514 7.132 0.465 3.220 5.267 0.231 0.364 0.402
✓ ✓ 2.330 5.475 7.000 0.431 3.114 5.318 0.228 0.366 0.403

PatchTST MLP

✗ ✗ 4.770 16.594 16.943 0.915 5.213 6.566 0.280 0.573 0.621
✗ ✓ 3.952 24.128 13.939 0.900 4.262 4.626 0.270 0.584 0.619
✓ ✗ 2.409 5.109 6.978 0.378 2.022 4.514 0.232 0.432 0.456
✓ ✓ 2.244 5.169 6.665 0.382 1.925 4.473 0.232 0.432 0.454

A.2.2 MSE ANALYSIS

In the ETTh2 dataset, as shown in Figure 4a, DGrad struggles to quickly adapt to new distributions
from timestamps 3300 to 3450, resulting in higher errors compared to other methods. The advan-
tages of ER and TD loss suit different situations: between timestamps from 3300 and 3450, using
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Figure 4: MSE analysis of ER and TD loss components using the ETTh2 dataset.

the TD loss outperforms, whereas ER excels in timestamps from 3450 to 3900. In the long run, ER
helps the model generalize with complete labels and batches of data. Again, the cumulative squared
error plot in Figure 4b shows that using both components results in slower MSE growth.

A.2.3 INTERACTION OF THE COMPONENTS

To explore the interaction between ER and TD loss components, we conduct two case studies using
the ETTh2 dataset. Experiments are conducted across five runs with different random seeds. In
Figure 5, the shaded area represents the deviation of the five runs.
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(a) Sequences with predictable cycles: ER offers more stable and confident predictions while TD loss exhibit
large variance.
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(b) Sequences with sudden changes: ER may form outdated assumptions about the current distribution while
TD adapts to the shift.

Figure 5: Visualization of the interaction between ER and TD loss components in ETTh2.

By training the model with batches of historical sequences, the ER component allows for more
assured predictions, especially when similar patterns are encountered. In contrast, the TD loss
component relies on pseudo labels defined in Equation 5 for updates, where only the initial data
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point is based on ground truth, and the remaining points are less certain predictions from the teacher
model. This approach results in high sensitivity to minor fluctuations in sequences, causing greater
variance in predictions. As illustrated in Figure 5a, relying solely on TD loss can result in significant
variance in predictions, even for predictable sequences with regular cycles. In these cases, ER helps
reduce variance by offering more stable and confident predictions.

For immediate changes in data distribution, TD loss can make rapid adaptations. As shown in
Figure 5b, it effectively identifies sudden changes around timestamp 4300, leading to lower error
in predictions. In comparison, the ER component, reliant on historical data, may make outdated
assumptions about the current distribution. It may make confident predictions that are inaccurate in
rapidly changing environments.

The interaction between ER and TD loss resembles a bias-variance trade-off. By utilizing both com-
ponents, the model can harness their strengths to balance this trade-off, resulting in more accurate
and reliable predictions across different data distributions.

A.2.4 RUNTIME EFFICIENCY ANALYSIS OF THE COMPONENTS

We measure the time taken for online training per sample on the two main components of the net-
work, ER and TD loss. Consistent with Section A.1, the wall time statistics in Table 8 and processor
time statistics in Table 9 are based on 250 repeated runs, using ms/itr as the unit of measurement,
where a lower number indicates a shorter runtime. Note that a replay batch size of 32 was utilized
in this experiment. The results clearly show that ER contributes more to runtime than TD loss. A
potential future direction is to develop a method with lower runtime complexity to replace the cur-
rent ER strategy, or use a smaller replay batch size as in Section A.5.2. This is particularly relevant
for datasets with a very high feature dimension such as Traffic.

Table 8: Wall time comparison for the two main components of the framework, measured in ms/itr.
Lower values indicate higher efficiency.

ECL ETTh2 Traffic

Teacher Model Student Model ER TD Mean SD Mean SD Mean SD

DLinear MLP

✗ ✗ 5.58 0.18 4.63 0.14 11.03 1.06
✓ ✗ 27.98 2.18 8.12 0.10 43.74 3.45
✗ ✓ 8.32 0.51 6.53 0.44 17.85 1.60
✓ ✓ 30.76 1.06 12.04 0.16 63.96 12.42

Table 9: Processor time comparison for the two main components of the framework, measured in
ms/itr. Lower values indicate higher efficiency.

ECL ETTh2 Traffic

Teacher Model Student Model ER TD Mean SD Mean SD Mean SD

DLinear MLP

✗ ✗ 4.90 0.36 3.67 0.18 166.87 19.09
✓ ✗ 434.26 16.37 7.58 0.68 637.02 19.47
✗ ✓ 7.00 0.22 5.30 0.05 289.61 27.26
✓ ✓ 478.45 31.96 10.91 1.20 800.70 10.74

A.3 FREEZING STRATEGIES OF TEACHER AND STUDENT MODELS

The effects of three freezing settings are examined in Table 10: freezing both the teacher and student
models (i.e., batch learning), freezing only the teacher model, and not freezing either model. Re-
sults indicated that updating both models yields the best performance, followed by updating only the
student model. Existing forecasting methods learned through batch learning may struggle to gener-
alize future distribution shifts due to the continuous emergence of new patterns. Integrating these
methods into an online learning framework can improve adaptability and performance in dynamic
environments.
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Table 10: MSE comparison across different freezing strategies for teacher and student models. Three
settings are analyzed: freezing both the teacher and student models (batch learning), freezing only
the teacher model, and not freezing either model. All θ(S) denotes the parameters of MLP.

ECL ETTh2 Traffic

Teacher Model θ(T ) θ(S) 1 24 48 1 24 48 1 24 48

FSNet
417.3 478.1 485.2 11.84 21.83 19.3 0.592 0.749 0.789
153.1 396 411.3 5.944 8.558 9.014 0.267 0.518 0.580
2.233 5.446 6.475 0.669 3.392 5.188 0.334 0.420 0.398

A.4 LEARNING STRATEGIES OF STUDENT MODEL

The use of a student model learning strategy is investigated in our method. By employing a residual
learning strategy, the student model utilizes the predictions of the teacher model along with the hori-
zon window as input, subsequently fine-tuning the teacher’s predictions, as illustrated in Equation 4.
In contrast, the separate learning strategy provides the student model only the horizon window, and
its predictions are directly used for evaluation, independent of the teacher model’s prediction. A
comparison of the performance of our method (i.e., residual learning) and separate learning is con-
ducted, with the results presented in Table 11.

Table 11: Comparison of student model learning strategies: Residual learning vs. separate learning.
In the “Residual” column, a cross (“✗”) indicates separate learning, where the student model relies
solely on the horizon window, using its predictions as the sole output for evaluation. Conversely, a
tick (“✓”) indicates residual learning, enabling the student model to refine the teacher’s predictions
by utilizing both the teacher’s output and the horizon window.

ECL ETTh2 Traffic

Student Model Residual 24 48 24 48 24 48

FSNet

MLP ✗ 181.7 193.5 8.743 9.828 0.872 0.894
✓ 5.446 6.475 3.392 5.188 0.420 0.398

FSNet ✗ 39.31 40.66 3.496 6.858 0.388 0.417
✓ 8.242 12.67 3.435 5.419 0.407 0.444

PatchTST ✗ 6.321 7.065 11.74 12.15 0.451 0.490
✓ 6.93 7.283 3.461 5.761 0.367 0.401

PatchTST

MLP ✗ 5.476 6.765 2.39 3.719 0.578 0.666
✓ 4.962 6.113 1.979 3.905 0.419 0.447

FSNet ✗ 79.59 47.52 2.703 4.953 0.388 0.420
✓ 8.633 10.52 2.248 4.215 0.411 0.443

PatchTST ✗ 5.874 6.82 11.62 12.95 0.445 0.483
✓ 24.11 53.55 1.996 3.52 0.480 0.473

Two observations can be made:

1. Residual training enables simpler models, reducing computational costs and memory us-
age. Using an MLP as the student model in residual learning outperforms more complex
models trained with separate strategies. This is likely because correcting distribution shift
errors is easier than mastering the main task.

2. When choosing a student model for residual learning, a simpler model is preferred. Replac-
ing the MLP with the more complex FSNet shows similar performance, but using PatchTST
leads to deterioration. This may be due to PatchTST’s complexity, making it ill-suited for
the simpler task of learning distribution shift errors. Thus, when using PatchTST, a separate
learning approach is more effective.
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A.5 KEY ELEMENTS OF EXPERIENCE REPLAY: BUFFER SIZE AND UPDATE FREQUENCY

A.5.1 BUFFER SIZE

We investigate the impact of replay buffer size on our method’s performance across three datasets
(ECL, ETTh2, and Traffic) using various teacher model backbones (DLinear, FSNet, and PatchTST)
and an MLP as the student model. As shown in Figure 6, all plots exhibit an elbow-shaped pattern,
indicating rapid performance increases with initial buffer size increments. However, beyond a size
of 300, the improvement in performance becomes marginal. It is observed that, in general, a larger
replay buffer size leads to better performance. However, when the buffer size exceeds 300, the
improvements become marginal. Generally, larger replay buffer sizes enhance performance, but
excessively large buffers may lead to declines due to training on outdated or out-of-distribution data.
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Figure 6: Performance analysis of varying replay buffer sizes, using DLinear, FSNet, and PatchTST
as teacher models, with MLP as the student model.

Table 12: MSE comparison across different batch sizes in ER.

ECL ETTh2 Traffic

Teacher
Model

Student
Model

Batch
Size

1 24 48 1 24 48 1 24 48

DLinear MLP

8 2.104 4.803 6.433 0.373 1.744 3.091 0.299 0.600 0.685
16 2.075 4.771 6.364 0.368 1.715 3.072 0.300 0.602 0.683
32 2.065 4.737 6.181 0.365 1.701 3.082 0.302 0.608 0.681
64 2.047 4.758 6.085 0.367 1.682 3.116 0.303 0.609 0.681

FSNet MLP

8 2.200 5.409 6.763 0.476 3.297 5.555 0.223 0.367 0.403
16 2.144 5.401 6.916 0.562 3.467 5.795 0.224 0.364 0.400
32 2.330 5.475 7.000 0.431 3.114 5.318 0.228 0.366 0.403
64 2.482 5.513 7.225 0.603 3.063 5.784 0.235 0.370 0.409

PatchTST MLP

8 2.680 5.275 6.318 0.383 1.884 3.819 0.231 0.436 0.460
16 2.583 5.109 6.173 0.373 1.872 3.900 0.231 0.435 0.455
32 2.244 5.169 6.665 0.382 1.925 4.473 0.232 0.432 0.454
64 2.382 5.150 6.978 0.381 1.976 4.832 0.235 0.433 0.455

A.5.2 REPLAY BATCH SIZE

The impact of the replay buffer batch size on model performance is explored by testing batch sizes
of 8, 16, 32, and 64. As noted in Section A.2.4, ER tends to occupy long runtime. This led us to
consider the trade-offs of modifying the batch size, aiming to pinpoint the scenarios where increasing
the batch size would result in meaningful performance gains that justify the extra computational
expense. By identifying these scenarios, we can make informed choices about when it is beneficial
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to choose larger batch sizes, weighing the improved performance against the downside of extended
runtime.

The MSE results are presented in Table 12. Overall, a batch size of 16 is more effective for the ECL
dataset, while the ETTh2 dataset benefits from a smaller batch size of 8, especially for a prediction
length of 48. For the Traffic dataset, no specific pattern emerges, and the results remain relatively
consistent across different batch sizes. Given the lack of significant performance gains with a larger
batch size like 64, it is recommended maintaining a smaller batch size of 8 or 16 in ER to minimize
the trade-off between efficiency and accuracy.

A.5.3 MODEL UPDATE FREQUENCY WITH ER

The impact of update frequency in ER on method performance is investigated. Performance com-
parisons are made using various update frequencies, as shown in Table 13. Whole numbers indicate
more frequent updates, while fractions denote less frequent updates. For instance, “3” signifies three
updates using the ER method, whereas “1/3” indicates one update for every three data streams.

Table 13: Impact of ER update frequency on method performance. In the “Freq” column, whole
numbers indicate more frequent updates, while fractions represent less frequent updates. For exam-
ple, a “3” in that column signifies updating the model three times using the ER method, while “1/3”
implies updating the model once for every three data streams that arrive.

ECL ETTh2 Traffic

Teacher Model Student Model Freq 1 24 48 1 24 48 1 24 48

DLinear MLP

1/3 2.066 4.769 6.892 0.373 1.849 3.302 0.246 0.514 0.563
1/2 2.072 4.75 6.562 0.370 1.78 3.187 0.244 0.516 0.562
1 2.07 4.767 6.21 0.378 1.732 3.058 0.243 0.546 0.609
2 2.074 4.799 6.035 0.362 1.704 3.088 0.250 0.521 0.559
3 2.09 4.814 6.085 0.362 1.699 3.116 0.248 0.532 0.567

FSNet MLP

1/3 2.425 5.829 7.025 0.555 3.227 5.942 0.334 0.406 0.445
1/2 2.384 5.623 7.075 0.629 3.415 6.1 0.320 0.411 0.443
1 2.233 5.446 6.475 0.669 3.392 5.188 0.334 0.420 0.398
2 2.389 5.469 6.833 0.614 2.955 5.311 0.325 0.417 0.464
3 2.334 5.468 6.783 0.711 3.081 5.889 0.316 0.423 0.471

PatchTST MLP

1/3 2.562 4.782 6.4 0.470 3.349 9.962 0.236 0.425 0.456
1/2 2.409 4.852 6.291 0.415 2.622 8.649 0.235 0.422 0.453
1 2.357 4.962 6.113 0.400 1.979 3.905 0.231 0.419 0.447
2 2.211 5.193 6.761 0.383 1.859 4.214 0.229 0.418 0.446
3 2.175 5.167 7.152 0.378 1.803 4.438 0.230 0.418 0.447

Contrary to the common belief, a higher frequency of ER updates may not necessarily lead to im-
proved performance. As an example, Figure 7a shows four distinct temporal distributions from the
Electricity dataset: the first spans from time step 1600 to 1660, the second from 1660 to 1715, the
third from 1715 to 1830, and the fourth from 1830 to 1875. Following the distributions transitions
at steps 1660, 1715, and 1830, a lower frequency of ER updates is associated with better perfor-
mance, as shown in Figure 7b, where the MSE values are smaller at these time steps. This may be
attributable to the model’s increased focus on TD loss when ER is less frequent, allowing for greater
emphasis on immediate ground truth over more distant data streams.

On the other hand, a lower frequency of ER updates limits the model’s adaptability to the new on-
going distribution after a transition. Between steps 1775 and 1830, as depicted in Figure 7a, lower
ER frequency leads to greater deviations from the ground truth. Meanwhile, as shown in Figure 7b,
high MSE values persist for a longer duration. This decline can be attributed to insufficient training
on in-distribution samples, which hampers generalization to near-future data. Therefore, it is advis-
able to strike a balance between learning from ER and TD loss, suggesting a moderate ER update
frequency, such as updating once for each data stream.
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Figure 7: Impact of ER update frequency on model performance across four temporal distributions
from the Electricity dataset: 1600-1660, 1660-1715, 1715-1830, and 1830-1875.

A.6 USE OF TEMPORAL DIFFERENCE LOSS AND ITS REGULARIZATION EFFECTS

A.6.1 REGULARIZATION EFFECTS

The impact of the TD loss, as described in Equation 6, and its regularization factor on forecasting
performance is examined using three datasets (ECL, ETTh2, ETTm1) with FSNet. Regularization is
controlled by adjusting the parameter γ of the TD loss. In Figure 8, γ = 0 indicates that the TD loss
is not used, and the model updates solely with ER during the online phase. In contrast, for γ = 1,
the model updates with the fast data stream using TD loss without any regularization.
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Figure 8: MSE results for various TD loss parameter choices. The parameter γ = 0 signifies that the
TD loss is not utilized, meaning the model updates solely based on ER during testing. In contrast,
when γ = 1, the model updates with the fast data stream without any regularization applied.

Figure 8 illustrates that the best results are not achieved with γ = 0 or γ = 1. Optimal performance
is attained with a specific degree of regularization. However, a drawback of our method is its sensi-
tivity to the choice of the regularization factor. For instance, in Figure 8a, failing to select γ = 0.9
may result in worse performance than either not using the TD loss or not using any regularization at
all.

A.6.2 ENHANCING PSEUDO LABEL CONSTRUCTION

Extending the method of constructing a pseudo label as described in Equation 5, a new parameter k
is introduced in Equation 8. This parameter allows for adjusting the balance between ground truth
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data and the teacher model’s predictions. The value k indicates the use of the most recent k ground
truth data points and the first H−k steps of teacher model’s prediction to construct the pseudo label.

X̃
(i)
i−k+1:i+H−k = [Xi−k+1:i, X̂

(T,i)
i+1,i+H−k] (8)

Using k = 1 makes the pseudo label unreliable due to limited ground truth data. We aim to explore
whether the student model can enhance its learning effectiveness as the value of k increases, or by
utilizing multiple values of k simultaneously.

Altering the values of k. In this experiment, our aim is to find the best ratio of ground truth values to
the teacher model’s predictions for constructing the pseudo label. Setting H = 48 and using DLinear
as the teacher model of DSOF, we conduct the experiment by selecting a single value of k instead
of multiple values for the fast stream, and testing with evenly distributed k values. Specifically, we
chose multiples of 4, i.e. k ∈ {1, 4, 8, 12, . . . , 40, 44}. As shown in Figure 9, smaller values of k
are preferred. The results align with our expectations, indicating that the model should be updated
more promptly with the most recent data points.
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Figure 9: MSE analysis for different values of k in pseudo label construction. The value k indicates
the use of the most recent k ground truth data points and the first H − k steps of teacher model’s
prediction for pseudo label construction.

Using Multiple Values of k Simultaneously. In this experiment, instead of relying solely on
the most recent data, we utilize a range of k values, specifically powers of 2 that are less than the
prediction sequence length. Specifically, at t = i, the fast data stream uses the batch of pseudo
labels {X̃(i)

i−k+1:i+H−k|k ∈ K}, where K = {2p|2p ≤ H, p ∈ N}, to update the student model. For
example, if H = 24 and t = 20, the fast data stream uses k ∈ {1, 2, 4, 8, 16}, resulting in the batch
[X̃

(20)
20:43, X̃

(20)
19:42, X̃

(20)
17:40, X̃

(20)
13:36, X̃

(20)
5:28 ].

Table 14: MSE comparison of between using a single k value (k = 1) and utilizing multiple k values
concurrently (k = 2p).

DLinear FSNet PatchTST

Datasets H k = 1 k = 2p k = 1 k = 2p k = 1 k = 2p

Electricity
24 4.737 4.803 5.475 5.323 5.169 5.191
48 6.181 6.022 7.000 6.821 6.665 6.566
96 10.661 10.393 10.023 9.839 11.248 10.249

ETTh2
24 1.701 1.713 3.114 2.742 1.925 1.874
48 3.082 3.015 5.318 4.959 4.473 3.970
96 5.609 5.323 9.526 9.446 17.363 13.351

In Table 14, the approach of using powers of 2 is denoted as k = 2p. The results indicate that this
method is particularly beneficial for larger values of H . For instance, applying to the ETTh2 dataset
using PatchTST with H = 96 provides significant improvements.
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A.7 LEARNING RATE SENSITIVITY ANALYSIS

This section explores the sensitivity of the learning rate in our method. The online learning rate αO

in Algorithm 1 is varied while keeping the batch learning rates constant. Performance comparisons
are made with learning rates ranging from 0.0001 to 0.003 at five intervals using four teacher model
backbones, DLinear, FSNet, PatchTST, and iTransformer, on ECL, as shown in Figure 10.
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Figure 10: Sensitivity analysis of the learning rate in our method, highlighting performance across
various online learning rates on the ECL dataset. By default, the student model is an MLP. In cases
where the student model is not used, the teacher model is continuously updated with ER and TD
loss, without separate forecasting heads.

We conduct comparisons under two different settings. In the first setting, similar to previous experi-
ments, by default, we use an MLP as the student model when one is employed. In the second setting,
when a student model is not used, the teacher model is continuously updated with ER and TD loss
without separate forecasting heads. During fast data stream updates, the teacher model adjusts its
parameters based on its predictions compared to pseudo labels, rather than freezing its training and
backpropagating it to the student model.

It is observed that training transformer backbones like iTransformer and PatchTST in an online
setting without a student model is more challenging and makes it harder to reach convergence. This
is particularly true for datasets like ECL, which exhibit significant fluctuations and large values,
even after standardization in data preprocessing. In such cases, a student model enhances robustness
to the learning rate. However, for non-transformer models like DLinear and FSNet, the teacher-
student model may be unnecessary. While the teacher-student model approach shows robustness
across various learning rates, a sufficiently small learning rate (e.g., less than 0.0001) can still yield
performance comparable to using only the teacher model.

A.8 IMPACT OF LOOK-BACK WINDOW LENGTH

In this section, we explore how the length of the look-back window impacts the forecasting per-
formance of various models. We consider the look-back window length as a hyperparameter and
perform a grid search over values L ∈ {24, 48, 96, 192} using selected datasets, models, and fore-
casting horizons.

Contrary to the common belief that longer look-back windows provide more information and thus
enhance forecasting performance, our findings suggest otherwise. The results shown in Table 15
reveal that, in most cases, model performance declines as the look-back window length increases.
Interestingly, a look-back window length of 24 often results in better performance, regardless of the
horizon window. This may be due to the ER strategy used. Recall that the slow stream must wait for
L+H steps to ensure it only includes data pairs for which all ground truth values have been received.
With larger L, the data sequences have to wait longer before being added to the buffer, which might
lead to a less informative slow stream and reduce the effectiveness of the ER procedure.
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Table 15: Impact of look-back window length L ∈ {24, 48, 96, 192} on MSE results across datasets
and forecasting horizons H .

DLinear iTransformer PatchTST

Datasets H/L 24 48 96 192 24 48 96 192 24 48 96 192

ECL
1 2.802 2.258 2.065 2.010 2.341 2.282 2.430 2.349 2.603 2.265 2.244 2.476
24 5.396 4.845 4.737 4.980 5.651 5.101 5.155 5.571 5.247 5.128 5.169 5.516
48 6.563 6.270 6.181 6.778 6.736 6.324 6.015 7.734 6.333 6.366 6.665 8.461

ETTh2
1 0.364 0.369 0.365 0.371 0.371 0.398 0.384 0.374 0.385 0.388 0.382 0.394
24 1.664 1.666 1.701 1.891 1.658 1.704 1.869 2.103 1.859 1.850 1.925 2.135
48 2.839 2.951 3.082 3.552 2.801 2.972 3.465 4.035 3.506 3.244 4.473 5.259

Ex.
1 0.009 0.009 0.009 0.010 0.009 0.011 0.010 0.014 0.010 0.009 0.011 0.010
24 0.092 0.093 0.095 0.101 0.095 0.100 0.110 0.115 0.093 0.101 0.103 0.107
48 0.184 0.186 0.192 0.205 0.206 0.228 0.218 0.305 0.188 0.202 0.213 0.242

B CONNECTING TEMPORAL DIFFERENCE LEARNING IN REINFORCEMENT
LEARNING TO DSOF

As outlined in Section 3.3.2, the fast stream leverages ideas from TD learning to quickly process
latest data and improve near-future forecasts. While the learning goals of RL and OTSF differ, both
fields share the challenge of updating models without complete access of ground truth informa-
tion. In this section, drawing inspiration from TD learning in RL, we demonstrate how the idea of
estimating the value of the next state can be applied to facilitate intermediate updates in OTSF.

Recall the definition of temporal difference learning in the context of reinforcement learning (Sutton
& Barto, 1999) as given in Equation 9, where V (Si) is the value of state S at time i, α is the learning
rate, Ri+1 is the reward given at i+ 1 and γV (Si+1) is the discounted value of the next state.

V (Si)←− V (Si) + α[Ri+1 + γV (Si+1)− V (Si)] (9)

We draw a connection between our scenario and TD learning in reinforcement learning in the fol-
lowing way:

• The agent corresponds to the student model.

• The state Si−1 corresponds to the teacher model’s prediction output X̂(T,i−1)
i:i+H−1 at time i−1.

• The action corresponds to the student model’s prediction output X̂(S,i−1)
i:i+H−1 at time i − 1,

based on the “state” X̂
(T,i−1)
i:i+H−1.

• The value V (Si−1) corresponds to the prediction output of the teacher-student model
X̂

(i−1)
i:i+H−1 at time i− 1.

• The reward Ri corresponds to the negative MSE between the first prediction point and the
ground truth xi, once it becomes available at time i.

• The discounted value of the next state, γV (Si), corresponds to the importance of the
teacher model’s prediction output at time i, X̂

(T,i)
i+1:i+H , relative to the teacher-student

model’s prediction at time i − 1, X̂(i−1)
i:i+H−1. In reinforcement learning, the discounted

factor is essential because the agent faces a probability of failure or uncertainty during ex-
ploration at each time step. This is similar to our OTSF scenario, where predictions for
data points further from the current observations become increasingly unreliable.

While insights from TD learning in RL can potentially enhance OTSF performance, OTSF should
not be framed as an RL problem because their primary objectives are fundamentally different. RL
focuses on optimizing sequence of actions for maximizing long-term rewards, whereas OTSF seeks
accurate near-future predictions for data streams which may have changing distributions. This dis-
tinction leads to unique algorithmic settings; for instance, in RL, the current action influences the
next state, whereas in OTSF, previous forecasts do not impact subsequent ones.
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(a) DLinear at step 5000. (b) DLinear at step 8000. (c) DLinear at step 19000.
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Figure 11: Visualization of the online learning process for ECL at steps 5000, 8000 and 19000.

C FORMULATION OF INFORMATION LEAKAGE IN EXISING ONLINE
LEARNING FRAMEWORKS

Information leakage occurs when data points previously used for model parameter updates are also
used for current evaluation.

In existing online learning frameworks, at time t = i, the model first takes in input sequence from
t = i− L−H + 2 to t = i−H + 1, then predicts values from t = i−H + 2 to t = i+ 1.

At t = i+1, the ground truth at t = i+1 becomes available, and the most recent prediction made at
t = i is utilized for evaluation. The model then updates its parameters using the ground truth from
t = i−H + 2 to t = i+ 1 and predicts values from t = i−H + 3 to t = i+ 2.

At t = i + 2, ground truth at t = i + 2 is available. The last prediction made at t = i + 1, with
timestamps from t = i−H + 3 to t = i+ 2, is being used for evaluation. Information leak occurs
here because ground truth with timestamps from t = i −H + 3 to t = i + 1 was already used for
parameter updates at t = i+ 1.

D ADDITIONAL VISUALIZATIONS

In this section, we offer additional insights into the prediction performance of DSOF in comparison
to batch learning, illustrating how it addresses various time series patterns across different datasets.
In addition to examples from the Traffic dataset in Figure 3, we also present examples from the
Electricity and ETTh2 datasets in Figure 11 and Figure 12, respectively.
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(a) DLinear at step 4900. (b) DLinear at step 7200. (c) DLinear at step 9000.

4900 4920 4940 4960 4980 5000 5020 5040
Timestamps

2.5
2.0
1.5
1.0
0.5
0.0

Fo
re

ca
st

 V
al

ue

7200 7220 7240 7260 7280 7300 7320 7340
Timestamps

5

4

3

2

1

Fo
re

ca
st

 V
al

ue
9000 9020 9040 9060 9080 9100 9120 9140

Timestamps

4

3

2

1

0

Fo
re

ca
st

 V
al

ue

(d) FSNet at step 4900. (e) FSNet at step 7200. (f) FSNet at step 9000.
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Figure 12: Visualization of the online learning process for ETTh2 at steps 4900, 7200 and 9000.

E DETAILED PERFORMANCE COMPARISON RESULTS

E.1 GENERAL FORECASTING RESULTS

This section provides a detailed performance comparison between our framework and batch learning
across various datasets and backbones, as outlined in Section 4.1. While Table 2 highlights average
results across all seeds, the standard deviation is also included here in Table 16. The results show
performance stability and robustness against variability from random weight initialization, with most
standard deviations being less than 0.1.
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