
FEASIBLE ADVERSARIAL ROBUST REINFORCEMENT
LEARNING FOR UNDERSPECIFIED ENVIRONMENTS
SUPPLEMENTARY MATERIALS

(a)

Figure 1: Worst-case MuJoCo Walker2D reward among task parameterizations in the feasible set
Fλ as a function of PSRO iterations for FARR and other baselines with multiple values of λ.

1



A MUJOCO FEASIBLE SETS

For MuJoCo experiments, in order to measure each objective’s worst-case average episode reward
among feasible tasks, we evaluate on a discrete approximation of Fλ. In these environments, Θ
represents parameters of a beta distribution B(α, β), α ∈ (0, 10], β ∈ (0, 10] sampled from each
timestep to generate horizontal perturbing forces applied to the simulated robot. We consider a dis-
cretization of Θ with 11 different values in [0.01, 10] for both α and β. For each each combination
θ = (α, β), we train 7 seeds of a RL best-response BR(θ) to completion using the same hyperparam-
eters as the protagonist. The average final utility Up(BR(θ), θ) across seeds is then used to calculate
Fλ using equation (1). In Figure 2, for each environment, we show the 7-seed average Up(BR(θ), θ)
for every value of θ and the resulting feasible sets Fλ (shown in green) that we evaluate robustness
to for each value of λ.

(a) (b)

(c) (d)

(e) (f)

Figure 2: (a,c,e) Estimated values for Up(BR(θ), θ) across the two parameters α and β that the
adversary has control over. (b,d,f) The feasible sets Fλ used for evaluation marked in green for each
value of λ.

2



B MUJOCO LEARNED ADVERSARY STRATEGIES

After running PSRO to completion, the output strategies are both a protagonist mixed strategy σp

and an adversary mixed strategy σθ that should jointly approximate a Nash equilibrium to each of the
two-player zero-sum game objectives we optimize. In figures 3, 4, and 5, we display the distribution
of θ values induced by the final MuJoCo adversary mixed strategies σθ for the minimax, regret, and
FARR objectives. For each λ value considered, we overlay in shades of green the number of BR(θ)
seeds used in measuring Fλ that achieved a final average episode reward greater than or equal for
λ.

Across all environments, the minimax adversary consistently selects the most difficult θ values pos-
sible outside of any variations considered feasible with the λ values tested. In contrast, FARR mixes
between θ values both well inside of the feasible regions and at the edges where task variations are
as challenging as possible while remaining feasible.

Figure 3: HalfCheetah θ distributions induced by the final adversary PSRO mixed strategy σθ for
each objective.

3



Figure 4: Hopper θ distributions induced by the final adversary PSRO mixed strategy σθ for each
objective.

Figure 5: Walker2D θ distributions induced by the final adversary PSRO mixed strategy σθ for each
objective.

4



C PROPERTIES OF NASH EQUILIBRIA FOR THE FARR TRANSFORMED GAME

In this section we show that solving for Nash equilibria in the FARR transformed game will give
the same result as solving for NE in a regular minimax robust RL game with the adversary strategy
space already limited to only feasible strategies. The benefit of solving the FARR game is that the
set of feasible adversary strategies does not need to be known a priori.

Define the set of λ-infeasible adversary strategies as Iλ = Θ \ Fλ. Define the set of all possi-
ble protagonist strategies πp as Π∗

p. For both protagonist utility functions Uλ
p and Up, the adver-

sary’s utility function Uλ
a and Ua is the negative of the protagonist’s, Uλ

a (πp, θ) = −Uλ
p (πp, θ) and

Ua(πp, θ) = −Up(πp, θ) for any πp and θ.
Theorem 1. For sufficiently large C, a Nash equilibrium joint strategy σ∗

FARR of a FARR transformed
game GFARR with utility function Uλ

p , protagonist strategies Π∗
p and all adversary strategies Θ is also

a Nash equilibrium of a reduced game Greduced with utility function Up, protagonist strategies Π∗
p,

and only λ-feasible adversary strategies Fλ.

Proof. Let C take a sufficiently large value greater than any utility achievable by the protagonist
C > maxπp,θ Up(πp, θ). Since Uλ

a (πp, θ
′) = −C when θ′ ∈ Iλ, then for any θ′ ∈ Iλ, any θ ∈ Fλ,

and any πp ∈ Π∗
p: Uλ

a (πp, θ
′) < −Up(πp, θ) = Uλ

a (πp, θ). It follows, as long as Fλ is nonempty,
that for all θ′ ∈ Iλ there exists an adversary strategy θ ∈ Fλ which achieves higher adversary utility
against every πp ∈ Π∗

p, thus all λ-infeasible adversary strategies θ′ ∈ Iλ are strictly dominated in
the FARR transformed game.

If all θ′ ∈ Iλ are strictly dominated then they are not in the support of any Nash equilibrium for
GFARR. Furthermore, it is possible to remove strategies θ′ ∈ Iλ though iterated elimination of
strictly dominated strategies (IESDS) to reduce GFARR to Greduced since the adversary strategy set for
Greduced is Θ \ Iλ = Fλ and for all θ ∈ Fλ and πp ∈ Π∗

p: Uλ
p (πp, θ) = Up(πp, θ). If Greduced is an

outcome of IESDS from GFARR, then if σ∗
FARR is a NE of GFARR, it is also an NE of Greduced.

By employing a penalty C rather than directly pruning infeasible strategies from the PSRO restricted
game, the FARR objective can be defined without consideration to the mechanics of any specific
algorithm like PSRO. The FARR objective can potentially be optimized with two-player zero-sum
game methods other than PSRO as well, though exploring the use of more optimization methods is
left to future work.

D SELECTING VALUES FOR λ

FARR is most applicable when the appropriate value for λ can be derived from problem require-
ments. For instance, λ would ideally be set to the lowest average return that an optimal agent would
receive across task variations in deployment. This value could come from the environment defini-
tion, where doable tasks provide a minimum level of return if accomplished. Alternatively, λ could
be chosen by anticipating the maximum difficulty of task variations that would be seen at test-time
or on which robust performance is important to the practitioner.

In the case where an appropriate value of λ is completely unknown and cannot be derived from
problem requirements, in a low-dimensional task variation space, manually tuning the adversary’s
capabilities without FARR may be appropriate. In a complex, high-dimensional task variation space,
searching for a useful λ may be easier than a direct search over the space of adversary legal strategy
sets because λ presents a single variable to tune, rather than a large number of legal parameter
ranges or complex conditional constraints between adversary-specified parameters that may need to
be defined. In this work, we consider the case where λ can be derived from problem requirements.

5



E PSRO COMPARISON WITH SELF-PLAY

In Lava World, for each of the two-player zero-sum game objectives, we compare PSRO to self-play
in which the protagonist, adversary, and evaluator πθ

e continuously train together. For all self-play
agents, we train with PPO to enable stochastic policies like PSRO is able to output. Regret self-play
matches the original PAIRED algorithm from Dennis et al. (2020).

Figure 6: Worst-case average episode reward among goals in Fλ vs timesteps collected for each
two-player zero-sum game objective optimized with both PSRO and PPO Self-Play.

Although self-play may potentially yield competitive performance in some scenarios, unlike PSRO,
it lacks any guarantees of converging to an approximate Nash equilibrium in two-player zero-sum
partially-observable Markov or extensive-form games. Seen in Figure 6, we see that self-play for
both FARR and PAIRED fails to converge, reaching a maximum feasible-space worst-case average
reward of -9 as agent policies cycle and learn to represent nearly deterministic strategies during most
points in training. The NE for Lava World requires a mixed-strategy in which the adversary samples
a high-entropy (non-uniform) distribution of hidden goals. The degenerate solution to Minimax is
reached by both algorithms.

F ENVIRONMENT DETAILS

F.1 LAVA WORLD

In the Lava World grid environment, the protagonist uses discrete actions to move in each of the
4 cardinal directions. For observations, the protagonist receives a one-hot encoding of its current
location, and the protagonist does not observe the goal location. The adversary strategy space Θ is
to define the hidden goal location and consists of every grid cell location in the environment’s 5x5
grid with the exception of the protagonist’s fixed starting location.

The protagonist receives a reward of -1 in each timestep that it does not reach the hidden goal
location suggested by the adversary and -15 if it moves into a lava cell, even if the lava cell was a
goal. An episode ends after either 20 timesteps elapse or the goal is reached.

F.2 MUJOCO ENVIRONMENTS

The MuJoCo environments use the Mujoco physics engine (Todorov et al., 2012) and are modified
versions of the perturbed robotic control environments originally presented in Pinto et al. (2017).

In each environment variation (HalfCheetah, Hopper, Walker2D), a max episode duration of 200
timesteps is imposed, and the proportion of time remaining in the range [0, 1] is appended to each
task’s original observation. We use the continuous action space variants of each task.

The adversary strategy space Θ consists of continuous α and β parameters in the range (0, 10]
for a beta distribution B(α, β) used to generate horizontal perturbing forces sampled and applied
to the robot’s torso every timestep. Each timestep, a new horizontal force F ∈ [−Fmax, Fmax],
F = X(2Fmax)− Fmax is generated where X ∼ B(α, β) and Fmax = 100.

6



When discretizing values of θ = (α, β) for evaluation purposes to measure a policy’s performance
across values in Θ or Fλ, we use α, β ∈ {0.01, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0}.

G TRAINING DETAILS

Protagonist RL training details are provided below for each environment. Policies used to estimate
BR(θ) for a given θ use the same training procedure and parameters as the protagonist. Like Dennis
et al. (2020), we train protagonist policies on the easier-to-learn unmodified environment reward Up

rather than our two-player game objective Uλ
p because the only component of the game utility that

the protagonist can affect is Up. A protagonist best-response that maximizes Up also maximizes Uλ
p .

Critically, we still calculate Uλ
p in the PSRO empirical payoff matrix UΠ

λ and use UΠ
λ to calculate

the meta-game NE strategy σ = (σp, σθ).

G.1 LAVA WORLD

We train Lava World protagonist RL policies using DDQN Van Hasselt et al. (2016). All Lava World
protagonist RL policies are stopped training after either 150,000 timesteps are collected or once per-
formance plateaus (average episode return doesn’t improve by 0.5 over 20,000 timesteps and a min-
imum of 80,000 timesteps is collected). Lava World DDQN hyperparameters are presented below.
Our RL code was built using the RLlib framework Liang et al. (2018), and any hyperparameters not
specified are the version 1.0.1 defaults. We use an infeasibility penalty of C = 50.

algorithm DDQN Van Hasselt et al. (2016)
circular replay buffer size 50,000
prioritized experience replay No
total rollout experience gathered each iter 8 steps
learning rate 0.007
batch size 1024
optimizer Adam (Kingma & Ba, 2014)
TD-error loss type MSE
target network update frequency every 4,000 steps
MLP layer sizes [256, 256]
activation function tanh
discount factor γ 1.0
exploration ϵ Linearly annealed from 0.5 to 0.01

over 20,000 timesteps

Table 1: Lava World protagonist DDQN hyperparameters

algorithm PPO Schulman et al. (2017)
GAE λ 0.9
entropy coeff 0.007
clip param 0.276
KL target 3e-4
KL coeff 0.0016
learning rate 5e-4
train batch size 8192
SGD minibatch size 64
num SGD epochs on each train batch 40
shared policy and value networks No
value function clip param 10
MLP layer sizes [256, 256]
activation function Tanh
discount factor γ 1.0

Table 2: Lava World PPO self-play protagonist hyperparameters

7



algorithm PPO Schulman et al. (2017)
GAE λ 0.95
entropy coeff 0.006
clip param 0.292
KL target 0.092
KL coeff 0.168
learning rate 3e-4
train batch size 8192
SGD minibatch size 64
num SGD epochs on each train batch 30
shared policy and value networks No
value function clip param 100
MLP layer sizes [256, 256]
activation function Tanh
discount factor γ 1.0

Table 3: Lava World PPO self-play adversary hyperparameters

In PSRO, to calculate the payoff matrix UΠ
λ , we estimate Up(πp, θ) for each pairing of player policies

πp ∈ Πp and θ ∈ Πθ using a single rollout because both Lava World environment dynamics and
evaluation DDQN policies are deterministic. The normal-form meta-game Nash Equilibrium over
UΠ
λ is calculated using 2000 iterations of Fictitious Play (Brown, 1951). Calculating the meta-game

NE typically takes a second or less of wall-time compute.

During PSRO evaluation, we measure the performance of the protagonist meta-game mixed strategy
σp, in which a new protagonist policy πp ∼ σp is sampled at the begining of each episode.

In self-play, the adversary is trained as a single-step agent via PPO. For simplicity, we keep the same
network architecture for all self-play agents, and the adversary observes a constant vector of zeros.

8



G.2 MUJOCO

We train MuJoCo environment protagonist RL policies using PPO (Schulman et al., 2017). Each
PPO model consists of an MLP followed by an LSTM with shared weights between the policy and
value function, branching into final output layers after the LSTM. PPO hyperparameters for each
MuJoCo environment are presented below. Any hyperparameters not specified are the RLlib version
1.0.1 defaults. We use an infeasibility penalty of C = 1e6.

algorithm PPO Schulman et al. (2017)
GAE λ 0.9
entropy coeff 0.01
clip param 0.001
KL target 0.004
KL coeff 0.522
learning rate 5e-4
train batch size 4096
SGD minibatch size 64
num SGD epochs on each train batch 5
shared policy and value networks Yes
value function loss coeff 0.001
value function clip param 100
continuous action range [-1.0, 1.0] for each dim
MLP layer sizes [32]
activation function Tanh
LSTM cell size 32
LSTM max sequence length 20
discount factor γ 0.99
RL policy training stopping condition 7e6 timesteps

Table 4: HalfCheetah PPO hyperparameters

algorithm PPO Schulman et al. (2017)
GAE λ 0.9
entropy coeff 0.001
clip param 0.002
KL target 0.036
KL coeff 0.013
learning rate 7e-4
train batch size 4096
SGD minibatch size 32
num SGD epochs on each train batch 5
shared policy and value networks Yes
value function loss coeff 0.001
value function clip param 10
continuous action range [-1.0, 1.0] for each dim
MLP layer sizes [64, 64]
activation function Tanh
LSTM cell size 32
LSTM max sequence length 20
discount factor γ 0.99
RL policy training stopping condition 6e6 timesteps

Table 5: Hopper PPO hyperparameters

9



algorithm PPO Schulman et al. (2017)
GAE λ 0.95
entropy coeff 0.0
clip param 0.014
KL target 0.005
KL coeff 0.007
learning rate 9e-4
train batch size 1024
SGD minibatch size 64
num SGD epochs on each train batch 10
shared policy and value networks Yes
value function loss coeff 1e-4
value function clip param 1000
continuous action range [-1.0, 1.0] for each dim
MLP layer sizes [32]
activation function Tanh
LSTM cell size 32
LSTM max sequence length 20
discount factor γ 1.0
RL policy training stopping condition 6e6 timesteps

Table 6: Walker2D PPO hyperparameters

In PSRO, to calculate the payoff matrix UΠ
λ , we estimate Up(πp, θ) for each pairing of player policies

πp ∈ Πp and θ ∈ Πθ using 100 rollouts as perturbed MuJoCo environment transition dynamics are
stochastic. The normal-form meta-game Nash Equilibrium over UΠ

λ is also calculated using 2000
iterations of Fictitious Play.

Although PSRO convergence guarantees are not provided for continuous-action environments, in
McAleer et al. (2021), McAleer et al. (2022), and our own experiments, PSRO reliably produces
meta-game NE mixed strategies that are empirically difficult for an opponent to exploit.

H COMPUTATIONAL COSTS

Experiments were performed on a local computer with 128 logical CPU-cores, 4 RTX 3090 GPUs,
and 512GB of RAM. Due to small network sizes and comparably high overhead of CPU-based en-
vironments, logging, and other tasks, most experiments were performed without GPU acceleration.
All individual training runs for a given player against a fixed opponent took 5 CPU-cores each.
Lava world experiments individually ran for roughly 8 to 24 hours each, while MuJoCo experiments
individually ran for roughly 72 hours each.

I CODE

A GitHub link for our experiment code will be provided under the MIT license in an updated version
of this work.

Our code is written on top of the RLlib framework (Liang et al., 2018) and uses environments
built using the MuJoCo physics engine (Todorov et al., 2012), both of which are open-source and
available under the Apache-2.0 Licence.

REFERENCES

George W. Brown. Iterative solution of games by fictitious play. Activity analysis of production and
allocation, pp. 374–376, 1951.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. arXiv preprint arXiv:2012.02096, 2020.

10



Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In International Conference on Machine Learning, pp. 3053–3062. PMLR, 2018.

Stephen McAleer, John Banister Lanier, Kevin A Wang, Pierre Baldi, and Roy Fox. Xdo: A double
oracle algorithm for extensive-form games. Advances in Neural Information Processing Systems,
34:23128–23139, 2021.

Stephen McAleer, Kevin Wang, Marc Lanctot, John Lanier, Pierre Baldi, and Roy Fox. Anytime
optimal psro for two-player zero-sum games. arXiv preprint arXiv:2201.07700, 2022.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In International Conference on Machine Learning, pp. 2817–2826. PMLR, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI conference on artificial intelligence, volume 30, 2016.

11


	MuJoCo Feasible Sets
	MuJoCo Learned Adversary Strategies
	Properties of Nash Equilibria for the FARR Transformed Game
	Selecting Values for 
	PSRO Comparison with Self-Play
	Environment Details
	Lava World
	MuJoCo Environments

	Training Details
	Lava World
	MuJoCo

	Computational Costs
	Code

