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A SUPPLEMENTARY MATERIAL

A.1 EXPERIMENTS

Model evaluation. In Figure 8, we illustrate how we evaluate networks at various resolutions in
our experimental setup, after having trained them at a fixed resolution.

With standard networks, inference must always take place at the training resolution; lower-resolution
input signals must be rediscretized to a higher resolution first to be compatible.

With ARRNs evaluated without rediscretization, we follow the process we usually apply with stan-
dard networks; the lower-resolution input signal is rediscretized to a higher resolution, and all resid-
uals are used. The grey parts of the illustration are not skipped.

With ARRNs evaluated with rediscretization, lower-resolution input signals go directly to matching
lower-resolution residuals, which reduces computational cost. The grey parts of the illustration are
skipped. When input signals have a resolution that falls in between the resolution of the residuals,
we must first rediscretize the input signals to match either the resolution of the residual above or
the resolution of the residual below. For CIFAR10 and CIFAR100, we round up in resolution. For
TinyImageNet and STL10, we round down in resolution. We find this offers consistent performance
with good inference time.
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Figure 8: Schematized view showing how standard networks and ARRNs perform inference on
lower resolution signals. Each grid shows the resolution of an intermediate signal at some stage in
the forward pass of either network; black arrows show the relationship between each intermediate
signal in the forward pass; black lines highlight changes in signal resolution. In ARRNs with redis-
cretization enabled, the intermediate signals faded to grey are skipped.

Model design. The method we propose leaves much freedom for the design of ARRNs; the num-
ber of Laplacian residuals, their resolution, their number of features, and their inner architectural
block can all be freely picked. The architectural hyperparameters we used in our experiments were
found using a series of hand searches and block coordinate searches, maximizing the average accu-
racy over evaluated resolutions.
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We use inner architectural blocks that take inspiration from the parameter-efficient convolutional
layers that are used within MobileNetV2 (Sandler et al., 2018) and EfficientNetV2 (Tan & Le, 2021),
illustrated in Figure 9, Figure 10, Figure 11, Figure 12. We use a string of 2, 3, 4 and 4 depthwise
3⇥3 convolutions for CIFAR10, CIFAR100, TinyImageNet and STL10 respectively, each separated
with pointwise (1 ⇥ 1) convolutions. All depthwise convolutions use edge replication padding in
order to satisfy Equation 6 and ensure resolution remains fixed within Laplacian residuals. The
whole string of convolutions is preceded by a pointwise convolution that expands the feature channel
count by a factor of 8, 8, 4 and 8 for CIFAR10, CIFAR100, TinyImageNet and STL10. This is
terminated by a pointwise convolution that contracts the feature channel count inversely by the
same factor to restore the original feature channel count. Each convolution is separated by a batch
normalization (Ioffe & Szegedy, 2015) and a SiLU activation function (Elfwing et al., 2018), chosen
for its tendency to produce fewer aliasing artifacts.
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Figure 9: High-level diagram of an inner architectural block nested within a Laplacian residual, in
the CIFAR10 ARRN.
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Figure 10: High-level diagram of an inner architectural block nested within a Laplacian residual, in
the CIFAR100 ARRN.
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Figure 11: High-level diagram of an inner architectural block nested within a Laplacian residual, in
the TinyImageNet ARRN.
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Inner Architectural Block (STL10)

Pointwise
Expand by 8

Pointwise
Contract by 8

SiLUBN SiLUBNDepthwise

SiLUBN SiLUBNDepthwisePointwise

SiLUBN SiLUBNDepthwisePointwise

SiLUBN SiLUBNDepthwisePointwise

Figure 12: High-level diagram of an inner architectural block nested within a Laplacian residual, in
the STL10 ARRN.

For CIFAR10 and CIFAR100, we settled with 6 Laplacian residual blocks of resolution 32⇥32, 24⇥
24, 16 ⇥ 16, 12 ⇥ 12, 8 ⇥ 8, 4 ⇥ 4 with feature channel counts of 32, 48, 64, 96, 128, 256. When
enabled, we use a Laplacian dropout rate of 0.6 and 0.3 on CIFAR10 and CIFAR100 respectively.

For TinyImageNet, we pick 4 Laplacian residual blocks of resolution 64⇥64, 32⇥32, 16⇥16, 8⇥8
with feature channel counts of 32, 128, 256, 512. When enabled, we use a Laplacian dropout rate of
0.3.

For STL10, we use 5 Laplacian residual blocks of resolution 96⇥96, 48⇥48, 24⇥24, 12⇥12, 6⇥6
with feature channel counts of 16, 32, 64, 128, 256. When enabled, we use a Laplacian dropout rate
of 0.3.

Model training. For CIFAR10 and CIFAR100, across all methods, we use AdamW (Loshchilov &
Hutter, 2017) with a learning rate of 10�3 and (�1,�2) = (0.9, 0.999), cosine annealing (Loshchilov
& Hutter, 2016) to a minimum learning rate of 10�5 in 100 epochs, weight decay of 10�3, and a
batch size of 128. We use a basic data augmentation consisting of normalization, random horizontal
flipping with p = 0.5, and randomized cropping that applies zero-padding by 4 along each edge to
raise the resolution, then crops back to the original resolution.

For TinyImageNet and STL10, across all methods, we use SGD with a learning rate of 10�2, cosine
annealing (Loshchilov & Hutter, 2016) to a minimum learning rate of 0 in 100 epochs, weight decay
of 10�3, and a batch size of 128. We use TrivialAugmentWide (Müller & Hutter, 2021) to augment
training.

15


	Introduction
	Related Works
	Background
	Laplacian pyramids

	Method
	Laplacian residuals
	Laplacian dropout

	Experiments
	Robustness
	Rediscretization: correctness
	Rediscretization: inference time
	Rediscretization: adaptation time

	Discussion
	Supplementary Material
	Experiments


