
Robust Algorithms on Adaptive Inputs from Bounded Adversaries

(Full Version)

Anonymous Submission

Abstract

We study dynamic algorithms robust to adaptive input generated from sources with bounded
capabilities, such as sparsity or limited interaction. For example, we consider robust linear
algebraic algorithms when the updates to the input are sparse but given by an adversary with
access to a query oracle. We also study robust algorithms in the standard centralized setting,
where an adversary queries an algorithm in an adaptive manner, but the number of interactions
between the adversary and the algorithm is bounded. Together, we provide a unified framework
for answering Q adaptive queries that incurs Õ(

√
Q) overhead in space, which is roughly a

quadratic improvement over the näıve implementation, and only incurs a logarithmic overhead
in query time. Our general framework has diverse applications in machine learning and data
science, such as adaptive distance estimation, kernel density estimation, linear regression, range
queries, and point queries. Surprisingly, we show that these novel subroutines for each of these
problems can be generally combined with the elegant use of differential privacy to hide the
internal randomness of various subroutines, leading to robust algorithms across these different
settings. In addition, we demonstrate even better algorithmic improvements for (1) reducing the
pre-processing time for adaptive distance estimation and (2) permitting an unlimited number of
adaptive queries for kernel density estimation.

1

1 Introduction

Robustness to adaptive inputs or adversarial attacks has recently emerged as an important desirable
characteristic for algorithm design. An adversarial input can be created using knowledge of the
model to induce incorrect outputs on widely used models, such as neural networks [BCM+13,
SZS+14, GSS15, CW17a, MMS+18]. Adversarial attacks against machine learning algorithms in
practice have also been documented in applications such as network monitoring [CBK09], strategic
classification [HMPW16], and autonomous navigation [PMG16, LCLS17, PMG+17]. The need for
sound theoretical understanding of adversarial robustness is also salient in situations where successive
inputs to an algorithm can be possibly correlated; even if the input is not adversarially generated,
a user may need to repeatedly interact with a mechanism in a way such that future updates may
depend on the outcomes of previous interactions [MNS11, GHS+12, BMSC17, NY19, AMYZ19].
Motivated by both practical needs and a lack of theoretical understanding, there has been a recent
flurry of theoretical studies of adversarial robustness. The streaming model of computation has
especially received significant attention [BJWY21, HKM+20, WZ21, KMNS21, BHM+21, ACSS21,
CGS22, ABJ+22, CGS22, BEO22]. More recently, there have also been a few initial results for
dynamic algorithms on adaptive inputs for graph algorithms [Waj20, BKM+21, BvdBG+22]. These
works explored the capabilities and limits of algorithms for adversaries that were freely able to
choose the input based on previous outputs by the algorithm.

However, in many realistic settings, adversarial input is limited in its abilities. For example,
adversarial attacks in machine learning are often permitted to only alter the “true” input by a small
amount bounded in norm. For the L0 norm, this restriction means that the adversary can only add
a sparse noise to the true input. More generally, it seems reasonable to assume that adversarial
input is generated from a source that has bounded computation time or bounded interactions with
an honest algorithm.

1.1 Our Contributions

In this paper, we study algorithms robust to adaptive/adversarial input generated from sources with
bounded capabilities. We first study dynamic algorithms for adaptive inputs from a source that
is restricted in sparsity. Namely, we consider robust linear algebraic algorithms when the updates
to the label can be adversarial but are restricted in sparsity. We then study robust algorithms in
the standard centralized setting, where an adversary queries an algorithm in an adaptive manner,
but the number of interactions between the adversary and the algorithm is bounded. Surprisingly,
we show that combining novel subroutines for each of these problems in conjunction with a simple
but elegant idea of using differential privacy to hide the internal randomness of various subroutines,
e.g., [HKM+20, BKM+21] suffices to achieve robust algorithms across these different settings.

Dynamic algorithms on adaptive input for regression. Motivated by the problem of label
shift in machine learning, we consider a dynamic version of least-squares regression, where the labels
get updated. In this model, we are given a fixed design matrix and a target label that receives a
sequence of updates. After each one, the algorithm is asked to output an estimate of the optimal
least-squares objective. The goal of the algorithm is to maintain the objective value within a
multiplicative factor (1 + ε) to the optimal.

More specifically, the algorithm is given a fixed design matrix A ∈ Rn×d with n ≥ d and an initial
response vector (i.e., label) b(1), which receives updates over time. We are interested in estimating

2

the least-squares objective value F (A,b) = min
x∈Rd
∥Ax− b∥22 as the target label b undergoes updates.

The updates to b are adaptively chosen by an adversary but can only affect at most K entries of b
per step. Formally, on the i-th round:

(1) The adversary provides an update to K entries of the b(i−1), possibly depending on all previous
outputs of the algorithm.

(2) The algorithm updates its data structure and outputs an estimate F̂i of Fi = F
(
A,b(i)

)
.

(3) The adversary observes and records the output F̂i.

The goal of the adversary is to create a sequence of labels
(
b(i)

)T
i=1

that induces to algorithm
to output an inaccurate estimate. To deal with adaptivity, a näıve idea is to treat each step as
an independent least-squares regression problem. However, this approach uses a completely new
approximation of the objective value for each update, which seems potentially wasteful. On the
other hand, any randomness that is shared by computations over multiple updates can potentially
be leveraged by the adversary to induce an incorrect output.

Our main result is an algorithm that beats the näıve algorithm in this challenging, adaptively
adversarial setting. We provide a general result with run-time dependence on n, d,K, and the
number of nonzero entries in A, nnz(A).

Theorem 1.1 (Informal; see Theorem 3.4). Let κ(A) = O (1) and ε ∈ (0, 1). There exists a
dynamic algorithm that given adaptively chosen K-sparse updates to b and a fixed design matrix
A ∈ Rn×d, outputs a (1 + ε) approximation to the least-squares objective F (A,b(i)) every round

with high probability. The algorithm uses Õ
(√

K nnz(A)/ε3
)
amortized time per step of update.

Specifically, the update time is d1.5 when K ≤ d and n = O (d) and square root of the input
sparsity when K = O (1). Notice that this significantly betters the näıve approach of treating each
step independently and solving for the least-square objective, which requires O (nnz(A)) + poly(d)
time by sketching [Woo14].

We mention that a recent work by Jiang, Peng and Weinstein [JPW22] considers a row-arrival
model for dynamic linear regression. Our setting is different since we allow arbitrary updates to the
target label, whereas in their setting the design matrix undertakes incremental change. We note
that their algorithm maintains a solution vector, while we focus on the cost only. In particular,
approximating the squared error loss is important in applications such as distributed functional
monitoring [CMY11], where a number of sites are continuously monitored by a central coordinator,
who can choose to perform a certain action if the regression cost becomes too high or too low. For
example, if the cost is too high then perhaps the current set of features needs to be expanded to
obtain better prediction, while if the cost is low enough, perhaps the coordinator is satisfied with
the current predictor. On the other hand, these sites can be sensors, computers, or even entire
networks and so certain sites may act in particular ways depending on the actions of the central
coordinator. Certain sites may even act maliciously and thus it is important for the algorithm to be
adversarially robust.

Adaptive query framework. We then consider robust algorithms in the standard centralized
setting, where an adversary queries an algorithm in an adaptive manner. In many key algorithmic
applications, randomization is necessary to achieve fast query time and efficient storage. This

3

necessitates the need for robust versions of these algorithm which can efficiently employ the power
of randomness while also being accurate across multiple possibly correlated inputs. Our main
parameters of interest are query time and the space used by a robust algorithm compared to their
näıve, non robust, counterparts.

Formally, we define the model as a two-player game between an algorithm HonestAlg over a data
set X and an adversary A that makes adversarial queries about X to HonestAlg. At the beginning
of the game, HonestAlg uses pre-processing time to compute a data structure D from X to answer
future queries from A. The game then proceeds in at most Q rounds for some predetermined Q, so
that in the t-th round, where t ∈ [Q]:

(1) A computes a query qt on X, which depends on all previous responses from HonestAlg.

(2) HonestAlg uses D to output a response dt to query qt.

(3) A observes and records the response dt.

The goal of A is to formulate a query qt for which the algorithm HonestAlg produces an incorrect
response dt. We remark that the algorithm may not have access to X, after constructing D, to
respond to the query qt. On the other hand, A can use previous outputs to possibly determine
the internal randomness of the data structure D and make future queries accordingly. In this case,
the analysis of many randomized algorithms fails because it assumes that the randomness of the
algorithm is independent of the input. Consequently, it does not seem evident how to handle Q
adaptive queries without implementing Q instances of a non-adaptive data structure, i.e., each
instance handles a separate query. Thus, a natural question to ask is whether a space overhead of
Ω(Q) is necessary.

We show that a space overhead of Ω(Q) is unnecessary by giving a unified framework with only
an Õ

(√
Q
)
space overhead.

Theorem 1.2. Given a data structure D that answers a query q with probability at least 3
4 using space

S and query time T , there exists a data structure that answers Q adaptive queries, with high proba-
bility, i.e., 1− 1

poly(n,Q) , using space O
(
S
√
Q log(nQ)

)
and query time Õ

(
T log(nQ) + log3(nQ)

)
.

To concretely instantiate our framework and state an example, we consider the adaptive distance
estimation problem defined as follows. In the adaptive distance estimation problem, there exists
a set X = {x(1), . . . ,x(n)} of n points in Rd. We are also given an accuracy parameter ε > 0. A
query is of the form q, and the algorithm must output a (1 + ε)-approximation to ∥x(i) − q∥p for
all i. The trivial solution of storing all n points and computing all n distances to a query point
uses space and query time O (nd). [CN20] improved the query time to Õ

(
n+d
ε2

)
at the cost of using

Õ
(
(n+d)d

ε2

)
space and Õ

(
nd2

ε2

)
pre-processing time, while permitting an arbitrary number of queries.

By comparison, our data structure handles Q queries of approximate distances from a specified point

in X, using query time Õ
(
n+d
ε2

)
, pre-processing time Õ

(
nd
√
Q

ε2

)
, and space Õ

(
(n+d)

√
Q

ε2

)
. Thus, in

the regime where d≫ n
√
Q, our data structure already improves on the work of [CN20].

A noticeable weakness of our construction is that the Q queries return only the approximate
distance between a query point and a single point in X, whereas [CN20] outputs approximate
distances to all points in X. Moreover, [CN22] subsequently improve the pre-processing time to
Õ
(
nd
ε2

)
. Thus we open up our framework to (1) show that it can be further improved to handle the

case where we return the approximate distances of all points in X from Q adaptive query points
and (2) achieve pre-processing time Õ

(
nd
ε2

)
.

4

Theorem 1.3. There is a data structure which, when instantiated with dataset X = {xi}i∈[n] ⊂ Rd

and query bound Q ≤ d, answers any sequence of Q adaptively chosen distance estimation queries
correctly with probability at least 0.99. Furthermore, the space complexity of the data structure is
Õ(ε−2 · n

√
Q) and the setup and query times are Õ(ε−2 · nd) and Õ(ε−2 · (n+ d)), respectively.

Another application of our framework is the adaptive kernel density estimation problem, where
there exists a set X = {x(1), . . . ,x(n)} of n points in Rd and the goal is to output a (1 + ε)-
approximation to the quantity 1

n

∑
i∈[n] k(x

(i),q), for an accuracy parameter ε > 0, a query q, and
a kernel function k, under the promise that the output is at least some threshold τ > 0. [BIW19]

give an algorithm for kernel density estimation that uses O
(

1
τε2

)
space and O

(
d√
τε2

)
query time,

improving over the standard algorithm that samples O
(

1
τε2

)
points and then uses O

(
d

τε2

)
query

time to output the empirical kernel density. However, the analysis for both of these algorithms fails
for the adaptive setting, where there can be dependencies between the query and the data structure.
By using the data structure of [BIW19] as a subroutine, our framework immediately implies an

algorithm for adaptive kernel density estimation that uses Õ
(√

Q
τε2

)
space and O

(
d logQ√

τε2

)
query time

to answer each of Q adaptive queries. In this case, we are again able to go beyond our framework
and give a data structure that handles an unlimited number of adaptive kernel density queries:

Theorem 1.4. Suppose the kernel function k is L-Lipschitz in the second variable for some L > 0,
i.e., |k(x,y)− k(x, z)| ≤ L∥y− z∥2 for all x,y, z ∈ Rd. Moreover, suppose that for all ∥x−y∥2 ≤ ρ,
we have k(x,y) ≤ τ

3 . Then an algorithm that produces a kernel density estimation data structure D
that is L-Lipschitz over a set X of points with diameter at most ∆ and outputs a (1+ε)-approximation
to KDE queries with value at least τ with probability at least 1− δ using space S(n, ε, τ, log δ) and
query time T (n, ε, τ, log δ), then there exists a KDE data structure that with probability at least 0.99,
outputs a (1 + ε)-approximation to any number of KDE queries with value at least τ using space

S
(
n,O (ε) ,O (τ) ,O

(
d log (∆+ρ)L

ετ

))
and query time T

(
n,O (ε) ,O (τ) ,O

(
d log (∆+ρ)L

ετ

))
.

Additionally, we show that our framework guarantees adversarial robustness for a number of
other important problems such as nearest neighbor search, range queries, point queries, matrix-vector
norm queries, and linear regression. Finally, we supplement our theoretical results with a number of
empirical evaluations.

1.2 Our Techniques

Dynamic regression on adaptive inputs. Our dynamic algorithm for dynamic maintenance
of the least-squares objective exploits two main ideas. First, standard results in sketching and
sampling show that it suffices to solve for the sketched objective of minx∈Rd ∥SAx− Sb∥22, where
S is an ℓ2 subspace embedding for A. Here, we exploit several techniques from the numerical
linear algebra and in particular use leverage score sampling to obtain a subspace embedding S
of A. By standard results in sketching, a (1 + ε) optimal solution is given by x∗ = (SA)†Sb.
Moreover, since the goal is to output the objective value instead of the solution vector, we may take
a Johnson-Lindenstrauss (JL) sketch to further reduce dimensionality and run-time. This allows us
to focus on ∥GAx∗ −Gb∥22, where G ∈ RO(log d)×n is a JL sketch.

As a result, our algorithm dynamically maintains a solution GA(SA)†b in this sketched space.
To achieve that, we first explicitly solve GA(SA)† in pre-processing. Since GA has few rows, this
reduces to a small number of linear solves and can be computed fast via conjugate gradient-type

5

methods. To handle the updates, we leverage their sparsity to efficiently maintain the solution and
show that each round takes roughly O (K) time. Amortizing the pre-processing with the update
costs over all iterations yields our desired run-time.

Finally, we apply techniques from differential privacy to ensure adversarial robustness, by
aggregating independent copies of the algorithm via a private median mechanism. Intuitively,
the private mechanism hides the internal randomness of the algorithm and therefore prevents the
adversary from otherwise choosing a “bad” input based on knowledge of internal parameters.

Adaptive query framework. Our framework maintains Õ
(√
Q
)
instances of the non-adaptive

data structure and crucially uses differential privacy (DP) to protect the internal randomness of
the data structures. In addition to our previous results for dynamic regression and k-cut queries
on adaptive input, the technique of using DP to hide randomness has recently been used in the
streaming model [HKM+20, KMNS21] and the dynamic model [BKM+21]. These works elegantly
use the advanced composition property of DP to bound the number of simultaneous algorithms that
must be used in terms of the number of times the output changes “significantly” over the course of
the stream. In the streaming model, the robust algorithms proceed by instantiating many “hidden”
copies of a standard randomized algorithm. As the stream arrives, the algorithms are updated
and an answer, aggregated using DP, is reported. Crucially, many of these results exploit the fact
that the output answer is monotonic in the stream so that there is a known upper bound on the
final output. Thus, the reported answers can only increase by a multiplicative factor at most a
logarithmic number of times, which is used to bound the initial number of algorithms which are
initialized. In our centralized setting, this can be imagined as setting the parameter Q. The main
parameter of interest in the streaming literature is the space used by the streaming algorithms,
whereas we are concerned with both space usage and query times. Furthermore, stream elements
are only accessed one at a time and cannot be processed together unless memory is used. In our
case, the dataset is given to us upfront and we can pre-process it to construct a data structure
towards solving a centralized problem.

The work [BKM+21] shares many of these ideas: the authors are concerned with dynamic graph
algorithms where an adversary can update the graph in an adaptive fashion. Similar tools such
as multiple randomized initialization and aggregated responses using DP are utilized. The main
difference is their parameters of interest: the goal of [BKM+21] is to have a fast amortized update
time across many queries. This necessitates the need to “throw away” existing algorithms and start
with fresh randomness at intermittent points. In contrast, we study a centralized setting where the
underlying dataset is not updated but we wish to answer Q adaptive queries on the dataset.

Inspired by these works, our main framework also uses advanced composition to show the
sufficiency of maintaining Õ

(√
Q
)
data structures to answer Q adaptive queries in the centralized

setting, which gives a rich set of applications. Moreover, to improve the query time of our algorithms,
we further invoke the privacy amplification of sampling to show that it suffices to output the private
median of a small subset, i.e., a subset of size O (logQ), of these Õ

(√
Q
)
data structures. Thus

our framework only incurs a logarithmic overhead in query time and an Õ
(√
Q
)
overhead in space.

Surprisingly, our simple framework gives diverse applications for adaptive algorithms on a number of
important problems, including estimating matrix-vector norms, adaptive linear regression, adaptive
range query search, adaptive nearest neighbor search, and adaptive kernel density estimation, to
name a few. These applications are discussed in depth in Section 4. We also emphasize that
for several applications of our framework such as adaptive distance estimation or adaptive kernel

6

density estimation, we additionally use specific sophisticated techniques for these problems to further
improve our algorithmic guarantees. As a simple example, for adaptive kernel density estimation,
we provide a data structure robust to an arbitrary number of adaptive queries, which cannot be
handled by either our general framework or the techniques of [BKM+21].

Adaptive distance estimation. To achieve better pre-processing time for adaptive distance
estimation, our main technique is to sample groups of rows from a Hadamard transform and
argue that an interaction with a separate group should be considered in separate privacy budgets,
effectively arguing that outputting n approximate distances to a single adaptive query only uses one
unit of privacy budget. By contrast, our black-box framework charges one unit of privacy budget
per approximate distance, so that outputting n approximate distances would use n units of privacy
budget.

Adaptive kernel density estimation. Theorem 1.4 is based on showing that with constant
probability, our data structure is accurate on all possible queries in Rd. In particular, we first show
that our data structure is accurate on a sufficiently fine net of points through a standard union
bound argument, which incurs the d overhead compared to the space required to handle a single
query. We then show that if the algorithm and the kernel function are both Lipschitz, which is true
for sampling-based algorithms and a number of standard kernel functions, then accuracy on the net
implies accuracy on all possible points in Rd.

2 Preliminaries

Notations. In this paper, we use [n] for a positive integer n > 0 to denote the set {1, . . . , n}.
We use poly(n) to denote a fixed polynomial in n. We say an event occurs with high probability
if it occurs with probability 1− 1

poly(n) . For real numbers a, b and positive ε, we say a = (1± ε)b
if (1 − ε)b ≤ a ≤ (1 + ε)b. Let ei ∈ Rn be the i’th standard basis vector. Let X+ denote
the Moore-Penrose pseudo-inverse of matrix X. Let ∥X∥ denote the operator norm of X. Let
κ(X) = ∥X+∥ ∥X∥ denote the condition number of X.

2.1 Differential Privacy

Much of our technical results leverage tools from DP. We recall its definition and several key
statements.

Definition 2.1 (Differential privacy, [DMNS06]). Given ε > 0 and δ ∈ (0, 1), a randomized
algorithm A : X ∗ → Y is (ε, δ)-differentially private if, for every neighboring datasets S and S′ and
for all E ⊆ Y,

Pr [A(S) ∈ E] ≤ eε ·Pr
[
A(S′) ∈ E

]
+ δ.

Theorem 2.2 (Amplification via sampling, e.g., [BNSV15]). Let A be an (ε, δ)-differentially private
algorithm for ε ≤ 1, δ ∈ (0, 1). Given a database S of size n, let A′ be the algorithm that constructs
a database T ⊂ S by subsampling (with replacement) s ≤ n

2 rows of S and outputs A(T). Then A′
is (ε′, δ′)-differentially private for

ε′ =
6εk

n
, δ′ = exp(6εk/n)

4kδ

n
.

7

Theorem 2.3 (Private median, e.g., [HKM+20]). Given a database D ∈ X∗, there exists an (ε, 0)-
differentially private algorithm PrivMed that outputs an element x ∈ X such that with probability at
least 1− δ, there are at least |S|2 − k elements in S that are at least x, and at least |S|2 − k elements

in S in S that are at most x, for k = O
(
1
ε log

|X|
δ

)
.

Theorem 2.4 (Advanced composition, e.g., [DRV10]). Let ε, δ′ ∈ (0, 1] and let δ ∈ [0, 1]. Any
mechanism that permits k adaptive interactions with mechanisms that preserve (ε, δ)-differential

privacy guarantees (ε′, kδ + δ′)-differential privacy, where ε′ =
√
2k ln 1

δ′ · ε+ 2kε2.

Theorem 2.5 (Generalization of DP, e.g., [DFH+15, BNS+21]). Let ε ∈ (0, 1/3), δ ∈ (0, ε/4), and
n ≥ 1

ε2
log 2ε

δ . Suppose A : Xn → 2X is an (ε, δ)-differentially private algorithm that curates a
database of size n and produces a function h : X → {0, 1}. Suppose D is a distribution over X and
S is a set of n elements drawn independently and identically distributed from D. Then

Pr
S∼D,h←A(S)

[∣∣∣∣∣ 1

|S|
∑
x∈S

h(x)− E
x∼D

[h(x)]

∣∣∣∣∣ ≥ 10ε

]
<
δ

ε
.

2.2 Numerical Linear Algebra

Our results on dynamic regression relies upon some tools in numerical linear algebra. We first recall
the dimensionality reduction techniques.

Theorem 2.6 (Johnson-Lindenstrauss transformation, ε-JL). Given ε > 0, there exists a family of
random maps Πm,d ∈ Rm×d with m = O

(
1
ε2

)
such that for any x ∈ Rd, we have

Pr
Π∼Πm,d

[(1− ε)∥x∥2 ≤ ∥Πx∥2 ≤ (1 + ε)∥x∥2] ≥
3

4
.

Moreover, Πx takes O
(

d
ε2

)
time to compute.

Theorem 2.7 (Fast JL). Given ε > 0, there exists a family of random maps Πm,d ∈ Rm×d with

m = O
(
log d
ε2

)
such that for any x ∈ Rd, we have

Pr
Π∼Πm,d

[(1− ε)∥x∥2 ≤ ∥Πx∥2 ≤ (1 + ε)∥x∥2] ≥
3

4
.

Moreover, Πx takes O
(
log d
ε2

+ d log d
)
time to compute.

A row sampling matrix S has rows that are multiples of natural basis vectors, so that SA is a
(weighted) sample of the rows of A. A column sampling matrix is defined similarly. The size of a
row/column sampling matrix is defined as the number of rows/columns it samples. The leverage
score of the ith row a⊤i of A is

τi(A)
def
= a⊤i

(
A⊤A

)+
ai.

For a survey on leverage score and applications, we refer the reader to [Mah11].

8

Definition 2.8 (Leverage score sampling). Let u be a vector of leverage score overestimates, i.e.,
τi(A) ≤ ui. Let α be a sampling rate parameter and c be a fixed positive constant. For each row, we
define a sampling probability pi = min {1, α · uic log d}. The leverage score sampling matrix is a row
sampling matrix S with independently chosen entries such that Sii =

1√
pi

with probability pi and 0

otherwise.

Definition 2.9 (Subspace embedding). A (1± ε) ℓ2 subspace embedding for the column space of an
n× d matrix A is a matrix S for which for all x ∈ Rd

∥SAx∥22 = (1± ε)∥Ax∥22.

Theorem 2.10 (Leverage sampling implies subspace embedding, Theorem 17 of [Woo14]). Let
α = ε−2 and c be a sufficiently large constant. With high probability, the leverage score sampling
matrix is a (1± ε) ℓ2 subspace embedding. Furthermore, it has size O

(
d log d/ε2

)
.

The approximate leverage scores can be computed in input-sparsity time. Afterwards, repeated
sampling from the leverage score distribution can be done efficiently using the binary tree data
structure in quantum-inspired numerical linear algebra.

Lemma 2.11 (Leverage score computation and sampling data structure; see [Woo14, CCH+22]).
Let A ∈ Rn×d. There exists an algorithm that given A outputs a vector of row leverage score
overestimates with high probability and in run-time Õ (nnz(A) + poly(d)).

Furthermore, there exists a sampling data structure DLS that stores the row leverage scores of
A such that given a positive integer m ≤ n, returns a leverage score sample of A of size m in
O (m log(mn)) time. In total, the pre-processing takes O (nnz(A) + poly(d)) time.

3 Details on Dynamic Regression

In this section, we consider the dynamic problem of maintaining the cost of the least-squares
regression, where the labels receive adaptively chosen updates.

We first introduce the basic setting of the problem in Section 3.1. In Section 3.2, we design a key
subroutine under non-adaptive updates. The data structure enjoys a nearly linear update time. This
allows us to aggregate multiple copies of the procedure and thereby efficiently ensure adversarial
robustness against an adaptive adversary. The argument is via an application of differential privacy
and detailed subsequently in Section 3.3.

3.1 Basic Setting

Let A ∈ Rn×d be the design matrix and b ∈ Rn be the target label. A classic problem in numerical
linear algebra and optimization is to solve the ℓ2 least-squares regression objective

F (A,b) = min
x∈Rd

∥Ax− b∥22 =
∥∥∥AA†b− b

∥∥∥2
2
. (3.1)

We consider a dynamic version of the problem, where the design matrix A remains unchanged.
However, at each step (at most) K entries of b undergo an update. Moreover, we assume that the
updates are chosen adaptively by an adversary in the following manner.

• The algorithm starts by receiving the input A ∈ Rn×d and b(1) ∈ Rn.

9

• In the i-th step, the algorithm outputs an estimate F̂i of the cost F (A,b(i)), where b(i) is the
target label corresponding to the step.

• The adversary observes F̂i and updates at most K labels to form b(i).

Let b(1),b(2), . . . ,b(T) ∈ Rn be the resulting sequence of labels over T steps. The goal of the
algorithm is to output a (1 + ε) approximation to the optimal cost at every step, while minimizing
the update time.

3.2 Dynamic Algorithm for Oblivious Inputs

In this section, we provide a key subroutine that maintains a data structure under oblivious updates.
On a high-level, the data structure aims to enable a sketch-and-solve strategy dynamically. The
main ideas are two fold: (1) apply randomized sketching to reduce dimensionality and therefore
the run-time, and (2) exploit the sparsity of the updates to argue that the regression costs can be
maintained efficiently.

Before delving into the technical details, we give an overview of the algorithm.

Overview of the algorithm. We start by assuming that the algorithm has access to DLS (via
Lemma 2.11), the row leverage score sampling data structure for A. In preprocessing, the algorithm
samples a leverage score sketching matrix S ∈ Rk×n from DLS , where k = O(d log d/ε2). This
provides a (1 + ε) ℓ2 subspace embedding for A. Standard results in sketching imply that it suffices
to solve for the sketched objective of minx∈Rd ∥SAx− Sb∥22 [Sar06, CW13, CW17b, Woo14]. Let

Â = SA. Then a (1 + ε) optimal solution is thus given by Â†b. Moreover, our goal is to maintain
the regression cost, rather than this solution vector. Hence, we can apply Johnson–Lindenstrauss
lemma and focus on

min
x∈Rd

∥SAx− Sb∥22 ≈
∥∥∥GA(SA)†Sb−Gb

∥∥∥2
2
, (3.2)

where G ∈ RO(logn/ε2)×n is a JL sketch.
Next, we describe how to track the cost value dynamically. We stress that the sketching matrices

S and G are sampled upfront in the preprocessing stage and remain fixed afterwards. The algorithm
stores G and M = GA(SA)†, both computed in preprocessing. Meanwhile, it maintains Gb(i),Sb(i),
initialized at i = 1. In the first step, given the initial target label b(1), the algorithm computes Sb(i),

M
(
Sb(1)

)
and Gb(1). Then it outputs F̂1 =

∥∥MSb(1) −Gb(1)
∥∥2
2
as an estimate of the regression

cost.
Let’s consider the i-th step, where the label is updated to b(i). First, we read the K labels that

get changed and update Sb(i−1) to Sb(i) accordingly. This can be done in O(K) time. Finally, we

simply compute M(Sb(i)) and Gb(i) and output F̂i =
∥∥MSb(i) −Gb(i)

∥∥2
2
. We store Gb(i) for the

next iteration.
We now describe the algorithm formally, followed by an analysis of its run-time and accuracy.

Formal description of the algorithm. We assume DLS for A is given. The data structure
is initialized by drawing the sketching matrices G and S. We also compute M = GSA(SA)† in
preprocessing. This matrix is stored explicitly throughout.

10

Algorithm 1 Initialize the data structure, i.e., preprocessing

Input: Design matrix A ∈ Rn×d, initial label b(1) ∈ Rn, DLS , ε ∈ (0, 1)
1: Let k = Θ

(
d log d/ε2

)
2: Sample a (1 + ε/2) ℓ2 leverage score row sampling matrix S ∈ Rk×n for A from DLS .
3: Sample a JL sketch matrix G ∈ RCε−2 logn×n, for a sufficiently large C, by Theorem 2.6.
4: Compute and store M = GA(SA)†.

At each step, the algorithm computes Sb(i) by reading all K entries of bi−1 that are updated in

the step. After that, compute M(Sb(i)) and Gb(i) and output
∥∥Mb(i) −Gb(i)

∥∥2
2
. The algorithm is

formally given by Algorithm 2.

Algorithm 2 Update data structure and maintain regression cost

Input: Matrices G ∈ RCε−2 logn×n,S ∈ Rk×n,M ∈ RÕ(1/ε
2)×k and the label b(i)

Output: Estimate of the regression cost F
(
A,b(i)

)
1: Compute Sb(i) by reading all K entries of b(i−1) that are updated.
2: Compute M

(
Sb(i)

)
and Gb(i). ▷Store MSb(i),Sb(i), Gb(i) for the next round.

3: Output F̂i =
∥∥MSb(i) −Gb(i)

∥∥2
2
.

Analysis of the algorithm. We now analyze the run-time of the algorithm. First, consider the
preprocessing stage performed by Algorithm 1.

Lemma 3.1 (Preprocessing time). Assuming access to the leverage score sampling data structure
DLS, the preprocessing time of Algorithm 1 is

O
(√

κ(A) nnz(A) log
1

ε
+

nnz(A)

ε2
log n+

d

ε2
log n

)
. (3.3)

Proof. By Lemma 2.11, the guarantee of the sampling data structure DLS , it takes O(k log(nd))
time to obtain a leverage score sample S of size k. Drawing the JL sketch is straightforward, and
standard constructions such as i.i.d. Gaussian entries require O(k log n/ε2) times to form G.

Finally, we need to compute M. Computing GA requires O
(
nnz(A)

ε2
log n

)
time by sparse matrix

multiplication. Moreover, since GA is a matrix of O
(
logn
ε2

)
rows, then computing (GA)(SA)†

reduces to O
(
logn
ε2

)
number of linear system solves with respect to SA ∈ Rk×d. By conjugate

gradient type methods, since κ(SA) = (1± ε)κ(A), each solve can be achieved to high accuracy in

O
(√

κ(A) log(1/ε)
)
number of matrix-vector products with respect to A [GVL13]. In total, this

gives a run-time of O
(√

κ(A) nnz(A) log(1/ε)
)
.

Lemma 3.2 (Update time). The update time of Algorithm 2 is O
(
K
ε2

log n
)
per step.

Proof. First, the algorithm reads the K entries that are updated and compute the Sb(i) from
Sb(i−1). This step takes O(K) time, since we just need to update the entries that lie in the support

11

of the row sampling matrix S. Similarly, in step 2 of Algorithm 2 we can update Gb(i−1) to Gb(i)

in O(K log n/ε2) time. Since S is a row sampling matrix and b(i) only has K entries updated, then
Sb(i) has at most K entries updated as well. It follows that given M

(
Sb(i−1)) from the prior round,

M
(
Sb(i)

)
can be updated in O

(
K
ε2

log n
)
time.

Lemma 3.3 (Accuracy). Given a stream of T = O(d2) non-adaptive updates and error parameter
ε ∈ (0, 1/4), Algorithm 2 outputs an estimate F̂i of the regression cost F (A,b(i)) such that F̂i =
(1± ε)F (A,b(i)) for all i with high probability.

Proof. First, we apply the subspace embedding property of S. This implies that with high probability,

min
x

∥∥∥SAx− Sb(i)
∥∥∥2
2
= (1± ε/2)min

x

∥∥∥Ax− b(i)
∥∥∥2
2
.

Apply the JL lemma (Theorem 2.6), where we consider the collection of O
(
d2
)
(1 + ε) optimal

predictions {y∗i }Ti=1 with y∗i = A(SA)†b(i). Via union bound, we have that with high probability
for all i ∈ [T] ∥∥∥Gy∗i −Gb(i)

∥∥∥2
2
= (1± ε/2)

∥∥∥y∗i − b(i)
∥∥∥2
2
.

Our algorithm precisely solves for y∗i each iteration. Combining the two equations above finishes
the proof.

3.3 Dynamic Algorithm with Adversarial Robustness

To put everything together and ensure adversarial robustness, our full algorithm maintains Γ =

O
(√

T log(nT)
)
independent copies of the key subroutine for T = O

(
nnz(A)
ε2K

)
. Then at each step,

we output the private median of the outputs of these copies. Advanced composition of DP ensures
robustness up to T rounds. Afterwards, the algorithm reboots by rebuilding the copies, using fresh
randomness independently for sampling and computing the sketching matrices.

Algorithm 3 Preprocessing step for Algorithm 4

Input: A design matrix A ∈ Rn×d, an approximation factor ε ∈ (0, 1).
Output: The leverage score sampling data structure DLS for A.
1: Compute the approximate row leverage scores of A. ▷Lemma 2.11
2: Build and output the data structure DLS

Theorem 3.4 (Main theorem; dynamic maintenance of regression cost). Let ε ∈ (0, 1/4) be an
error parameter and b(1) be the initial target label. Given ε,A,b(1), a stream of T adaptively chosen,
K-sparse updates to the label, Algorithm 4 outputs an estimate F̂i such that F̂i = (1± ε)F (A,b(i))
for all i with high probability.

Furthermore, the algorithm requires a preprocessing step in time Õ (nnz(A) + poly(d)). The
amortized update time of the algorithm is

Õ
(√

K nnz(A)
(√

κ(A) + ε−3
))

per round.

12

Algorithm 4 Dynamic algorithm for maintaining regression cost under adaptive updates

Input: A sequence of target labels
{
b(i)

}m

i=1
and a fixed design matrix A ∈ Rn×d, an approximation

factor ε ∈ (0, 1), the leverage score sampling data structure DLS for A.
Output: Estimates of the regression cost F (A,b(i)) under adaptively chosen updates to b.

1: for every epoch of T = O
(
nnz(A)
ε2K

)
updates do

2: Initialize Γ = O
(√

T log (nT)
)
independent instances of the data structure in Section 3.2

via Algorithm 1.

3: Run PrivMed on the Γ instances with privacy parameter ε′ = O
(

1√
T log(nT)

)
with failure

probability δ = 1
poly(m,T) .

4: For each query, return the output of PrivMed.

Proof. We focus on any fixed epoch of T iterations. Let {Ai}Γi=1 be the collection of Γ data structures
maintained by the Algorithm 4 and Ti be the transcript between Algorithm 4 and the adversary at
round i, consisting of the algorithm’s output and the update requested by the adversary.

To handle a sequence of T adaptive queries, consider the transcript T (R) = {T1, . . . , TT },
where R denotes the internal randomness of Algorithm 4. Note that for a fixed iteration, Ti
is

(
O
(

1√
T log(nT)

)
, 0
)
-differentially private with respect to the algorithms A1, . . . ,AΓ, since the

private median algorithm PrivMed is
(
O
(

1√
T log(nT)

)
, 0
)
-differentially private. By the advanced

composition of differential privacy, i.e., Theorem 2.4, the transcript T is
(
O (1) , 1

poly(n)

)
-differentially

private with respect to the algorithms A1, . . . ,AΓ.
Algorithm 4 runs Γ instances of the data structure with error parameter ε. For any given round

i ∈ [T], we say that an instance j ∈ [Γ] is correct if its output fi,j is within a (1 ± ε) factor of
F (A,b(i)) and incorrect otherwise. For a fixed i, let Yj be the indicator variable for whether fi,j is
correct.

From the generalization properties of differential privacy, i.e., Theorem 2.5, we have that for any
fixed iteration i,

Pr

∣∣∣∣∣∣ 1Γ
∑
j∈[Γ]

Yj − E [Y]

∣∣∣∣∣∣ ≥ 1

10

 <
1

poly(m,T)
,

where Y denotes the indicator random variable for whether a random instance of the algorithm A
(not necessarily restricted to the m instances maintained by the algorithm) is correct at the given
round i. Since a random instance A has randomness that is independent of the adaptive update,
then E [Y] ≥ 3

4 . Therefore, by a union bound over all T rounds, we have

Pr

 1

Γ

∑
i∈[Γ]

Yi > 0.6

 > 1− 1

poly(m,T)
,

which implies that the output on the ith round is correct with probability at least 1 − 1
poly(m,T) ,

since T = d. Then by a union bound over i ∈ [T] for all T rounds within an epoch, we have that the
data structure answers all T queries with probability 1− 1

m2 , under the adaptively chosen updates.

13

Finally, by a union bound over all m updates, we have that the algorithm succeeds with probability
at least 1− 1

m .
We now analyze the run-time of the algorithm. The preprocessing time follows from the

guarantee of Lemma 2.11. For update time, we amortize over each epoch. Within an epoch, we

invoke Γ = O
(√

T log(nT)
)
copies of the data structure in Section 3.2, and so we consider the

preprocessing and update time from there and amortize over the epoch length T . By Lemma 3.1,

each copy takes β = O
(√

κ(A) nnz(A) log 1
ε +

nnz(A)
ε2

log n+ d
ε2

log n
)
time to pre-process. For

every step of update, each copy takes O
(
K
ε2

log n
)
time by Lemma 3.2. Therefore, the amortized

update time for every epoch of length T = O
(
nnz(A)
ε2K

)
is

O
(
1

T

(
Γβ + ΓT

(
K

ε2
log n

)))
= Õ

(√
K nnz(A)

(√
κ(A) + ε−3

))
. (3.4)

This completes the proof.

3.4 An Exact and Deterministic Algorithm

We now give a simple deterministic algorithm for the dynamic regression problem based on an SVD
trick. Let A = UΣV⊤ be the SVD of A, where U ∈ Rn×d,Σ ∈ Rd×d and V ∈ Rd×d. The starting
observation is that for any solution vector x, we can write the regression cost as

∥Ax− b∥ =
∥∥∥UΣV⊤x− b

∥∥∥ =
∥∥∥ΣV⊤x−U⊤b

∥∥∥ , (3.5)

since U is orthonormal. The goal is the maintain the solution vector x = A†b and the associated
right-side quantity

∥∥ΣV⊤x−U⊤b
∥∥.

Now suppose we compute A† ∈ Rd×n and U⊤ ∈ Rd×n in pre-processing, and A†b(1) and U⊤b(1)

in the first round. Then since all subsequent updates to b are all K-sparse, we only pay O(dK)
time per step to maintain A†b(i) and U⊤b(i).

Algorithm 5 A simple SVD-based algorithm for dynamic regression

Input: Design matrix A ∈ Rn×d, its pseudoinverse A† ∈ Rd×n and its SVD A = UΣV⊤, a
sequence of labels b(i) ∈ Rn

1: Compute and store SVD A = UΣV⊤, where U ∈ Rn×d,Σ ∈ Rd×d,V ∈ Rd×d

2: Compute and store A† from the SVD. ▷In the 1st-round, compute and store A†b(1),U⊤b(1).
3: for each update b(i) do
4: Update and store x(i) = A†b(i)

5: Update and store U⊤b(i)

6: Output Fi =
∥∥ΣV⊤x(i) −U⊤b(i)

∥∥2
2

The algorithm is formally given by Algorithm 5. Observe that the algorithm always maintains
the exact optimal regression cost. Moreover, the procedure does not require any randomness, and
therefore it is adversarially robust to adaptive inputs. We formally claim the following guarantees
of the algorithm.

14

Theorem 3.5 (Deterministic maintenance of regression costs). Given A,b(1) and a stream of
adaptively chosen, K-sparse updates to the label, Algorithm 5 takes O(dK) time to update and
maintain the exact regression cost F (A,b(i)) at all iterations i. The pre-processing requires an SVD
of A, in O(n2d) time.

4 A Simple Framework for Adversarial Robustness

In this section, we describe our main framework, which enables Q adaptive queries to a data
structure by using Õ

(√
Q
)
copies of a non-adaptive data structure. We show that through

advanced composition of differential privacy, the private median of Õ
(√
Q
)
copies protects the

internal randomness of each non-adaptive data structure while still adding sufficiently small noise
to guarantee accuracy. Moreover, we use amplification of privacy by sampling to only consider a
small subset of the Õ

(√
Q
)
non-adaptive data structures to further improve the runtime.

Algorithm 6 Adaptive Algorithm Interaction

1: r ← O
(√
Q log2(nQ)

)
, k ← O (log(nQ))

2: for i ∈ [r] do
3: Implement data structure Di on the input

4: for each query qi, i ∈ [Q] do
5: Let S be a set of k indices sampled (with replacement) from [r]
6: For each j ∈ [k], let di,j be the output of DSj on query qi
7: di ← PrivMed({di,j}j∈[k]), where PrivMed is (1, 0)-DP

We first argue that Algorithm 6 maintains accuracy against Q rounds of interaction with an
adaptive adversary. Let R = {R(0), R(1), . . . , R(r)}, where R(1), . . . , R(r) denotes the random strings
used by the oblivious data structures D1, . . . ,Dr and R(0) denotes the additional randomness
used by Algorithm 6, such as in the private median subroutine PrivMed. Consider a transcript
T (R) = {T1, . . . , TQ} such that for each i ∈ [Q], we define Ti = (qi, di) to be the ordered pair
consisting of the query qi and the corresponding answer di by Algorithm 6 using the random string
R(0), as well as the oblivious data structures D1, . . . ,Dr with random strings R(1), . . . , R(r). We
remark that di is a random variable due to the randomness of each data structure, as well as the
randomness of the private median subroutine PrivMed.

We will first argue that the transcript TR is differentially private with respect to R. Similar
arguments were made in the streaming model by [HKM+20] and in the dynamic model [ACSS21,
BKM+21].

Lemma 4.1. For a fixed iteration, Ti is
(
O
(

1√
Q log(nQ)

)
, 0
)
-differentially private with respect to

R.

Proof. We first observe that PrivMed is (1, 0)-differentially private on the outputs of the r =
O
(√
Q log2(nQ)

)
data structures. Algorithm 6 samples k = O (log(nQ)) groups of data structures

from the r total data structures. Thus by amplification via sampling, i.e., Theorem 2.2, PrivMed is(
O
(

1√
Q log(nQ)

)
, 0
)
-differentially private. Therefore, Ti is

(
O
(

1√
Q log(nQ)

)
, 0
)
-differentially private

with respect to R.

15

We next argue that the entire transcript is differentially private with respect to the randomness R.

Lemma 4.2. T is
(
O (1) , 1

poly(nQ)

)
-differentially private with respect to R.

Proof. By Lemma 4.1, for each fixed iteration i ∈ [Q], the transcript Ti is
(
O
(

1√
Q log(nQ)

)
, 0
)
-

differentially private with respect to R. Note that the transcript T is an adaptive composition of the
transcripts T1, . . . , TQ. Thus, by the advanced composition of differential privacy, i.e., Theorem 2.4,

the transcript T is
(
O (1) , 1

poly(nQ)

)
-differentially private with respect to R.

We now prove the correctness of our unifying framework.

Proof of Theorem 1.2: For a fixed query qi with i ∈ [Q], let S be the corresponding set of
k indices sampled from [r]. Let V be the set of valid answers on query qi. Let Ij be an indicator
variable for whether the output di,j on query qi by DSj is correct, so that Ij = 1 if di,j ∈ V and
Ij = 0 if di,j /∈ V. By assumption, we have that for each j ∈ [k],

Pr [Ij = 1] ≥ 3

4
,

so that E [Ij] ≥ 3
4 . We define the random variable I = 1

k

∑
j∈[k] Ij so that by linearity of expectation,

E [I] = 1
k

∑
j∈[k] E [Ij] ≥ 3

4 .
To handle a sequence of Q adaptive queries, we consider the transcript T (R) = {T1, . . . , TQ} for

the randomness R = {R(0), R(1), . . . , R(r)} previously defined, i.e., for each i ∈ [Q], Ti = (qi, di) is
the ordered pair consisting of the query qi and the corresponding answer di by Algorithm 6 using
the random string R(0), as well as the oblivious data structures D1, . . . ,Dr with random strings

R(1), . . . , R(r). By Lemma 4.2, we have that T is
(
O (1) , 1

poly(nQ)

)
-differentially private with respect

to R.
For j ∈ [k], we define the function success(R(Sj)) to be the indicator variable for whether the

output di,Sj by data structure DSj is successful on query qi. For example, if D is supposed to answer

queries within (1 + α)-approximation, then we define success(R(Sj)) to be one if di,Sj is within a
(1 + α)-approximation to the true answer on query qi, and zero otherwise. From the generalization
properties of differential privacy, i.e., Theorem 2.5, we have

Pr

∣∣∣∣∣∣1k
∑
j∈[k]

success(R(Sj))− E
R

[
success(R)

]∣∣∣∣∣∣ ≥ 1

10

 <
1

poly(n,Q)
,

for sufficiently small O (1). Therefore, by a union bound over all Q queries, we have

Pr

1

k

∑
i∈[k]

Ii > 0.6

 > 1− 1

poly(n,Q)
,

which implies that di is correct on query qi. Then by a union bound over i ∈ [Q] for all Q adaptive
queries, we have that the data structure answers all Q adaptive queries with high probability. □

Theorem 1.2 has applications to a number of central problems in data science and machine
learning, such as adaptive distance estimation, kernel density estimation, nearest neighbor search,

16

matrix-vector norm queries, linear regression, range queries, and point queries. In the remainder
of the section, we formally describe the range queries, point queries, matrix-vector norm queries,
and linear regression problems; we defer discussion of adaptive distance estimation, kernel density
estimation, and nearest neighbor search to the subsequent sections.

4.1 Application: Matrix-Vector Norm Queries

In the matrix-vector norm query problem, we are given a matrix A ∈ Rn×d and we would like to
handleQ adaptive queries x(1), . . . ,x(Q) for an approximation parameter ε > 0 by outputting a (1+ε)-
approximation to ∥Ax(i)∥p for each query x(i) ∈ Rd with i ∈ [Q]. Here we define ∥v∥pp =

∑
i∈[d](vi)

p

for a vector v ∈ Rd. Observe that computing Ax(i) explicitly and then computing its p-norm
requires O (nd) time. Thus for n≫ d, a much faster approach is to produce a subspace embedding,
i.e., to compute a matrix M ∈ Rm×d with m≪ n, such that for all x ∈ Rd,

(1− ε)∥Ax∥p ≤ ∥Mx∥p ≤ (1 + ε)∥Ax∥p.

However, because subspace embeddings must be correct over all possible queries, the number of
rows of M is usually m = Ω

(
d
ε2

)
due to requiring correctness over an ε-net.

Theorem 4.3 ([Ind06, Li08]). Given A ∈ Rn×d, p ∈ (0, 2], and an accuracy parameter ε > 0, there
exists an algorithm that creates a data structure that uses O

(
1
ε2

log n
)
bits of space and outputs a

(1 + ε)-approximation to ∥Ax∥p for a query x ∈ Rd, with high probability, in time O
(

d
ε2

log n
)
.

Theorem 4.3 essentially creates a matrix R ∈ Rm×n of random variables sampled from the
p-stable distribution [Zol86] and then stores the matrix RA. Once the query x arrives, the data
structure then outputs a (1 + ε)-approximation to ∥Ax∥p by computing a predetermined function
on RAx. The restriction on p ∈ (0, 2] is due to the fact that the p-stable distributions only exist for
p ∈ (0, 2]. From Theorem 4.3 and Theorem 1.2, we have the following:

Theorem 4.4. Given A ∈ Rn×d, p ∈ (0, 2], and an accuracy parameter ε > 0, there exists an

algorithm that creates a data structure that uses O
(√

Q
ε2

log2(nQ)
)

bits of space and outputs a

(1 + ε)-approximation to ∥Ax(i)∥p with i ∈ [Q] for Q adaptive queries x(1), . . . ,x(Q) ∈ Rd, with high

probability, in time Õ
(

d
ε2

log2(nQ) + log3(nQ)
)
.

4.2 Application: Linear Regression

In the linear regression problem, we are given a fixed matrix A ∈ Rn×d and we would like to
handle Q adaptive queries b(1), . . . ,b(Q), for an approximation parameter ε > 0, by outputting a
(1 + ε)-approximation to minx∈Rd ∥Ax − b(i)∥2 for each query b(i) ∈ Rn with i ∈ [Q]. For linear
regression, we can again compute a subspace embedding M = SA ∈ Rm×n and answer a query b(i)

by approximately solving minx∈Rd ∥SAx− Sb(i)∥2, where S is a sketching matrix [CW13].

Theorem 4.5 ([CW13]). Given A ∈ Rn×d, b ∈ Rn, and an accuracy parameter ε > 0, there exists

an algorithm that creates a data structure that uses O
(
d2

ε2
log2(nQ)

)
bits of space and outputs a

(1 + ε)-approximation to minx∈Rd ∥Ax− b∥2 with high probability.

17

However, this may fail for multiple interactions with the data structure. For example, suppose
the adversary learns the kernel of S. Then the adversary could query some vector b(i) in the kernel
of S so that Sb(i) is the all zeros vector, so that the output is the all zeros vector of dimension
d, which could be arbitrarily bad compared to the actual minimizer. Thus the näıve approach is
to maintain Q subspace embeddings, one for each query, resulting in a data structure with space

Õ
(
Qd
ε2

)
. By comparison, Theorem 4.5 and Theorem 1.2 yield the following:

Theorem 4.6. Given A ∈ Rn×d and an accuracy parameter ε > 0, there exists an algorithm that

creates a data structure that uses O
(√

Qd2

ε2
log3(nQ)

)
bits of space and with high probability, outputs

(1 + ε)-approximations to minx∈Rd ∥Ax− b(i)∥2 for Q adaptive queries b(1), . . . ,b(Q).

4.3 Application: Half-Space Queries

Given a set P of n points in Rd, the range query or search problem asks us to pre-process P so that
given a region R, chosen from a predetermined family, one can quickly count or return the points in
P ∩ R. This is an extremely well-studied class of problems in computational geometry [TOG17]
and the case where the regions R are hyperplanes (also called half-spaces) is of special interest since
many algebraic constraints can be “lifted” to be hyperplanes in a higher dimension.

Unfortunately, exact versions of the problem are known to have the “curse of dimensionality” and
suffer from exponential dependence on d in the query time [BCP93, Cha00]. Nonetheless, [CLM08]
gave a data structure capable of answering hyperplane queries approximately with polynomial
query time. Their notion of approximation is as follows: given a set of points P in the unit ℓ2
ball, hyperplane R, and ε > 0, we return the number of points that are on a given side of the
hyperplane R up to additive error equal to the number of points in P which lie within distance ε of
the boundary of R. We will refer to this query as an ε-approximate hyperplane query. [CLM08]
proved the following theorem.

Theorem 4.7 ([CLM08]). Given a set of points P that lie in the unit ℓ2 ball, there exists a data

structure that pre-processes P using space Õ
(
dnO(ε

−2)
)
such that any ε-approximate hyperplane

range query is answered correctly with high probability. The query time is Õ
(
d/ε2

)
.

The data structure of [CLM08] is randomized and in particular employs randomized dimension-
ality reduction. Thus, it is feasible that queries might fail for multiple adaptive interactions with
the data structure. By utilizing our framework of Section 4 and Theorem 1.2, we can obtain the
following robust guarantee.

Theorem 4.8. Given a set of points P that lie in the unit ℓ2 ball, there exists a data structure which

pre-processes P using space Õ
(√

QdnO(ε
−2)

)
such that Q adaptive ε-hyperplane range queries are

answered correctly with high probability. The query time is Õ
(
d/ε2

)
.

4.4 Application: Point Queries on Turnstile Streams

In the problem of point queries on turnstile streams, there exists a stream of m updates. Each
update specifies a coordinate i ∈ [n] of an underlying frequency vector f ∈ Rn and changes fi by
some amount between ∆i ∈ [−∆,∆], where ∆ = poly(n). Given any constant accuracy parameter
ε > 0 any time t ∈ [m], we define f (t) to be the frequency vector implicitly defined after the first t

18

updates. Then the point query problem is to output f
(t)
i for various choices of t ∈ [m] and i ∈ [n]

within an additive error of ε∥f (t)∥1.

Theorem 4.9 ([AY20]). There exists an algorithm that uses space O
(
log2 n

)
bits, worst-case update

time O
(
log0.582 n

)
, and query time O

(
log1.582 n

)
, that supports point queries with ε = 0.1 with high

probability.

An important quality of Theorem 4.9 is that significantly improves the update time over previous
data structures, e.g., [CCF04], at a cost in query time. By applying Theorem 1.2, we can avoid a
blow-up in query time while still utilizing the update time improvements:

Theorem 4.10. There exists an algorithm that uses space O
(√
Q log3(nQ)

)
bits, has worst-case

update time O
(√
Q log1.582(nQ)

)
and query time Õ

(
log3(nQ)

)
, and supports Q adaptive point

queries with ε = 0.1 and with high probability.

5 Adaptive Distance Estimation

In the adaptive distance estimation problem, there exists a set X = {x(1), . . . ,x(n)} of n points in
Rd. Given an accuracy parameter ε > 0, the goal is to output a (1+ ε)-approximation to ∥x(i)−q∥p
for each query q across all points x(i) ∈ X, while minimizing the space, query time, or pre-processing
time for the corresponding data structures. The trivial solution stores all n points and computes all
n distances to each query point and thus can handle an unlimited number of queries. Since each
point has dimension d, the trivial solution uses space and query time O (nd). [CN20] first improved

the query time to Õ
(
n+d
ε2

)
at the cost of using Õ

(
(n+d)d

ε2

)
space and Õ

(
nd2

ε2

)
pre-processing time.

Like the trivial solution, the algorithm of [CN20] also permits an arbitrary number of queries.
In this section, we first apply our framework to show a data structure that can handle Q queries

of approximate distances from a specified point in X, using query time Õ
(
n+d
ε2

)
, pre-processing time

Õ
(
nd
√
Q

ε2

)
, and space Õ

(
(n+d)

√
Q

ε2

)
. Hence for d≫ n

√
Q, our data structure already improves on

the work of [CN20].
However in this setting, each of the Q queries returns only the approximate distance between a

query point and a single point in X. By comparison, [CN20] outputs approximate distances to all
points in X and moreover, follow-up work by [CN22] improved the pre-processing time to Õ

(
nd
ε2

)
.

Therefore, we address these two shortcomings of our framework by giving a data structure that (1)
handles the case where we return the approximate distances of all points in X from Q adaptive
query points and (2) achieves pre-processing time Õ

(
nd
ε2

)
.

For completeness, we now show correctness of our algorithm across all Q adaptive queries, though
we remark that the proof can simply be black-boxed into Theorem 1.2.

Theorem 5.1. With high probability, we have

(1− ε)∥xiq − yq∥2 ≤ di ≤ (1 + ε)∥xiq − yq∥2,

for all q ∈ [Q].

Proof. Fix query (yq, iq) with q ∈ [Q] and iq ∈ [n]. Let S be a set of k indices sampled (with
replacement) from [r]. By Theorem 2.6 or Theorem 2.7, then we have for each j ∈ [k],

Pr
[
(1− ε)∥xiq − yq∥2 ≤ ∥ΠSj (xiq − yq)∥2 ≤ (1 + ε)∥xiq − yq∥2

]
≥ 3

4
.

19

Algorithm 7 Adaptive Distance Estimation

1: r ← O
(√
Q log2(nQ)

)
, k ← O (log(nQ))

2: Let Π1, . . . ,Πr ∈ Rm×d be a JL transformation matrix (see Theorem 2.6 or Theorem 2.7)
3: for j ∈ [r] do
4: Compute Πjxi

5: for each query (y, i) with y ∈ Rd, i ∈ [n] do ▷Adaptive queries
6: Let S be a set of k indices sampled (with replacement) from [r]
7: for j ∈ [k] do
8: di,j ← ∥ΠSj (xi − y)∥2
9: di ← PrivMed({di,j}j∈[k]), where PrivMed is (1, 0)-DP.

10: return di

Let Ij be an indicator variable so that Ij = 1 if (1 − ε)∥xiq − yq∥2 ≤ ∥ΠSj (xiq − yq)∥2 ≤ (1 +
ε)∥xiq − yq∥2 and Ij = 0 otherwise, so that we have Pr [Ij = 1] ≥ 3

4 , or equivalently, E [Ij] ≥ 3
4 . Let

I = 1
k

∑
j∈[k] Ij so that by linearity of expectation, E [I] = 1

k

∑
j∈[k] E [Ij] ≥ 3

4 .
To address adaptive queries, we first note that PrivMed is (1, 0)-differentially private on

the outputs of the r Fast JL transforms. Since we sample k = O (log(nQ)) groups from the
r = O

(√
Q log2(nQ)

)
groups with replacement, then by amplification via sampling, i.e., Theo-

rem 2.2, PrivMed is
(
O
(

1√
Q log(nQ)

)
, 0
)
-differentially private. Thus, by the advanced composi-

tion of differential privacy, i.e., Theorem 2.4, the mechanism permits Q adaptive queries and is(
O (1) , 1

poly(nQ)

)
-differentially private. By the generalization properties of differential privacy, i.e.,

Theorem 2.5, we have

Pr

∣∣∣∣∣∣1k
∑
j∈[k]

Ij − E [I]

∣∣∣∣∣∣ ≥ 1

10

 <
1

poly(Q,n)
,

for sufficiently small O (1). Thus we have

Pr

1

k

∑
i∈[k]

Ii > 0.6

 > 1− 1

poly(Q,n)
,

which implies that (1− ε)∥xiq −yq∥2 ≤ di ≤ (1+ ε)∥xiq −yq∥2. Therefore, by a union bound across
Q adaptive queries (yq,xiq) with q ∈ [Q], we have that (1− ε)∥xiq − yq∥2 ≤ di ≤ (1 + ε)∥xiq − yq∥2
for all q ∈ [Q] with high probability.

Theorem 5.2. There exists an algorithm that answers Q adaptive distance estimation queries

within a factor of (1 + ε). For O
((

log d
ε2

+ d log d
)
log(nQ)

)
query time, it stores O

(
n
√
Q log3(nQ)

ε2

)
words of space. For O

(
d
ε2

log(nQ)
)
query time, it stores O

(
n
√
Q log2(nQ)

ε2

)
words of space.

Proof. By Theorem 2.7, each fast JL transform uses O
(
log d
ε2

+ d log d
)
runtime and stores m =

O
(
log d
ε2

)
rows. On the other hand, by Theorem 2.6, each JL transform uses O

(
d
ε2

+ d log d
)
runtime

and stores m = O
(
log d
ε2

)
rows.

20

By comparison, [CN20] uses O
(
nd logn

ε2

)
words of space and O

(
d
ε2

)
query time.

5.1 Faster Pre-processing Time for Adaptive Distance Estimation

In this section, we present an improved algorithm for Adaptive Distance Estimation, which allows
the release of distances to all n points in the dataset for a single query, matching the query time of
[CN20] with an improved space complexity of O

(
ε−2
√
Qn

)
. Our results utilize a class of structured

randomized linear transformations based on Hadamard matrices recursively defined below:

H1 =
[
1
]

Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
.

The associated class of randomized linear transformations are now defined below:

{Dj}j∈[m] ⊂ Rd×d s.t Dj
k,l

iid∼

{
N (0, I) if k = l

0 otherwise

∀z ∈ Rd : h(z) =


HdD

1

HdD
2

...
HdD

m

 · z. (SRHT)

Note that for any vector z, h(z) may be computed in time O (md log d) due to the recursive
definition of the Hadamard transform. We now let ϕ and Φ denote the pdf and cdf of a standard
normal random variable, Quantα({ai}i∈[l]) the αth quantile of a multi-set of real numbers {ai}i∈[l]
for any l ∈ N and define ψr as follows:

∀r > 0, a ∈ R : ψr(a) := min(|a|, r).

Through the remainder of the section, we condition on the event defined in the following lemma:

Lemma 5.3 (Claims 5.1 and 5.2 [CN22]). For any δ ∈
(
0, 12

)
, with probability at least 1− δ:

∀z s.t ∥z∥ = 1 : 2 ≤ Quantα−β/4
(
{h(z)i}i∈[md]

)
≤ Quantα+β/4

(
{h(z)i}i∈[md]

)
≤ 4

∀z s.t ∥z∥ = 1, r ≥ 4
√

log(1/ε) :
(
1− ε

2

)
≤ 1

md
·
√
π

2
·
∑

i∈[md]

ψr(hi(z)) ≤
(
1 +

ε

2

)
as long as m ≥ Cε−2 log(2/δ) log5(d/ε) for some absolute constant C > 0.

We will additionally require the following technical result from [CN22], where for any vector
v ∈ Rd and multiset S = {ij}j∈[k] with ij ∈ [d], vS denotes the vector [vi1 , . . . , vik]:

Lemma 5.4 (Theorem 1.4 [CN22]). Assume h : Rd → Rmd (SRHT) satisfies the conclusion of
Lemma 5.3. Then, there is an algorithm, RetNorm, which satisfies for all x ∈ Rd:

PS {(1− ε) · ∥x∥ ≤ RetNorm(h(x)S) ≤ (1 + ε) · ∥x∥} ≥ 1−δ for S = {ij}j∈[k] with ij
iid∼ Unif([md])

when k ≥ Cε−2 log(2/ε) log(2/δ) for some C > 0. Furthermore, RetNorm runs in time O (k).

21

With these primitives, we will construct our data structure for adaptive distance estimation.
Our constructions is formally described in Algorithm 8.

Algorithm 8 Adaptive Distance Estimation with SRHTs

1: m← Cε−2 log6(2dn/ε)
2: Let h be an SRHT as defined in SRHT ▷Revealed to analyst
3: r ← C

√
Q log3(nd), k ← Cε−2 log(2/ε) log(2nd)

4: for i ∈ [n] do
5: Compute yi = h(xi)
6: for j ∈ [r] do
7: Let Si,j be a set of k indices sampled with replacement from [md]

8: l← C log(nd)
9: for j ∈ 1 : Q do ▷Adaptive queries

10: Receive query qj
11: vj ← h(qj)
12: for i ∈ [n] do
13: Let {ti,j,p}p∈[l] be a set of l indices sampled (with replacement) from [r]
14: for p ∈ [l] do
15: di,j,p ← RetNorm((vj − yi)Si,ti,j,p

)

16: di,j ← PrivMed({di,j,p}p∈[l]), where PrivMed is (O (1) , 0)-DP.

17: return {di,j}i∈[n]

The proof of correctness of Algorithm 8 will follow along similar lines to that of Algorithm 6
with a more refined analysis of the privacy loss incurred due to the adaptivity of the data analyst. In
particular, each input query results in n different queries made to a differentially private mechanism
PrivMed leading to a total of nQ queries. A näıve application of Theorem 1.2 would thus result in a
data structure with space complexity scaling as Õ(n3/2

√
Q) as opposed to the desired Õ(n

√
Q) and

query complexity Õ(ε−2nd). The key insight yielding the improved result is the privacy loss incurred
by a single query is effectively amortized across n independent differentially private algorithms each
capable of answering Q adaptively chosen queries correctly with high probability.

To start, we first condition on the event in Lemma 5.3 and assume public access to the
correspondingly defined SRHT h. We now use R to denote the randomness used to instantiate
the multisets, Si,j , in Algorithm 8 and decompose it as follows R = {Ri}i∈[n] with Ri = {Ri,j}j∈[r]
where Ri,j corresponds to the randomness used to generate the set Si,j and the random elements
ti,p. As in the proof of Theorem 1.2, we define a transcript T = {Tj}j∈[Q] with Tj = (qj , {di,j}i∈[n])
denoting the jth query and the responses returned by Algorithm 8 as a single transaction.

Lemma 5.5. For all i ∈ [n], j ∈ [Q], Tj is
(
o
(

1√
Q log(nQ)

)
, 0
)
-differentially private with Ri.

Proof. The proof is identical to that of Lemma 4.1 with the observation that each transaction Tj
only results in a single query to a differentially private mechanism operating on Ri.

Lemma 5.6. For all i ∈ [n], T is
(
o(1), 1

poly(nQ)

)
-differentially private with respect to Ri.

Proof. The proof is identical to Lemma 4.2 and follows from Theorem 2.4 and Lemma 5.5.

22

We now prove the correctness of our improved procedure for adaptive distance estimation.

Proof of Theorem 1.3: We condition on the event in the conclusion of Lemma 5.3 start by
bounding the failure probability of a single query. The bound for the whole sequence of adaptively
chosen queries follows by a union bound. Now, fixing i ∈ [n] and j ∈ [Q], note that the sub-transcript

T (j) = {Tp}p∈[j−1] is
(
o(1), 1

poly(nQ)

)
-differentially private with respect to Ri. Furthermore, define

the indicator random variables:

∀p ∈ [l] :Wp := 1
{
(1− ε) · ∥qj − xi∥ ≤ RetNorm

(
(vj − yi)Si,ti,j,p

)
≤ (1 + ε) · ∥qj − xi∥

}
Additionally, defining W :=

∑l
p=1Wp, we get by the differential privacy of the sub-transcript, T (j),

Lemma 5.4 and Theorem 2.5:

P
{
W ≤ 3

4
· l
}
≤ 1

400 · (nQ)2
.

Consequently, we get from Theorem 2.3 and another union bound:

P {(1− ε) · ∥qj − xi∥ ≤ di,j ≤ (1 + ε) · ∥qj − xi∥} ≥ 1− 1

200 · (nQ)2
.

A subsequent union bound over all i ∈ [n], j ∈ [Q] yields:

P {∀i ∈ [n], j ∈ [Q] : (1− ε) · ∥qj − xi∥ ≤ di,j ≤ (1 + ε) · ∥qj − xi∥} ≥ 1− 1

200 · (nQ)
.

A final union bound over the conclusion of Lemma 5.3 concludes the proof. The runtime guarantees
follow from the fact that for all z ∈ Rd, h(z) is computable in time O (md log d) and the runtime
guarantees of RetNorm. □

6 Adaptive Kernel Density Estimation

In the adaptive kernel density estimation problem, the input is a set X = {x(1), . . . ,x(n)} of n
points in Rd. Given an accuracy parameter ε > 0 and a threshold parameter τ > 0, the goal is to
output a (1 + ε)-approximation to the quantity 1

n

∑
i∈[n] k(x

(i),q), for a kernel function k under

the promise that the output is at least τ . A standard approach is to sample O
(

1
τε2

)
points and

then use O
(

d
τε2

)
query time to output the empirical kernel density for a specific query. [BIW19]

give an algorithm for kernel density estimation that uses O
(

1
τε2

)
space and O

(
d√
τε2

)
query time,

improving over the standard sampling approach.

Theorem 6.1. [BIW19] Given ε, τ > 0, there exists a data structure D that uses O
(

1
τε2

)
space

and O
(

d
ε2
√
τ

)
query time that outputs a (1 + ε)-approximation D(y) to a kernel density estimation

query y that has value at least τ , i.e.,

Pr [|D(y)−KDE(X,y)| ≤ ε ·KDE(X,y)] ≥ 3

4
.

23

Algorithm 9 Adaptive Kernel Density Estimation

Input: Number Q of queries, accuracy ε, threshold τ
1: r ← O

(√
Q log2Q

)
2: for i ∈ [r] do ▷Pre-processing
3: Let Ti be a KDE data structure

4: for each query yq ∈ Rd with q ∈ [Q] do ▷Adaptive queries
5: Let S be a set of k indices sampled (with replacement) from [r]
6: for i ∈ [k] do
7: Let Di be the output of TSi on query yq

8: return dq = PrivMed({Di}i∈[k]), where PrivMed is (1, 0)-DP.

However, the analysis for both these algorithms fails for the adaptive setting, where there can be
dependencies between the query and the data structure. By using the data structure of [BIW19] as a
subroutine, our framework immediately implies an algorithm for adaptive kernel density estimation

that uses Õ
(√

Q
τε2

)
space and O

(
d logQ√

τε2

)
query time to answer each of Q adaptive queries.

For completeness, we now show adversarial robustness of our algorithm across Q adaptive queries.
Again we remark that the proof can simply be black-boxed into Theorem 1.2, though we include
the specific kernel density details in the following proof as a warm-up for the following section.

Lemma 6.2. Algorithm 9 answers Q adaptive kernel density estimation queries within a factor of
(1 + ε), provided each query has value at least τ .

Proof. Fix query yq ∈ Rd with q ∈ [Q]. Let S be a set of k indices sampled (with replacement)
from [r]. Then by Theorem 6.1, we have that for each j ∈ [k],

Pr
[∣∣DSj (y)−KDE(X,y)

∣∣ ≤ ε ·KDE(X,y)
]
≥ 3

4
.

Let Ij be an indicator variable so that Ij = 1 if
∣∣DSj (y)−KDE(X,y)

∣∣ ≤ ε ·KDE(X,y) and Ij = 0
otherwise, so that we have Pr [Ij = 1] ≥ 3

4 or equivalently, E [Ij] ≥ 3
4 . Let I = 1

k

∑
j∈[k] Ij so that

E [I] = 1
k

∑
j∈[k] E [Ij] ≥ 3

4 .
To handle adaptive queries, we first note that PrivMed is (1, 0)-differentially private on the

outputs of the r kernel density estimation data structures. We sample k = O (logQ) indices from
the r = O

(√
Q log2Q

)
data structures with replacement. Thus by amplification via sampling,

i.e., Theorem 2.2, PrivMed is
(
O
(

1√
Q logQ

)
, 0
)
-differentially private. By the advanced composi-

tion of differential privacy, i.e., Theorem 2.4, our algorithm can answer Q adaptive queries with(
O (1) , 1

poly(Q)

)
-differentially privacy. By the generalization properties of differential privacy, i.e.,

Theorem 2.5, we have

Pr

∣∣∣∣∣∣1k
∑
j∈[k]

Ij − E [I]

∣∣∣∣∣∣ ≥ 1

10

 < 0.01,

for sufficiently small constant O (1) in the private median algorithm PrivMed. Therefore,

Pr

1

k

∑
i∈[k]

Ii > 0.6

 > 0.99,

24

so that |dq −KDE(X,yq)| ≤ ε ·KDE(X,y) across Q queries yq with q ∈ [Q].

Theorem 6.3. There exists an algorithm that uses O
(√

Q log2 Q
τε2

)
space and answers Q adaptive

kernel density estimation queries within a factor of (1 + ε), provided each query has value at least τ .

Each query uses O
(
d log(nQ)
ε2
√
τ

)
runtime.

By comparison, random sampling, e.g., [CS17], uses Q
τε2

samples to answer Q queries and each

query uses O
(

d
τε2

)
runtime and using Q copies of the data structure by [BIW19] uses O

(
Q
τε2

)
space

and O
(

d
ε2
√
τ

)
runtime.

6.1 Unlimited Adaptive Queries for Kernel Density Estimation

In this section, we go beyond the limits of our framework and analyze the case where there may be
an unbounded number of adversarial queries.

Theorem 1.4. Suppose the kernel function k is L-Lipschitz in the second variable for some L > 0,
i.e., |k(x,y)− k(x, z)| ≤ L∥y− z∥2 for all x,y, z ∈ Rd. Moreover, suppose that for all ∥x−y∥2 ≤ ρ,
we have k(x,y) ≤ τ

3 . Then an algorithm that produces a kernel density estimation data structure D
that is L-Lipschitz over a set X of points with diameter at most ∆ and outputs a (1+ε)-approximation
to KDE queries with value at least τ with probability at least 1− δ using space S(n, ε, τ, log δ) and
query time T (n, ε, τ, log δ), then there exists a KDE data structure that with probability at least 0.99,
outputs a (1 + ε)-approximation to any number of KDE queries with value at least τ using space

S
(
n,O (ε) ,O (τ) ,O

(
d log (∆+ρ)L

ετ

))
and query time T

(
n,O (ε) ,O (τ) ,O

(
d log (∆+ρ)L

ετ

))
.

Proof. Given a set X ⊆ Rd of n points with diameter ∆, let N be an ετ
L -net over a ball of radius

∆ + ρ that contains X. More formally, let B be a ball of radius (∆ + ρ) that contains X and for
every y ∈ B, there exists a point z ∈ N such that ∥y− z∥2 ≤ ετ

L . We can construct the net greedily

so that |N | ≤
(
2(∆+ρ)L

ετ

)d
.

We implement a data structure D that answers each (non-adaptive) kernel density estimation
query with multiplicative approximation

(
1 + ε

3

)
for any kernel density estimation query with value

at least τ
2 , with probability at least 1− δ, where δ ≤ 1

100|N | . Then by a union bound, D correctly
answers each kernel density estimation query in N with probability at least 0.99.

Let q ∈ Rd be an arbitrary query such that KDE(X,q) ≥ τ . By assumption, we have that
∥q − x∥2 ≤ ρ for some x ∈ X and thus q ∈ B. By the definition of N , there exists some y ∈ N
such that ∥q− y∥2 ≤ ετ

3L . Then since k is L-Lipschitz in the second variable, we have

|KDE(X,q)−KDE(X,y)| =

∣∣∣∣∣ 1n ∑
x∈X

k(x,q)− 1

n

∑
x∈X

k(x,y)

∣∣∣∣∣ ≤ L

n
∥q− y∥2 ≤

ετ

3n
.

Hence, KDE(X,q) ≥ τ implies that KDE(X,y) ≥ τ
2 . Let Ky be the output of the data structure

D on query y. Then by correctness of D on N for any query with threshold at least τ
2 , we have

|Ky −KDE(X,y)| ≤ ε

3
KDE(X,y).

25

Let Kq be the output of the data structure D on query y. Since the algorithm itself is L-Lipschitz,
then

|Kq −Ky| ≤ L∥q− y∥2 ≤
ετ

3
.

Therefore by the triangle inequality, we have that

|Kq −KDE(X,q)| ≤ |Kq −Ky| − |Ky −KDE(X,y)| − |KDE(X,y)−KDE(X,q)|

≤ ετ

3
+
ε

3
KDE(X,y) +

ετ

3n
.

Since KDE(X,y) ≤ KDE(X,q) + ετ
3n , then it follows that

|Kq −KDE(X,q)| ≤ ετ

3
+
ε

3
KDE(X,q) +

ε2τ

n
+
ετ

3n
≤ εKDE(X,q),

for n ≥ 6.

In particular, sampling-based algorithms for kernels that are Lipschitz are also Lipschitz. Thus
to apply Theorem 1.4, it suffices to identify kernels that are L-Lipschitz and use the data structure
of Theorem 6.1. To that end, we note that the kernels k(x,y) = C

C+∥x−y∥2 for C > 0 and

k(x,y) = Ce−∥x−y∥2 are both Lipschitz for some function of C. In particular, we have

|k(x,y)− k(x, z)| =
∣∣∣∣ C

C + ∥x− y∥2
− C

C + ∥x− z∥2

∣∣∣∣
=

C|∥x− z∥2 − ∥x− y∥2|
(C + ∥x− y∥2)(C + ∥x− z∥2)

≤ ∥y − z∥2
C

,

so k(x,y) = C
C+∥x−y∥2 is 1

C -Lipschitz. Similarly, since e−x is 1-Lipschitz, then

|k(x,y)− k(x, z)| = Ce−∥x−y∥2 − Ce−∥x−z∥2

≤ C|∥x− z∥2 − ∥x− y∥2| ≤ C∥y − z∥2,

so k(x,y) = Ce−∥x−y∥2 is C-Lipschitz.

References

[ABJ+22] Miklós Ajtai, Vladimir Braverman, T. S. Jayram, Sandeep Silwal, Alec Sun, David P.
Woodruff, and Samson Zhou. The white-box adversarial data stream model. CoRR,
abs/2204.09136, 2022. 2

[ACSS21] Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for
adversarial streaming via differential privacy and difference estimators. CoRR,
abs/2107.14527, 2021. 2, 15

[AIL+15] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. Practical and optimal lsh for angular distance. Advances in neural information
processing systems, 28, 2015. 31

26

[AMYZ19] Dmitrii Avdiukhin, Slobodan Mitrovic, Grigory Yaroslavtsev, and Samson Zhou.
Adversarially robust submodular maximization under knapsack constraints. In Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD, pages 148–156, 2019. 2

[AY20] Josh Alman and Huacheng Yu. Faster update time for turnstile streaming algorithms.
In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 1803–1813, 2020. 19

[BCM+13] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning
at test time. In Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD Proceedings,, 2013. 2

[BCP93] Hervé Brönnimann, Bernard Chazelle, and János Pach. How hard is half-space range
searching? Discrete & Computational Geometry, 10(2):143–155, 1993. 18

[BEO22] Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via
dense-sparse trade-offs. In 5th Symposium on Simplicity in Algorithms, SOSA@SODA,
pages 214–227, 2022. 2

[BHM+21] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep
Silwal, and Samson Zhou. Adversarial robustness of streaming algorithms through
importance sampling. In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems, NeurIPS, pages 3544–
3557, 2021. 2

[BIW19] Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density
estimation in high dimensions. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems, NeurIPS, pages
15773–15782, 2019. 5, 23, 24, 25

[BJWY21] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework
for adversarially robust streaming algorithms. SIGMOD Rec., 50(1):6–13, 2021. 2

[BKM+21] Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak,
and Uri Stemmer. Dynamic algorithms against an adaptive adversary: Generic
constructions and lower bounds. CoRR, abs/2111.03980, 2021. 2, 6, 7, 15

[BMSC17] Ilija Bogunovic, Slobodan Mitrovic, Jonathan Scarlett, and Volkan Cevher. Robust
submodular maximization: A non-uniform partitioning approach. In Proceedings of
the 34th International Conference on Machine Learning, ICML, pages 508–516, 2017.
2

[BNS+21] Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, and
Jonathan R. Ullman. Algorithmic stability for adaptive data analysis. SIAM J.
Comput., 50(3), 2021. 8

27

[BNSV15] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Differentially private
release and learning of threshold functions. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS, pages 634–649, 2015. 7

[BvdBG+22] Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon
Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-dynamic
graph sparsifiers against an adaptive adversary. In 49th International Colloquium on
Automata, Languages, and Programming, ICALP, pages 20:1–20:20, 2022. 2

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, 2009. 2

[CCF04] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items
in data streams. Theor. Comput. Sci., 312(1):3–15, 2004. 19

[CCH+22] Nadiia Chepurko, Kenneth Clarkson, Lior Horesh, Honghao Lin, and David Woodruff.
Quantum-inspired algorithms from randomized numerical linear algebra. In Interna-
tional Conference on Machine Learning (ICML), 2022. 9

[CGS22] Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring
for graph streams. In 13th Innovations in Theoretical Computer Science Conference,
ITCS, pages 37:1–37:23, 2022. 2

[Cha00] Bernard Chazelle. The discrepancy method: randomness and complexity. Cambridge
University Press, 2000. 18

[CLM08] Bernard Chazelle, Ding Liu, and Avner Magen. Approximate range searching in higher
dimension. Computational Geometry, 39(1):24–29, 2008. 18

[CMY11] Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional
monitoring. ACM Trans. Algorithms, 7(2):21:1–21:20, 2011. 3

[CN20] Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. In
Advances in Neural Information Processing Systems 33: NeurIPS, 2020. 4, 19, 21, 31,
32

[CN22] Yeshwanth Cherapanamjeri and Jelani Nelson. Uniform approximations for randomized
hadamard transforms with applications. CoRR, abs/2203.01599, 2022. 4, 19, 21, 31,
32

[CS17] Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density
in high dimensions. In 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pages 1032–1043, 2017. 25

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Symposium on Theory of Computing Conference, STOC,
pages 81–90, 2013. 10, 17

[CW17a] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy, SP, pages 39–57. IEEE
Computer Society, 2017. 2

28

[CW17b] Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression
in input sparsity time. Journal of the ACM (JACM), 63(6):1–45, 2017. 10

[DFH+15] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold,
and Aaron Leon Roth. Preserving statistical validity in adaptive data analysis. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC, pages 117–126. ACM, 2015. 8

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of Cryptography, Third Theory
of Cryptography Conference, TCC, Proceedings, pages 265–284, 2006. 7

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential
privacy. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS, pages 51–60, 2010. 8

[GHS+12] Anna C. Gilbert, Brett Hemenway, Martin J. Strauss, David P. Woodruff, and Mary
Wootters. Reusable low-error compressive sampling schemes through privacy. In IEEE
Statistical Signal Processing Workshop, SSP, pages 536–539, 2012. 2

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In 3rd International Conference on Learning Representations,
ICLR, Conference Track Proceedings, 2015. 2

[GVL13] Gene H Golub and Charles F Van Loan. Matrix computations. Johns Hopkins
University Press, 2013. 11

[HKM+20] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer.
Adversarially robust streaming algorithms via differential privacy. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems, NeurIPS, 2020. 2, 6, 8, 15

[HMPW16] Moritz Hardt, Nimrod Megiddo, Christos H. Papadimitriou, and Mary Wootters.
Strategic classification. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, pages 111–122, 2016. 2

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, 2006. 17

[JPW22] Shunhua Jiang, Binghui Peng, and Omri Weinstein. Dynamic least-squares regression.
arXiv preprint arXiv:2201.00228, 2022. 3

[KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive
streaming from oblivious streaming using the bounded storage model. In Advances
in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO, Proceedings, Part III, pages 94–121, 2021. 2, 6

[LCLS17] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable
adversarial examples and black-box attacks. In 5th International Conference on
Learning Representations, ICLR, Conference Track Proceedings, 2017. 2

29

[Li08] Ping Li. Estimators and tail bounds for dimension reduction in ℓα (0 < α ≤ 2) using
stable random projections. In Shang-Hua Teng, editor, Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 10–19, 2008.
17

[Mah11] Michael W Mahoney. Randomized algorithms for matrices and data. Foundations
and Trends® in Machine Learning, 3(2):123–224, 2011. 8

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In 6th
International Conference on Learning Representations, ICLR, 2018. 2

[MNS11] Ilya Mironov, Moni Naor, and Gil Segev. Sketching in adversarial environments. SIAM
J. Comput., 40(6):1845–1870, 2011. 2

[NY19] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. ACM Trans.
Algorithms, 15(3):35:1–35:30, 2019. 2

[PMG16] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability in
machine learning: from phenomena to black-box attacks using adversarial samples.
CoRR, abs/1605.07277, 2016. 2

[PMG+17] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS, pages 506–519, 2017. 2

[Sar06] Tamas Sarlos. Improved approximation algorithms for large matrices via random
projections. In 47th annual IEEE symposium on foundations of computer science
(FOCS), pages 143–152, 2006. 10

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
2nd International Conference on Learning Representations, ICLR, Conference Track
Proceedings, 2014. 2

[TOG17] Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and
computational geometry. CRC press, 2017. 18

[Waj20] David Wajc. Rounding dynamic matchings against an adaptive adversary. In Procced-
ings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC,
pages 194–207, 2020. 2

[Woo14] David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014. 3, 9, 10

[WZ21] David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams
and sliding windows via difference estimators. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 1183–1196, 2021. 2

[Zol86] Vladimir M Zolotarev. One-dimensional stable distributions, volume 65. American
Mathematical Soc., 1986. 17

30

A Empirical Evaluation

We empirically demonstrate the space and query time efficiency of our framework of Section 4. We
consider the problem of ℓ2 norm estimation where queries q1, q2, . . . are generated in an adaptive
fashion and our goal is to output an estimate of ∥qi∥2 for all i. This setting is a special case of
adaptive distance estimation and captures the essence of our adversarial robustness framework. In
addition, this same setting was investigated empirically in prior works [CN20].

Experimental Setup. Consider the setting of Algorithm 6: it creates r copies of an underlying
randomized data structure and upon a query, it subsamples k of them and outputs an answer
aggregated via the private median. In our setting, the underlying algorithm will be the fast Johnson-
Lindenstrauss (JL) transform which is defined as follows: it is the matrix PHD : Rd → Rm where
D is a diagonal matrix with uniformly random ±1 entries, H is the Hadamard transform, and P is
a sampling matrix uniformly samples m rows of HD. Our algorithm will initialize r copies of this
matrix where the sampling matrix P and diagonal D will be the randomness which is “hidden” from
the adversary. Upon query q, we sample k different Fast JL data structures, input q to all of them,
and proceed as in Algorithm 6. Note that this setting exactly mimics the theoretical guarantees of
Section 4 and is exactly Algorithm 7 of Section 5. In our experiments, d = 4096,m = 250, r = 200,
and k = 5. These are exactly the parameters chosen in prior works [CN20]. We will have 5000
adaptive queries qi which are described shortly. Our experiments are done on a 2021 M1 Macbook
Pro with 32 gigabytes of RAM. We implemented all algorithms in Python 3.5 using Numpy. The
Hadamard transform code is from [AIL+15]1 and we use Google’s differential privacy library2 for
the private median implementation.

Baselines. We will consider three baselines. JL will denote a standard (Gaussian) JL map
from dimension 4096 to 250. Baseline 1 will denote the algorithm of [CN20]. At a high level, it
instantiates many independent copies of the standard Gaussian JL map and only feeds an incoming
query into a select number of subsampled data structures. Note that our experimental setting is
mimicking exactly that of [CN20] where the same parameters r (number of different underlying
data structures) and k (number of subsampled data structures to use for a query) were used. This
ensures that both our algorithm and theirs have access to the same number of different JL maps
and thus allows us to compare the two approaches on an equal footing. The last baseline, denoted
as Baseline 2, is the main algorithm of [CN22] which is the optimized version of [CN20]. At a high
level, their algorithm proceeds similarly to that of [CN20], except they employ Hadamard transforms
(after multiplying the query entry-wise by random Gaussians), rather than using Gaussian JL maps.
Furthermore, instead of subsampling, their algorithm feeds an incoming query into all the different
copies of the Hadamard transform, and subsamples the coordinates of the concatenated output for
norm estimation. We again set the parameters of their algorithm to match that of our algorithm and
Baseline 1 by using r copies of their Hadamard transform and subsampling mk total coordinates.
We refer to the respective papers for full details of their algorithms.

Summary of adaptive queries. Our input queries are the same adaptive queries used in
[CN20]. To summarize, let Π denote the map used in the JL benchmark stated above. The

1available in https://github.com/FALCONN-LIB/FFHT
2available in https://github.com/google/differential-privacy

31

https://github.com/FALCONN-LIB/FFHT
https://github.com/google/differential-privacy

0 1000 2000 3000 4000 5000
Iteration

1.0

1.5

2.0

2.5

3.0

No
rm

 E
st

im
at

e

Baseline 1
Baseline 2
Ours
JL

(a)

0.85 0.90 0.95 1.00 1.05 1.10 1.15
Norm Estimate

0
200
400
600
800

1000
1200
1400
1600

Co
un

t

Baseline 1
Baseline 2
Ours

(b)

0 1000 2000 3000 4000 5000
Iteration

0
1
2
3
4
5
6
7
8

Cu
m

ul
at

iv
e

Ru
nt

im
e

(s
)

Baseline 1
Baseline 2
Ours

(c)

Fig. 1: Figures for our experiments.

i-th query for 1 ≤ i ≤ 5000 will be of the form qi =
∑i

j=1(−1)Wizi, which we then normalize to
have unit norm. The zi are standard Gaussian vectors. Wi is the indicator variable for the event
∥Π(zi − e1)∥2 ≤ ∥Π(zi + e1)∥2 where e1 is the first standard basis vector. Intuitively, the queries
become increasingly correlated with the matrix Π since we successively “augment” the queries in a
biased fashion. See Section 5 of [CN20] for a more detailed discussion of the adaptive inputs.

Results. Our results are shown in Figure 1. In Figure 1a, we plot the norm estimated by each of
the algorithms in each of the queries across iterations. We see that the näıve JL map increasingly
deviates from the true value of 1.0. This is intuitive as the adaptive queries are increasingly correlated
with the map Π. The performance of all other algorithms are indistinguishable in Figure 1a. Thus,
we only zoom into the performances of our algorithm and Baseline 1 and Baseline 2, shown in
Figure 1b. For these three algorithms, we plot a histogram of answers outputted by the respective
algorithms across all iterations. We see that the algorithm of [CN20], shown in the blue shaded
histogram, is the most accurate as it has the smallest deviations from the true answer of 1.0. Our
algorithm, shown in green, is noisier than Baseline 1 since it has a wider range of variability.
This may be due to the fact that we use a differentially private median algorithm, which naturally
incurs additional noise. Lastly, Baseline 2 is also noisier than Baseline 1 and comparable to
our algorithm. This may be due to the fact that the algorithm of [CN22] requires very fine-tuned
constants in their theoretical bounds, which naturally deviate in practice. Lastly, Figure 1c shows
the cumulative runtime of all three algorithms across all iterations. Our algorithm, shown in green,
is the fastest while Baseline 2 is the slowest. This is explained by the fact that Baseline 2
calculates many more Hadamard transforms than our algorithm does.

32

	Introduction
	Our Contributions
	Our Techniques

	Preliminaries
	Differential Privacy
	Numerical Linear Algebra

	Details on Dynamic Regression
	Basic Setting
	Dynamic Algorithm for Oblivious Inputs
	Dynamic Algorithm with Adversarial Robustness
	An Exact and Deterministic Algorithm

	A Simple Framework for Adversarial Robustness
	Application: Matrix-Vector Norm Queries
	Application: Linear Regression
	Application: Half-Space Queries
	Application: Point Queries on Turnstile Streams

	Adaptive Distance Estimation
	Faster Pre-processing Time for Adaptive Distance Estimation

	Adaptive Kernel Density Estimation
	Unlimited Adaptive Queries for Kernel Density Estimation

	Empirical Evaluation

