

702

703

704

705

706

Appendix

705

CONTENTS

707	A Additional Experimental Analysis	15
708	A.1 Analysis of Hyper-parameters	15
709	A.2 Analysis of Exploration Prompt	15
710	A.3 Statistical Analysis and Significance Test	15
711		
712	B Mathematical Formulations and Derivations	16
713	B.1 GRPO Algorithm	16
714	B.2 Distribution Shift	16
715	B.3 Probe Policy Definition	17
716	B.4 Coefficient for Importance Sampling	18
717		
718	C Experimental Implementation Details	18
719	C.1 Baseline Methods	18
720	C.2 Dataset Descriptions	19
721	C.3 Computational Environment and Infrastructure	20
722	C.4 Hyper-parameter Configuration and Tuning	20
723		
724	D Error Case Analysis	21
725	D.1 Failures in Entity Disambiguation	21
726	D.2 Errors in Logical Reasoning	22
727		
728	E Limitations, Discussion, and Future Work	22
729		
730	F Structured Search Interaction Protocol	23
731	F.1 Special Tokens	23
732	F.2 Instruction Prompts	24
733		
734	G Revision Prompts and Examples	24
735		
736	H Usage of LLM	25
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 A ADDITIONAL EXPERIMENTAL ANALYSIS
757758 A.1 ANALYSIS OF HYPER-PARAMETERS
759

760 REX-RAG introduces a hyperparameter p that controls the number of additionally sampled trajectories. As shown in the Table 4, sampling only an extra 12% of trajectories yields a substantial
761 performance improvement over Search-R1. By contrast, Search-R1 attains only a negligible gain
762 even when using 20% more trajectories, highlighting the superior sample efficiency of REX-RAG.
763 Moreover, we observe a positive correlation between model performance and the resampling
764 parameter p ; with 20% additional sampling, the improvement becomes even more pronounced. This
765 property allows practitioners to flexibly trade off performance gains against computational cost ac-
766 cording to their specific needs and resource constraints.

Sampling Strategy	General	Multi-Hop	Avg.
Search-R1			
5 rollouts (+0%)	47.2	19.1	31.2
6 rollouts (+20%)	47.6	19.1	31.3
REX-RAG			
5.6 (+12% ← 12%)	48.7	23.4	34.2
5.6 (+12% ← 20%)	49.5	30.7	38.7

778 Table 4: Impact of trajectory sampling strategies on performance. Expected rollout counts shown
779 for REX-RAG under maximum resampling scenarios (all initial outputs incorrect).

780
781 A.2 ANALYSIS OF EXPLORATION PROMPT
782

783 As shown in the Table 5, we examined how varying exploration prompts affects model performance.
784 With five prompts, we observe modest improvements on General QA and Multi-Hop QA. However,
785 when expanding from five to thirty prompts, REX-RAG achieves a substantial performance gain re-
786 lative to Serach-R1. These results indicate that the REX-RAG framework exhibits strong scalability,
787 rather than merely benefiting from a small set of specially selected prompts.

Sampling Strategy	General	Multi-Hop	Avg.
Search-R1	47.2	19.1	31.2
REX-RAG(5 Prompts)	48.3	20.0	32.1
REX-RAG(30 Prompts)	49.5	30.7	38.7

795 Table 5: Impact of Number of Exploration Prompt
796797
798 A.3 STATISTICAL ANALYSIS AND SIGNIFICANCE TEST
799

800 Given that Exact Match is a binary evaluation metric, we adopt the McNemar test to determine
801 whether the performance differences observed in the ablation study constitute statistically significant
802 improvements or degradations. As shown in Table 2, we evaluate a total of five models. In this
803 subsection, we first rank the models by their Average scores in descending order and then perform
804 pairwise comparisons between successive models.

805 Each numerical value in the Table 6 represents the p-value corresponding to the statistical test of the
806 alternative hypothesis, evaluating the difference between the two models across various benchmark.
807

808 As shown in Table 6, the majority of the test results are significant (p -value < 0.05). While the
809 results on a few individual benchmarks are not statistically significant, this does not affect the overall
conclusions presented in the main text.

810
 811 Table 6: Significance Test over key components in REX-RAG (Qwen2.5-3B,GRPO). Overall repre-
 812 sents the results of the tests conducted on seven benchmarks. The rest are the test results obtained
 813 on each benchmark.

814 Alternative Hypothesis	815 General QA			816 Multi-Hop QA				817 Overall
	818 NQ	819 TriviaQA	820 PopQA	821 HotpotQA	822 2wiki	823 Musique	824 Bamboogle	
825 REX-RAG \neq Coarse PPD	826 $1e-9$	827 $5e-15$	828 $4e-9$	829 $1e-50$	830 $1e-74$	831 $1e-10$	832 $2e-2$	833 $5e-144$
834 Coarse PPD \neq w/o IS	835 $9e-1$	836 $1e-3$	837 $4e-1$	838 $2e-10$	839 $8e-55$	840 $1e-5$	841 $2e-2$	842 $3e-33$
843 w/o IS \neq w/o IS&IF	844 $3e-20$	845 $7e-62$	846 $5e-16$	847 $4e-44$	848 $8e-13$	849 $1e-8$	850 $1e-1$	851 $5e-128$
852 w/o IS&IF \neq w/o TF	853 $7e-1$	854 $3e-7$	855 $1e-53$	856 $1e-1$	857 $2e-1$	858 $7e-1$	859 1	860 $1e-24$

821 B MATHEMATICAL FORMULATIONS AND DERIVATIONS

822 B.1 GRPO ALGORITHM

825 GRPO (Shao et al., 2024) is a reinforcement-learning algorithm for aligning large language models
 826 that removes the value/critic network by computing *group-relative* advantages across multiple sam-
 827 pled outputs for the same prompt. The baseline is the group’s average reward, and policy updates
 828 are additionally regularized by a KL term to a frozen reference model.

829 For each prompt q , sample a group of G outputs $\{o_i\}_{i=1}^G$ from the old policy $\pi_{\theta_{\text{old}}}$. Define the
 830 likelihood ratio $\rho_{i,t} = \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})}$. GRPO maximizes: where ε is the PPO clipping parameter
 831 and β controls KL regularization to the reference policy π_{ref} .

832 **833 Outcome supervision** Let r_ϕ denote a reward scoring each output. For a fixed q , obtain rewards
 834 $r = \{r_i\}_{i=1}^G$, one per output o_i . Compute the group mean and standard deviation

$$835 \mu_r = \frac{1}{G} \sum_{i=1}^G r_i, \quad \sigma_r = \text{std}(r_1, \dots, r_G).$$

836 Normalize each reward $\tilde{r}_i = \frac{r_i - \mu_r}{\sigma_r}$, and assign a constant advantage to all tokens in o_i :

$$837 \hat{A}_{i,t} = \tilde{r}_i, \quad \forall t \in \{1, \dots, |o_i|\}. \quad (8)$$

844 B.2 DISTRIBUTION SHIFT

845 For the sake of analytical simplicity, we disregard the clipping technique and the KL-divergence
 846 regularization term in GRPO. If we intend to employ data drawn from the mixture policy μ to
 847 optimize the target policy θ , the unbiased gradient is given by:

$$851 \nabla_{\theta} J(\theta) = \mathbb{E}_{q, \{o_i\} \sim \mu} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \hat{A}_{i,t} \nabla_{\theta} \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\mu(o_{i,t} | q, o_{i,<t})} \right]. \quad (9)$$

852 If, instead, we apply no corrective procedure and directly use the data collected under the mixture
 853 policy μ to optimize θ , the gradient we actually compute becomes:

$$854 \tilde{g}(\theta) = \mathbb{E}_{q, \{o_i\} \sim \mu} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \hat{A}_{i,t} \nabla_{\theta} \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})} \right]. \quad (10)$$

855 Subtracting the two importance ratios yields the bias:

864

865

$$\begin{aligned}
\Delta_{i,t} &= \tilde{\rho}_{i,t} - \rho_{i,t} \\
&= \frac{\pi_{\theta,i,t}}{\pi_{\theta_{\text{old}},i,t}} - \frac{\pi_{\theta,i,t}}{\mu_{i,t}} \\
&= \frac{\pi_{\theta,i,t}}{\mu_{i,t}} \cdot \left(\frac{\mu_{i,t} - \pi_{\theta_{\text{old}},i,t}}{\mu_{i,t}} \right) \\
&= \tilde{\rho}_{i,t} \left(1 - \frac{\pi_{\theta_{\text{old}},i,t}}{\mu_{i,t}} \right).
\end{aligned} \tag{11}$$

874

In this expression, the first factor, $\tilde{\rho}_{i,t}$, is strictly positive and can therefore be ignored. Focusing on the sign of the second factor, we observe that for tokens generated freely by the model, μ comprises both π_θ and π_ϵ , where π_ϵ is defined only along erroneous trajectories. Consequently, μ is smaller than π_θ , rendering the second factor negative. Thus, for tokens sampled freely by the model, the importance ratio is biased downward, leading to systematic underestimation.

880

Conversely, for the segments inserted by the probe policy, the second factor is positive, conferring a systematic up-weighting. This persistent high weighting can drive the probabilities of tokens with negative advantages to decline rapidly, potentially pushing them outside the support of the policy model. Tokens with positive advantages, on the other hand, may experience rapid probability increases, thereby squeezing the probabilities of alternative tokens and inducing severe entropy collapse.

886

B.3 PROBE POLICY DEFINITION

888

For the Probe Policy, we partition the procedure into three components according to their ordering relative to the inserted prompt: (1) the segment of the model rollout up to the point of failure; (2) the inserted prompt; and (3) the subsequent trajectory obtained by conditioning on the erroneous reasoning path and the prompt as context.

893

894

$$\pi_\epsilon(o'_{i,t} | q_i, o'_{i < t}) = \begin{cases} \frac{\pi_\theta(o'_{i,t} | q_i, o'_{i < t})}{z^{1/|o'_\text{origin}|}}, & \text{if } o'_{i,t} \in o'_\text{origin} \\ \text{PMF}(o'_{i < t}, o'_{i,t}), & \text{if } o'_{i,t} \in o'_\text{prompt} \\ \pi_\theta(o'_{i,t} | q_i, o'_{i < t}), & \text{if } o'_{i,t} \in o'_\text{probe} \end{cases} \tag{12}$$

901

First, for the segment of the model rollout up to the point where an error occurs, our aim is to model the region of the original policy distribution that gives rise to failures. Within the set of all trajectories that can be sampled from the original distribution, we approximate this subset using z , defined as the fraction of erroneous trajectories among those sampled at the current step. This yields a distribution that is truncated relative to the original policy. To make this subset of trajectories a valid probability distribution—that is, to let “the probability mass of these trajectories fill the entire space”—we renormalize it. Accordingly, we divide the probability of each token by $z^{1/|o'_\text{origin}|}$ as a simple sequence-level normalization.

902

For the inserted prompt part, we define it based on the frequency distribution. The method induces a discrete vocabulary via a tokenizer and builds a nonparametric next-token model by aggregating, for each observed prefix p , the multiset of successor tokens from the corpus. Each prefix is mapped to a count vector over the vocabulary; the probability mass function is the normalized frequency. Conceptually, this is an unsmoothed, memory-based (variable-length n -gram) estimator that returns the empirical conditional distribution of the next token given p , assigning zero mass to unseen events. Specifically, the construction algorithm is as shown in Algorithm 1.

917

For the last part, since we do not impose any restrictions on the sampling of these parts, we directly use the probability of the original policy model as the probability of the probe policy.

Algorithm 1: PMF Construction via Frequency Distribution

Input: Tokenizer \mathcal{T} ; Prompt set $\mathcal{P} = \{s_1, \dots, s_m\}$
Output: Function $\text{PMF}(p, x)$

$K \leftarrow \{\mathcal{T}(s) \mid s \in \mathcal{P}\};$
// tokenize every prompt

$V \leftarrow \text{unique tokens in } K;$
// initialize vocabulary

foreach $k \in K$ **do**

for $i \leftarrow 0$ **to** $|k| - 1$ **do**

$p \leftarrow k_{0:i};$

$C[p] \leftarrow \mathbf{0}_{|V|};$
// initialize frequency distribution

foreach $k \in K$ **do**

for $i \leftarrow 0$ **to** $|k| - 1$ **do**

$p \leftarrow k_{0:i}; x \leftarrow k_{i+1};$

$C[p][V.\text{index}(x)] \leftarrow C[p][V.\text{index}(x)] + 1;$

Function $\text{PMF}(p, x):$

counts $\leftarrow C[p];$

return $\frac{\text{counts}[V.\text{index}(x)]}{\sum \text{counts}};$

return PMF;
// expose the query function to the calle

B.4 COEFFICIENT FOR IMPORTANCE SAMPLING

Let the goal be to estimate the policy gradient using a mixed policy $\mu = \{\pi_\theta, \pi_\epsilon\}$. During sampling, a fraction of $\frac{1}{1+\alpha}$ of the trajectories come from π_θ , while a fraction of $\frac{\alpha}{1+\alpha}$ of the trajectories come from π_ϵ :

$$c_\theta = \frac{1}{1+\alpha}, \quad c_\epsilon = \frac{\alpha}{1+\alpha}. \quad (13)$$

Under the *balance heuristic* (Veach and Guibas, 1995), the weight is

$$\hat{\omega}_i(x) = \frac{c_i p_i(x)}{\sum_j c_j p_j(x)}. \quad (14)$$

Substitute the variables into it respectively, and we can obtain the Importance ratio for estimating the policy gradient of Multiple Importance Sampling:

$$\omega = \frac{(1+\alpha)\pi_\theta}{\pi_\theta + \alpha\pi_*}. \quad (15)$$

C EXPERIMENTAL IMPLEMENTATION DETAILS

C.1 BASELINE METHODS

We evaluate REX-RAG against two categories of baselines: (1) non-fine-tuned methods, including Naive RAG (Lewis et al., 2020), IRCOT (Trivedi et al., 2023), and Search-o1 (Li et al., 2025a); and (2) fine-tuned methods, including R1-like (Guo et al., 2025) trained with PPO (Jin et al., 2025b) (with and without retrieval) using GRPO (Shao et al., 2024).

Naive RAG (Lewis et al., 2020) is the standard retrieval-augmented generation approach that retrieves documents using dense passage retrieval and generates answers conditioned on both the query and the retrieved context. It employs a bi-encoder architecture and marginalizes over retrieved documents during generation, enabling dynamic access to external knowledge and reducing hallucination in knowledge-intensive tasks.

972 **IRCOT** (Trivedi et al., 2023) interleaves reasoning and retrieval steps, alternating between generating
 973 intermediate reasoning steps and retrieving new information. This few-shot prompting approach
 974 enables step-wise information gathering and supports multi-hop reasoning by refining retrieval based
 975 on the evolving reasoning chain.

976 **Search-o1** (Li et al., 2025a) enhances LLM reasoning by integrating web search. It uses multi-
 977 step reasoning to analyze queries, formulate searches, and synthesize results. Iterative search-query
 978 reformulation and result ranking improve retrieval quality. The approach relies on chain-of-thought
 979 reasoning to generate comprehensive answers using diverse sources.

980 **R1-like Training** (Guo et al., 2025) employs RLHF via PPO to fine-tune LLMs for reasoning tasks
 981 without retrieval. Following DeepSeek-R1, it includes supervised reasoning trace training, reward
 982 modeling, and PPO optimization. This pipeline enhances reasoning quality using curated datasets
 983 and human feedback, serving as a strong non-retrieval baseline.

984 **Search-R1** (Jin et al., 2025b) extends R1-style training by integrating retrieval actions into the policy
 985 optimization process using GRPO. It jointly optimizes reasoning and retrieval quality, with rewards
 986 based on final answer accuracy and coherence. Retrieval is treated as part of the trajectory, allowing
 987 the model to learn effective information-seeking strategies. This serves as a strong prior baseline for
 988 evaluating the improvements brought by our proposed policy realignment mechanisms.

990 C.2 DATASET DESCRIPTIONS

991 We evaluate REX-RAG on seven QA benchmarks: three general QA datasets NQ (Kwiatkowski
 992 et al., 2019), TrivialQA (Joshi et al., 2017), and PopQA (Mallen et al., 2023), together with
 993 four Multi-Hop QA datasets HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho et al., 2020),
 994 Musique (Trivedi et al., 2022), and Bamboogle (Press et al., 2023). In line with earlier studies (Jin
 995 et al., 2025b;a), we merge the NQ and HotpotQA training sets for REX-RAG training. The test
 996 splits of NQ and HotpotQA are treated as in-domain evaluations, and the remaining five datasets are
 997 used for out-of-domain evaluation.

998 **Natural Questions (NQ)** (Kwiatkowski et al., 2019) is a large-scale dataset featuring real Google
 999 Search queries paired with Wikipedia passages containing the answers. It includes over 300K naturally
 1000 occurring questions, each annotated with both a long answer (usually a paragraph) and a short
 1001 answer (typically a phrase). NQ reflects realistic information-seeking behavior across diverse topics
 1002 such as history, science, and current events, with varying complexity. We use it as an in-domain
 1003 benchmark, as it contributes to REX-RAG’s training.

1004 **TriviaQA** (Joshi et al., 2017) is a reading comprehension dataset containing over 95K question-
 1005 answer pairs sourced from trivia websites and paired with evidence documents from Wikipedia and
 1006 the web. Not all documents are guaranteed to contain the answer, requiring models to perform effec-
 1007 tive retrieval. The questions emphasize factual knowledge, making the dataset ideal for evaluating
 1008 retrieval-augmented systems.

1009 **PopQA** (Mallen et al., 2023) targets popular factual questions about widely known topics such as
 1010 celebrities, movies, and sports events. It evaluates models’ ability to answer questions about current
 1011 and trending topics that may not appear in training corpora, highlighting the importance of real-time
 1012 retrieval for up-to-date knowledge.

1013 **HotpotQA** (Yang et al., 2018) is a multi-hop QA dataset with over 113K Wikipedia-based exam-
 1014 ples, where each question requires reasoning across at least two paragraphs. It includes bridge and
 1015 comparison questions and provides supporting facts. As an in-domain benchmark, it plays a key
 1016 role in evaluating REX-RAG’s multi-hop reasoning performance.

1017 **2WikiMultiHopQA** (Ho et al., 2020) extends multi-hop QA by requiring reasoning over two
 1018 Wikipedia articles using varied operations like numerical, logical, and compositional reasoning.
 1019 Each question involves exactly two hops and is annotated with reasoning paths and supporting evi-
 1020 dence, facilitating fine-grained evaluation of multi-step reasoning.

1021 **MuSiQue** (Trivedi et al., 2022) focuses on compositional multi-hop reasoning across multiple doc-
 1022 uments. Questions often involve temporal or relational reasoning and require synthesizing scattered
 1023 information. It includes both answerable and unanswerable questions, testing models’ ability to
 1024 detect insufficient context.

1026
 1027 **Bamboogle** (Press et al., 2023) is a challenging multi-hop QA benchmark designed to stress-test
 1028 reasoning capabilities. Questions involve complex inference steps, including temporal and causal
 1029 reasoning, often under ambiguous or incomplete information. It highlights the limitations of current
 1030 QA systems and the need for more advanced reasoning strategies.

1031 C.3 COMPUTATIONAL ENVIRONMENT AND INFRASTRUCTURE

1032 All experiments in this study were conducted on a cluster of 8 NVIDIA A800 80GB GPUs, pro-
 1033 viding the computational resources necessary for large-scale reinforcement learning training and
 1034 evaluation of retrieval-augmented generation systems.

1035 **Reinforcement Learning Framework.** We implemented our REX-RAG training pipeline using
 1036 VERL (Sheng et al., 2024), an open-source distributed reinforcement learning framework developed
 1037 by ByteDance for efficient large language model training. VERL is specifically designed to handle
 1038 the computational challenges of RLHF at scale, providing optimized implementations of policy
 1039 optimization algorithms such as PPO and GRPO.

1040 **Retrieval Infrastructure.** Our retrieval system is built upon FAISS (Facebook AI Similarity
 1041 Search) (Johnson, Douze, and Jégou, 2019) for efficient similarity search and indexing. We em-
 1042 ploy the E5 embedding model (Wang et al., 2022) to encode both queries and documents into dense
 1043 vector representations, enabling semantic similarity matching for retrieval operations. The knowl-
 1044 edge base consists of Wikipedia passages from the DPR corpus (Karpukhin et al., 2020), specifically
 1045 the Wiki-18 dataset. The entire retrieval system is deployed using FastAPI.

1046 **Data Processing and Evaluation Pipeline.** For data preprocessing, evaluation metrics computa-
 1047 tion, and baseline comparisons, we adopted the experimental framework from Search-R1 (Jin et al.,
 1048 2025b). This includes standardized data loading procedures, question-answer pair formatting, re-
 1049 trieval corpus preparation, and evaluation protocols that ensure fair comparison across different
 1050 methods. The Search-R1 framework provides implementations for computing exact match accuracy
 1051 for multi-hop reasoning evaluation.

1052 **Prompt Generation and Template Management.** We utilized GPT-4.5 for generating high-quality
 1053 prompts and reasoning templates used throughout our experiments. This mainly includes the gen-
 1054 eration of exploration prompts for policy training, as shown in Appendix G.

1055 C.4 HYPER-PARAMETER CONFIGURATION AND TUNING

1056 Table 7: Primary hyperparameters used by REX-RAG. Performance-related parameters were tuned
 1057 for optimal GPU utilization, while other parameters follow Search R1 baseline configuration.

Category	Hyperparameter	Value
Performance	Training Batch Size	512
	Mini Batch Size	256
	Max Token Length	24,000
	GPU Memory Utilization	0.8
	Max Batched Tokens	8,192
	Max Sequences per Batch	1,024
Training	Actor Learning Rate	1×10^{-6}
	Warmup Steps Ratio	0.285
	Weight Decay	0.01
	PPO Epochs	1
Policy	Clip Ratio	0.2
	KL Coefficient	0.001
	Use Dynamic Batch Size	True
Generation	Max Search Turns	5
	Response Length	500
	Temperature	1.0
	Top-p Value	1.0

1080 Our hyperparameter configuration strategy primarily focused on tuning algorithm-agnostic parameters that optimize GPU computational performance, particularly those related to macro batch size and GPU utilization settings. This approach ensures efficient resource utilization while maintaining training stability. For all other hyperparameters not directly related to computational performance, we maintained consistency with the Search R1 baseline configuration to ensure fair comparison and reproducibility. Table 7 presents the key hyperparameters used in our REX-RAG implementation.
 1081
 1082
 1083
 1084
 1085

1086 The performance-oriented hyperparameters in the first category were specifically tuned to optimize computational efficiency on our hardware configuration. The training batch size of 512 and PPO
 1087 mini batch size of 256 were selected to maximize throughput while maintaining gradient stability.
 1088 The GPU memory utilization of 0.8 ensures efficient memory usage without risking out-of-memory
 1089 errors during training. The token length and sequence limits were configured to balance between
 1090 accommodating longer reasoning chains and maintaining computational feasibility.
 1091

1092 To support deeper reasoning and allow recovery from failed attempts, we increased the Max Search
 1093 Turns from 2 (as used in Search-R1) to 5. This extension enables the model to conduct further re-
 1094 trieval after initial errors, which is essential for our exploration-driven method. Notably, we kept the
 1095 overall maximum token budget unchanged, ensuring that this change does not introduce significant
 1096 additional computational overhead.
 1097

1098 All remaining hyperparameters, including learning rates, regularization coefficients, and generation
 1099 parameters, were kept consistent with the Search-R1 baseline to ensure that performance improve-
 1100 ments can be attributed to our proposed REX-RAG methodology rather than hyperparameter opti-
 1101 mization advantages.
 1102

D ERROR CASE ANALYSIS

1104 In this section, we conduct a detailed analysis of several challenging cases where our model failed.
 1105 By dissecting these failures, we aim to provide valuable insights into the persistent challenges of
 1106 complex question answering and highlight promising directions for future research. We categorize
 1107 these errors into three main types: Failures in Entity Disambiguation and Errors in Logical Rea-
 1108 soning. Our analysis reveals that while REX-RAG significantly improves performance, these edge
 1109 cases represent the next frontier of challenges.
 1110

D.1 FAILURES IN ENTITY DISAMBIGUATION

Case 1: Incorrect Entity Association

1115 **Input:** Who is the uncle of Nicaea Of Macedon?

1116 **Model Output:** Phalion

1117 **Ground Truth:** Cassander

Model's Reasoning Process:

```

 1118 <think> To answer this question, I need to determine who the uncle of Nicaea of Macedon
 1119   ↵ is.
 1120 <search> Nicaea of Macedon </search>
 1121 <information> Nicaea of Macedon was a daughter of the powerful regent Antipater. </
 1122   ↵ information>
 1123 <think> To find her uncle, I need to search for Antipater's brothers. </think>
 1124 <search> Antipater brothers </search>
 1125 <information> Antipater the Idumaean ... had a brother named Phalion... </information>
 1126 <think> Based on the information, Antipater had a brother named Phalion. Therefore, the
 1127   ↵ uncle is Phalion. </think>
 1128 <answer> Phalion </answer>
 1129
 1130
 1131
```

1132 **Analysis:** The model correctly identified that Nicaea was the daughter of Antipater. However, the query "Antipater brothers" returned information for *Antipater the Idumaean* (father of Herod the Great), a more prominent historical figure in the search index, instead of *Antipater the Macedonian regent*. The model incorrectly associated Nicaea with the wrong Antipater and thus identified the wrong brother (Phalion). The correct entity, Antipater the regent, had a son named Cassander, who would be Nicaea's brother, not uncle. This highlights a key challenge: even if the model knows what to look for (Antipater's brother), the search results can be misleading.

1132 Among the observed failure modes, Failures in Entity Disambiguation are the most common. This
 1133 error occurs when a model is unable to distinguish between entities that share the same or simi-
 1134 lar names, leading to the retrieval of incorrect information. This issue is particularly damaging in

1134 multi-hop reasoning scenarios, where an early disambiguation error can derail the entire subsequent
 1135 reasoning chain. The iterative retrieval mechanism in REX-RAG is designed to mitigate this by
 1136 allowing the model to refine its understanding. However, when initial search results are overwhelm-
 1137 ingly dominated by a more famous but incorrect entity, the model can still be led astray.
 1138

1139 D.2 ERRORS IN LOGICAL REASONING

1140
 1141 A second category of failure involves errors in the logical reasoning step, which occurs after all nec-
 1142 essary information has been correctly retrieved. In these instances, the model successfully gathers
 1143 the right facts but falters when performing a final comparison or logical deduction (e.g., compar-
 1144 ing dates or numbers). While REX-RAG pushes performance by improving information retrieval
 1145 and enhancing logical consistency, the bottleneck of model’s intrinsic reasoning capability causes
 1146 occasional failures even when information retrieval is perfect.

1147 Case 2: Error in Final Comparison

1148
 1149 **Input:** Which film whose director is younger, Dagudu Moothalu or Port Of Seven Seas?
 1150 **Model Output:** Port Of Seven Seas
 1151 **Ground Truth:** Dagudu Moothalu

1152 **Model’s Reasoning Process:**

1153 <think> I need to find the directors of both films and their ages. </think>
 1154 <search> Dagudu Moothalu director </search>
 1155 <information> Dagudu Moothalu (1964) ... directed by Adurthi Subba Rao. </information>
 1156 <search> Port Of Seven Seas director </search>
 1157 <information> Port of Seven Seas (1938) ... directed by James Whale. </information>
 1158 <search> Adurthi Subba Rao age </search>
 1159 <information> Adurthi Subba Rao (16 December 1912 – 1 October 1975) </information>
 1160 <search> James Whale age </search>
 1161 <information> James Whale ... suicide ... on 29 May 1957 at the age of 67. [born in
 1162 ↪ 1889] </information>
 1163 <think> Adurthi Subba Rao was born in 1912, and James Whale was born in 1889. Therefore
 1164 ↪ , James Whale is younger. </think>
 1165 <answer> Port Of Seven Seas </answer>

1166
 1167 **Analysis:** The model correctly executed a complex query plan: it identified both directors (Adurthi Subba Rao and James Whale) and retrieved their birth years (1912 and 1889, respectively). However, it failed at the final step of comparing the two dates, incorrectly concluding that a person born in 1889 is younger than one born in 1912. This is a pure reasoning failure. Another case exhibited a similar flaw, where the model correctly found George E. Mahoney’s birth year (1901) and Paulo Roberto Falcão’s (1953) but wrongly concluded that Mahoney was younger. These cases show that even when the RAG component works perfectly, the core reasoning capacity of the LLM can be fragile.

1168 E LIMITATIONS, DISCUSSION, AND FUTURE WORK

1169
 1170 **Limited Exploration Strategy** Our current exploration mechanism relies on a relatively simple
 1171 strategy—injecting prompts from a pre-constructed prompt pool to guide the model toward alter-
 1172 native reasoning paths. While effective, this approach may fall short of the full potential of more
 1173 sophisticated exploration techniques. From the prompt perspective, online generation of exploration
 1174 prompts conditioned on the model’s current reasoning state may offer greater adaptivity and con-
 1175 textual relevance than our static prompt set. From the policy perspective, incorporating more structured
 1176 search procedures, such as backtracking trees or trajectory-level search algorithms, could enable
 1177 more systematic exploration across the reasoning space. Moreover, our method emphasizes local
 1178 trajectory perturbation via prompt insertion, rather than global restructuring of the reasoning path.
 1179 Despite these limitations, our results demonstrate that end-to-end optimization under an exploratory
 1180 policy is both feasible and beneficial, laying the groundwork for future work on more principled and
 1181 expressive exploration strategies.

1182
 1183 **Computational Overhead and Adaptive Sampling Limitations** The mixed sampling strategy
 1184 inherently introduces computational overhead compared to standard policy optimization approaches.
 1185 Our resampling mechanism requires a two-stage process: first performing normal sampling to as-
 1186 sess question difficulty through initial trajectory evaluation, then conducting exploratory sampling
 1187 based on the observed failure rates. This sequential approach increases computational complexity
 1188 as it necessitates generating $(1 - \alpha)G$ additional exploratory trajectories from the probe policy π_ϵ ,
 1189 resulting in approximately 12% more trajectory sampling in our experiments. While this overhead

1188 is substantially more efficient than uniform oversampling approaches (which require 20% additional
 1189 trajectories for minimal gains), the computational cost scales linearly with the resampling parameter
 1190 p and the exploration ratio α . A more efficient approach would involve predicting question diffi-
 1191 culty a priori and automatically adjusting sampling quantities accordingly, eliminating the need for
 1192 the initial sampling phase. However, developing reliable difficulty prediction mechanisms remains
 1193 an open challenge. Furthermore, the policy realignment mechanism requires computing importance
 1194 sampling ratios for each token, adding non-negligible computational complexity during training.
 1195

1196 **Lack of Validation in Broader Agentic Tasks** While REX-RAG demonstrates consistent im-
 1197 provements across seven open-domain question answering datasets, its effectiveness has only been
 1198 validated within the RAG (retrieval-augmented generation) framework. Our method specifically
 1199 targets reasoning-intensive QA tasks where external information retrieval and multi-turn reasoning
 1200 are tightly coupled. As such, it remains unclear whether the proposed exploration and policy re-
 1201 alignment strategies generalize to broader agentic scenarios—such as tool use, web navigation, or
 1202 embodied planning—where action spaces, environmental feedback, and task dynamics differ sub-
 1203 stantially. Extending our framework to these settings would require adapting both the structured in-
 1204 teraction protocol and the rollout mechanism to accommodate more complex state-action transitions.
 1205 Future work may explore the applicability of REX-RAG’s core ideas beyond QA, investigating how
 1206 exploration with distribution correction can benefit general-purpose decision-making agents.
 1207

1208 **Simplistic Trigger Mechanism** To clearly isolate and evaluate the core contribution, REX-RAG
 1209 intentionall adopt a straightforward “Exact Match” criterion to trigger exploration. While this bi-
 1210 nary decision framework provides a clear and interpretable baseline for our experiments, it does
 1211 not capture the full spectrum of reasoning quality. For instance, it may overlooks flawed reasoning
 1212 paths that happen to yield a correct answer, thereby missing valuable learning opportunities, and
 1213 it incorrectly penalizes responses that are semantically equivalent to the ground truth but differ in
 1214 phrasing. Future work should therefore focus on developing more intelligent triggers. This could
 1215 involve integrating semantic similarity scores, model confidence levels, and specialized error classi-
 1216 fiers. Furthermore, leveraging uncertainty quantification based on the model’s internal state would
 1217 enable a more discerning and efficient exploration strategy, maximizing learning while minimizing
 1218 computational cost.
 1219

F STRUCTURED SEARCH INTERACTION PROTOCOL

1220 The structured search interaction protocol employed in REX-RAG follows the framework estab-
 1221 lished by Search-R1 (Jin et al., 2025b), which defines a systematic approach for integrating rea-
 1222 soning and retrieval operations through specialized tokens and prompt templates. The structured
 1223 interaction protocol relies on four primary special tokens that delineate different phases of the rea-
 1224 soning and retrieval process:
 1225

F.1 SPECIAL TOKENS

1226 **<think> and </think>** encapsulate the model’s internal reasoning process, allowing it to en-
 1227 gage in chain-of-thought reasoning without external interference. Within these tags, the model can
 1228 perform logical deduction, analyze given information, identify knowledge gaps, and plan subsequent
 1229 actions. This internal reasoning phase is crucial for determining when external retrieval is necessary
 1230 and formulating appropriate search queries.
 1231

1232 **<search> and </search>** trigger external information retrieval operations. When the model
 1233 generates these tokens, the content within them is interpreted as a search query that is executed
 1234 against the external knowledge base. This mechanism allows for dynamic knowledge acquisition
 1235 during the reasoning process.
 1236

1237 **<information> and </information>** contain the retrieved external knowledge that is re-
 1238 turned by the search engine in response to search queries. This mechanism allows for dynamic
 1239 knowledge acquisition during the reasoning process.
 1240

1241 **<information> and </information>** contain the retrieved external knowledge that is re-
 1242 turned by the search engine in response to search queries. The content within these tags represents
 1243

1242 the top search results that are automatically inserted into the model’s context after a search opera-
 1243 tion. This information serves as additional context that the model can analyze and incorporate into
 1244 its content within these tags represents the top search results that are automatically inserted into
 1245 the model’s context after a search operation. This information serves as additional context that the
 1246 model can analyze and incorporate into its reasoning process.

1247 These special tokens serve multiple purposes: they provide clear demarcation between different
 1248 operational phases, enable selective training on specific components of the reasoning process, and
 1249 facilitate systematic evaluation of reasoning quality versus retrieval effectiveness.

1250 **<answer> and </answer>** mark the final response generation phase, where the model synthe-
 1251 sizes information from both its internal reasoning and retrieved external knowledge to produce a
 1252 comprehensive answer. The content within these tags represents the model’s final output, incorpo-
 1253 rating insights gained through reasoning and retrieval process.

1254 These special tokens serve multiple purposes: they provide clear demarcation between different
 1255 operational phases, enable selective training on specific components of the reasoning process, and
 1256 facilitate systematic evaluation of reasoning quality versus retrieval effectiveness.

1259 F.2 INSTRUCTION PROMPTS

1260
 1261 The prompt template structure orchestrates the interaction between reasoning and retrieval compo-
 1262 nents through a carefully designed format that guides the model’s behavior throughout the question-
 1263 answering process. The template follows a think-search-answer paradigm that promotes systematic
 1264 problem-solving. The entire prompt template is demonstrated in Fig. 4.

1265
 1266 Figure 4: Complete prompt template and example interaction for the structured search protocol
 1267

1268 Structured Search Interaction Protocol

1269 **Prompt Template:**

1270 *Answer the given question. You must
 1271 conduct reasoning inside <think>
 1272 and </think> first every time you
 1273 get new information. After reason-
 1274 ing, if you find you lack some knowl-
 1275 edge, you can call a search engine
 1276 by <search> query </search>, and
 1277 it will return the top searched re-
 1278 sults between <information> and
 1279 </information>. You can search as
 1280 many times as you want. If you find
 1281 no further external knowledge needed,
 1282 you can directly provide the answer in-
 1283 side <answer> and </answer> with-
 1284 out detailed illustrations. For example,
 1285 <answer> xxx </answer>. Ques-
 1286 tion: [question]*

1287 **Example Interaction:**

1288 **Question:** What is the capital of France and when
 1289 was it founded?
 1290 <think> I need to find information about Paris, the
 1291 capital of France, and its founding date. </think>
 1292 <search> Paris France capital founding date history </search>
 1293 <information> Paris is the capital of France. The
 1294 city was founded in the 3rd century BC by the Parisii
 1295 tribe... </information>
 1296 <think> Based on the retrieved information, I
 1297 now have the answer to both parts of the question.
 1298 </think>
 1299 <answer> The capital of France is Paris, which was
 1300 founded in the 3rd century BC. </answer>

1289 G REVISION PROMPTS AND EXAMPLES

1290 The revision prompts are formulated to express uncertainty and encourage critical self-evaluation
 1291 without being overly prescriptive. Prompts are designed to maintain the natural reasoning flow
 1292 while introducing a reflective pause that can lead to error correction and improved reasoning quality.

1293 The Table 8 presents all 30 revision prompts used in our implementation. These prompts are ran-
 1294 domly selected during training to provide diverse expressions of self-doubt and reflection.

1296
1297 Table 8: Complete collection of revision prompts used in REX-RAG for triggering self-reflection
1298 during reasoning

ID	Revision Prompt Text	ID	Revision Prompt Text
0	<think> Perhaps I've overlooked critical points or slipped up in my logic.	15	<think> Concerned I might have overlooked key aspects or made subtle errors.
1	<think> I wonder if vital information escaped my notice or if I made an error.	16	<think> I might have unintentionally ignored essential details or misunderstood something.
2	<think> There might be key gaps in my understanding or errors in reasoning.	17	<think> Revisiting carefully, perhaps errors or oversights went unnoticed earlier.
3	<think> It's possible I've missed something important or misunderstood crucial details.	18	<think> Maybe important points slipped my attention, or I made a miscalculation.
4	<think> I suspect errors crept in, or essential points went unnoticed.	19	<think> It's likely I've overlooked something crucial or stumbled in logic.
5	<think> Maybe I've misjudged something important or neglected key facts.	20	<think> Reflecting, I could've missed critical clues or made errors in judgment.
6	<think> Reflecting now, I might have overlooked critical data or erred somewhere.	21	<think> Possibly, I misunderstood something fundamental or missed key evidence.
7	<think> Possibly, I've missed significant insights or made a mistake.	22	<think> Concerned about potential unnoticed mistakes or overlooked essential details.
8	<think> I'm sensing a gap or error might be present in my recent reasoning.	23	<think> Perhaps my earlier step wasn't entirely accurate or lacked vital points.
9	<think> I could have misinterpreted important facts or overlooked necessary details.	24	<think> It's conceivable that I've neglected critical information or erred.
10	<think> Aware that my reasoning might be flawed or lacking crucial points.	25	<think> Wondering if I've mistakenly dismissed something important or misunderstood it.
11	<think> I need to reconsider—I might've skipped vital information or erred.	26	<think> Maybe my previous reasoning has blind spots or unnoticed errors.
12	<think> There's a chance my previous thinking has unnoticed mistakes or omissions.	27	<think> I'm doubting if crucial points were missed or mistakes made earlier.
13	<think> I feel there might be something critical I overlooked or misunderstood.	28	<think> Feeling uncertain—perhaps critical details slipped past or were misunderstood.
14	<think> Perhaps my earlier reasoning has hidden mistakes or missing information.	29	<think> Recognizing possible gaps or missteps I didn't previously notice.

1323
1324 H USAGE OF LLM
13251326
1327 **Writing Assistance** LLMs are employed to assist in the writing and refinement of this manuscript.
1328 This included tasks such as proofreading for grammatical errors, improving sentence structure for
1329 clarity, and rephrasing content to enhance readability. It is important to note that all AI-generated
1330 text is thoroughly reviewed, critically evaluated, and edited by the authors to ensure the accuracy
1331 and integrity of the final content. The authors take full responsibility for all statements and claims
1332 made in this paper.1333
1334 **Code Implementation** LLMs are used as a tool to facilitate the implementation of algorithms and
1335 data processing scripts. This involves generating boilerplate code, suggesting solutions for specific
1336 programming challenges, and debugging. All code generated by LLMs is manually verified and
1337 tested by the authors to ensure its correctness, efficiency, and adherence to the project's require-
13381339
1340 **Research Applications** Beyond supporting tasks, LLMs are integral to the research itself, serving
1341 multiple functions as detailed throughout the paper. These applications include acting as the base
1342 model for our experiments, refining and rephrasing prompts to guide model behavior, and other
1343 research-specific uses that are explicitly mentioned in the relevant sections of this work.1344 REFERENCES
13451346
1347
1348
1349 Guo, D.; Yang, D.; Zhang, H.; Song, J.; Zhang, R.; Xu, R.; Zhu, Q.; Ma, S.; Wang, P.; Bi, X.; et al.
2025. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*.
Ho, X.; Duong Nguyen, A.-K.; Sugawara, S.; and Aizawa, A. 2020. Constructing A Multi-hop
QA Dataset for Comprehensive Evaluation of Reasoning Steps. In *Proceedings of the 28th In-*

1350 *ternational Conference on Computational Linguistics*, 6609–6625. International Committee on
 1351 Computational Linguistics.

1352 Jin, B.; Zeng, H.; Yue, Z.; Yoon, J.; Arik, S.; Wang, D.; Zamani, H.; and Han, J. 2025b. Search-r1:
 1353 Training llms to reason and leverage search engines with reinforcement learning. *arXiv preprint*
 1354 *arXiv:2503.09516*.

1355 Johnson, J.; Douze, M.; and Jégou, H. 2019. Billion-scale similarity search with GPUs. *IEEE*
 1356 *Transactions on Big Data*, 7(3): 535–547.

1357 Joshi, M.; Choi, E.; Weld, D. S.; and Zettlemoyer, L. 2017. TriviaQA: A Large Scale Distantly
 1358 Supervised Challenge Dataset for Reading Comprehension. In *Proceedings of the 55th Annual*
 1359 *Meeting of the Association for Computational Linguistics*, 1601–1611.

1360 Karpukhin, V.; Oguz, B.; Min, S.; Lewis, P.; Wu, L.; Edunov, S.; Chen, D.; and Yih, W.-t. 2020.
 1361 Dense Passage Retrieval for Open-Domain Question Answering. In Webber, B.; Cohn, T.; He, Y.;
 1362 and Liu, Y., eds., *Proceedings of the 2020 Conference on Empirical Methods in Natural Language*
 1363 *Processing*, 6769–6781. Association for Computational Linguistics.

1364 Kwiatkowski, T.; Palomaki, J.; Redfield, O.; Collins, M.; Parikh, A.; Alberti, C.; Epstein, D.;
 1365 Polosukhin, I.; Devlin, J.; Lee, K.; et al. 2019. Natural questions: a benchmark for question
 1366 answering research. *Transactions of the Association for Computational Linguistics*, 7: 453–466.

1367 Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.;
 1368 Yih, W.-t.; Rocktäschel, T.; Riedel, S.; and Kiela, D. 2020. Retrieval-Augmented Generation
 1369 for Knowledge-Intensive NLP Tasks. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.;
 1370 and Lin, H., eds., *Advances in Neural Information Processing Systems*, volume 33, 9459–9474.
 1371 Curran Associates, Inc.

1372 Li, X.; Dong, G.; Jin, J.; Zhang, Y.; Zhou, Y.; Zhu, Y.; Zhang, P.; and Dou, Z. 2025a. Search-o1:
 1373 Agentic search-enhanced large reasoning models. *arXiv preprint arXiv:2501.05366*.

1374 OpenAI. 2025. Introducing GPT-4.5. <https://openai.com/index/introducing-gpt-4-5/>.

1375 Press, O.; Zhang, M.; Min, S.; Schmidt, L.; Smith, N. A.; and Lewis, M. 2023. Measuring and
 1376 Narrowing the Compositional Gap in Language Models. In *Findings of the Association for*
 1377 *Computational Linguistics: EMNLP 2023*, 5687–5711.

1378 Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and Klimov, O. 2017. Proximal policy opti-
 1379 mization algorithms. *arXiv preprint arXiv:1707.06347*.

1380 Shao, Z.; Wang, P.; Zhu, Q.; Xu, R.; Song, J.; Bi, X.; Zhang, H.; Zhang, M.; Li, Y.; Wu, Y.; et al.
 1381 2024. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
 1382 *arXiv preprint arXiv:2402.03300*.

1383 Sheng, G.; Zhang, C.; Ye, Z.; Wu, X.; Zhang, W.; Zhang, R.; Peng, Y.; Lin, H.; and Wu, C. 2024.
 1384 HybridFlow: A Flexible and Efficient RLHF Framework. *arXiv preprint arXiv: 2409.19256*.

1385 Team, Q. 2024. Qwen2.5: A Party of Foundation Models.

1386 Trivedi, H.; Balasubramanian, N.; Khot, T.; and Sabharwal, A. 2022. MuSiQue: Multihop Ques-
 1387 tions via Single-hop Question Composition. *Transactions of the Association for Computational*
 1388 *Linguistics*, 10: 539–554.

1389 Trivedi, H.; Balasubramanian, N.; Khot, T.; and Sabharwal, A. 2023. Interleaving Retrieval with
 1390 Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions. In *Proceedings of*
 1391 *the 61st Annual Meeting of the Association for Computational Linguistics*, 10014–10037.

1392 Veach, E.; and Guibas, L. J. 1995. Optimally combining sampling techniques for Monte Carlo
 1393 rendering. In *Proceedings of the 22nd annual conference on Computer graphics and interactive*
 1394 *techniques*, 419–428.

1404 Wang, L.; Yang, N.; Huang, X.; Jiao, B.; Yang, L.; Jiang, D.; Majumder, R.; and Wei, F. 2022. Text
1405 embeddings by weakly-supervised contrastive pre-training. *arXiv preprint arXiv:2212.03533*.

1406

1407 Yang, Z.; Qi, P.; Zhang, S.; Bengio, Y.; Cohen, W.; Salakhutdinov, R.; and Manning, C. D. 2018.
1408 HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering. In *Proceedings*
1409 *of the 2018 Conference on Empirical Methods in Natural Language Processing*, 2369–2380.

1410 Yu, Q.; Zhang, Z.; Zhu, R.; Yuan, Y.; Zuo, X.; Yue, Y.; Dai, W.; Fan, T.; Liu, G.; Liu, L.;
1411 et al. 2025. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint*
1412 *arXiv:2503.14476*.

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457