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A ADDITIONAL EXPERIMENTAL ANALYSIS

A.1 ANALYSIS OF HYPER-PARAMETERS

REX-RAG introduces a hyperparameter p that controls the number of additionally sampled trajec-
tories. As shown in the Table 4, sampling only an extra 12% of trajectories yields a substantial
performance improvement over Search-R1. By contrast, Search-R1 attains only a negligible gain
even when using 20% more trajectories, highlighting the superior sample efficiency of REX-RAG.
Moreover, we observe a positive correlation between model performance and the resampling pa-
rameter p; with 20% additional sampling, the improvement becomes even more pronounced. This
property allows practitioners to flexibly trade off performance gains against computational cost ac-
cording to their specific needs and resource constraints.

Sampling Strategy General Multi-Hop Avg.

Search-R1
5 rollouts (+0%) 47.2 19.1 31.2
6 rollouts (+20%) 47.6 19.1 31.3

REX-RAG
5.6 (+12%← 12%) 48.7 23.4 34.2
5.6 (+12%← 20%) 49.5 30.7 38.7

Table 4: Impact of trajectory sampling strategies on performance. Expected rollout counts shown
for REX-RAG under maximum resampling scenarios (all initial outputs incorrect).

A.2 ANALYSIS OF EXPLORATION PROMPT

As shown in the Table 5, we examined how varying exploration prompts affects model performance.
With five prompts, we observe modest improvements on General QA and Multi-Hop QA. However,
when expanding from five to thirty prompts, REX-RAG achieves a substantial performance gain rel-
ative to Serach-R1. These results indicate that the REX-RAG framework exhibits strong scalability,
rather than merely benefiting from a small set of specially selected prompts.

Sampling Strategy General Multi-Hop Avg.

Search-R1 47.2 19.1 31.2
REX-RAG(5 Prompts) 48.3 20.0 32.1
REX-RAG(30 Prompts) 49.5 30.7 38.7

Table 5: Impact of Number of Exploration Prompt

A.3 STATISTICAL ANALYSIS AND SIGNIFICANCE TEST

Given that Exact Match is a binary evaluation metric, we adopt the McNemar test to determine
whether the performance differences observed in the ablation study constitute statistically significant
improvements or degradations. As shown in Table 2, we evaluate a total of five models. In this
subsection, we first rank the models by their Average scores in descending order and then perform
pairwise comparisons between successive models.

Each numerical value in the Table 6 represents the p-value corresponding to the statistical test of the
alternative hypothesis, evaluating the difference between the two models across various benchmark.

As shown in Table 6, the majority of the test results are significant (p-value < 0.05). While the
results on a few individual benchmarks are not statistically significant, this does not affect the overall
conclusions presented in the main text.
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Table 6: Significance Test over key components in REX-RAG (Qwen2.5-3B,GRPO). Overall repre-
sents the results of the tests conducted on seven benchmarks. The rest are the test results obtained
on each benchmark.

Alternative Hypothesis General QA Multi-Hop QA Overall
NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle

REX-RAG ̸= Coarse PPD 1e−9 5e−15 4e−9 1e−50 1e−74 1e−10 2e−2 5e−144
Coarse PPD ̸= w/o IS 9e−1 1e−3 4e−1 2e−10 8e−55 1e−5 2e−2 3e−33
w/o IS ̸=w/o IS&IF 3e−20 7e−62 5e−16 4e−44 8e−13 1e−8 1e−1 5e−128
w/o IS&IF ̸= w/o TF 7e−1 3e−7 1e−53 1e−1 2e−1 7e−1 1 1e−24

B MATHEMATICAL FORMULATIONS AND DERIVATIONS

B.1 GRPO ALGORITHM

GRPO (Shao et al., 2024) is a reinforcement-learning algorithm for aligning large language models
that removes the value/critic network by computing group-relative advantages across multiple sam-
pled outputs for the same prompt. The baseline is the group’s average reward, and policy updates
are additionally regularized by a KL term to a frozen reference model.

For each prompt q, sample a group of G outputs {oi}Gi=1 from the old policy πθold . Define the
likelihood ratio ρi,t =

πθ(oi,t|q,oi,<t)
πθold

(oi,t|q,oi,<t)
. GRPO maximizes: where ε is the PPO clipping parameter

and β controls KL regularization to the reference policy πref .

Outcome supervision Let rϕ denote a reward scoring each output. For a fixed q, obtain rewards
r = {ri}Gi=1, one per output oi. Compute the group mean and standard deviation

µr =
1

G

G∑
i=1

ri, σr = std(r1, . . . , rG).

Normalize each reward r̃i =
ri−µr

σr
, and assign a constant advantage to all tokens in oi:

Âi,t = r̃i, ∀ t ∈ {1, . . . , |oi|}. (8)

B.2 DISTRIBUTION SHIFT

For the sake of analytical simplicity, we disregard the clipping technique and the KL-divergence
regularization term in GRPO. If we intend to employ data drawn from the mixture policy µ to
optimize the target policy θ, the unbiased gradient is given by:

∇θJ(θ) = Eq,{oi}∼µ

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

Âi,t∇θ
πθ(oi,t | q, oi,<t)

µ(oi,t | q, oi,<t)

 . (9)

If, instead, we apply no corrective procedure and directly use the data collected under the mixture
policy µ to optimize θ, the gradient we actually compute becomes:

g̃(θ) = Eq,{oi}∼µ

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

Âi,t∇θ
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)

 . (10)

Subtracting the two importance ratios yields the bias:
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∆i,t = ρ̃i,t − ρi,t

=
πθ,i,t

πθold,i,t
− πθ,i,t

µi,t

=
πθ,i,t

µi,t
·
(
µi,t − πθold,i,t

µi,t

)
= ρ̃i,t

(
1− πθold,i,t

µi,t

)
. (11)

In this expression, the first factor, ρ̃i,t, is strictly positive and can therefore be ignored. Focusing on
the sign of the second factor, we observe that for tokens generated freely by the model, µ comprises
both πθ and πϵ, where πϵ is defined only along erroneous trajectories. Consequently, µ is smaller
than πθ, rendering the second factor negative. Thus, for tokens sampled freely by the model, the
importance ratio is biased downward, leading to systematic underestimation.

Conversely, for the segments inserted by the probe policy, the second factor is positive, confer-
ring a systematic up-weighting. This persistent high weighting can drive the probabilities of tokens
with negative advantages to decline rapidly, potentially pushing them outside the support of the
policy model. Tokens with positive advantages, on the other hand, may experience rapid probabil-
ity increases, thereby squeezing the probabilities of alternative tokens and inducing severe entropy
collapse.

B.3 PROBE POLICY DEFINITION

For the Probe Policy, we partition the procedure into three components according to their ordering
relative to the inserted prompt: (1) the segment of the model rollout up to the point of failure; (2)
the inserted prompt; and (3) the subsequent trajectory obtained by conditioning on the erroneous
reasoning path and the prompt as context.

πε(o
′
i,t | qi, o′i<t) =



πθ(o
′
i,t | qi, o′i<t)

z1/|o
′
origin|

, if o′i,t ∈ o′origin

PMF(o′i<t, o
′
i,t), if o′i,t ∈ o′prompt

πθ(o
′
i,t | qi, o′i<t), if o′i,t ∈ o′probe

. (12)

First, for the segment of the model rollout up to the point where an error occurs, our aim is to
model the region of the original policy distribution that gives rise to failures. Within the set of all
trajectories that can be sampled from the original distribution, we approximate this subset using z,
defined as the fraction of erroneous trajectories among those sampled at the current step. This yields
a distribution that is truncated relative to the original policy. To make this subset of trajectories a
valid probability distribution—that is, to let “the probability mass of these trajectories fill the entire
space”—we renormalize it. Accordingly, we divide the probability of each token by z1/|o

′
origin| as a

simple sequence-level normalization.

For the inserted prompt part, we define it based on the frequency distribution. The method induces
a discrete vocabulary via a tokenizer and builds a nonparametric next-token model by aggregating,
for each observed prefix p, the multiset of successor tokens from the corpus. Each prefix is mapped
to a count vector over the vocabulary; the probability mass function is the normalized frequency.
Conceptually, this is an unsmoothed, memory-based (variable-length n-gram) estimator that returns
the empirical conditional distribution of the next token given p, assigning zero mass to unseen events.
Specifically, the construction algorithm is as shown in Algorithm 1.

For the last part, since we do not impose any restrictions on the sampling of these parts, we directly
use the probability of the original policy model as the probability of the probe policy.
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Algorithm 1: PMF Construction via Frequency Distribution
Input: Tokenizer T ; Prompt set P = {s1, . . . , sm}
Output: Function PMF(p, x)
K ← {T (s) | s ∈ P};
// tokenize every prompt
V ← unique tokens in K;
// initialize vocabulary
foreach k ∈ K do

for i← 0 to |k| − 1 do
p← k0:i;
C[p]← 0|V |;
// initialize frequency distribution

foreach k ∈ K do
for i← 0 to |k| − 1 do

p← k0:i; x← ki+1;
C[p][V.index(x)]← C[p][V.index(x)] + 1;

Function PMF(p, x):
counts← C[p];
return counts[V.index(x)]∑

counts ;

return PMF;
// expose the query function to the caller

B.4 COEFFICIENT FOR IMPORTANCE SAMPLING

Let the goal be to estimate the policy gradient using a mixed policy µ = {πθ, πϵ}. During sampling,
a fraction of 1

1+α of the trajectories come from πθ, while a fraction of α
1+α of the trajectories come

from πϵ:

cθ =
1

1 + α
, cϵ =

α

1 + α
. (13)

Under the balance heuristic (Veach and Guibas, 1995), the weight is

ω̂i(x) =
ci pi(x)∑
j cjpj(x)

. (14)

Substitute the variables into it respectively, and we can obtain the Importance ratio for estimating
the policy gradient of Multiple Importance Sampling:

ω =
(1 + α)πθ

πθ + απε
. (15)

C EXPERIMENTAL IMPLEMENTATION DETAILS

C.1 BASELINE METHODS

We evaluate REX-RAG against two categories of baselines: (1) non-fine-tuned methods, including
Naive RAG (Lewis et al., 2020), IRCOT (Trivedi et al., 2023), and Search-o1 (Li et al., 2025a); and
(2) fine-tuned methods, including R1-like (Guo et al., 2025) trained with PPO (Jin et al., 2025b)
(with and without retrieval) using GRPO (Shao et al., 2024).

Naive RAG (Lewis et al., 2020) is the standard retrieval-augmented generation approach that re-
trieves documents using dense passage retrieval and generates answers conditioned on both the
query and the retrieved context. It employs a bi-encoder architecture and marginalizes over re-
trieved documents during generation, enabling dynamic access to external knowledge and reducing
hallucination in knowledge-intensive tasks.
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IRCOT (Trivedi et al., 2023) interleaves reasoning and retrieval steps, alternating between generat-
ing intermediate reasoning steps and retrieving new information. This few-shot prompting approach
enables step-wise information gathering and supports multi-hop reasoning by refining retrieval based
on the evolving reasoning chain.

Search-o1 (Li et al., 2025a) enhances LLM reasoning by integrating web search. It uses multi-
step reasoning to analyze queries, formulate searches, and synthesize results. Iterative search-query
reformulation and result ranking improve retrieval quality. The approach relies on chain-of-thought
reasoning to generate comprehensive answers using diverse sources.

R1-like Training (Guo et al., 2025) employs RLHF via PPO to fine-tune LLMs for reasoning tasks
without retrieval. Following DeepSeek-R1, it includes supervised reasoning trace training, reward
modeling, and PPO optimization. This pipeline enhances reasoning quality using curated datasets
and human feedback, serving as a strong non-retrieval baseline.

Search-R1 (Jin et al., 2025b) extends R1-style training by integrating retrieval actions into the policy
optimization process using GRPO. It jointly optimizes reasoning and retrieval quality, with rewards
based on final answer accuracy and coherence. Retrieval is treated as part of the trajectory, allowing
the model to learn effective information-seeking strategies. This serves as a strong prior baseline for
evaluating the improvements brought by our proposed policy realignment mechanisms.

C.2 DATASET DESCRIPTIONS

We evaluate REX-RAG on seven QA benchmarks: three general QA datasets NQ (Kwiatkowski
et al., 2019), TrivialQA (Joshi et al., 2017), and PopQA (Mallen et al., 2023), together with
four Multi-Hop QA datasets HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho et al., 2020),
Musique (Trivedi et al., 2022), and Bamboogle (Press et al., 2023). In line with earlier studies (Jin
et al., 2025b;a), we merge the NQ and HotpotQA training sets for REX-RAG training. The test
splits of NQ and HotpotQA are treated as in-domain evaluations, and the remaining five datasets are
used for out-of-domain evaluation.

Natural Questions (NQ) (Kwiatkowski et al., 2019) is a large-scale dataset featuring real Google
Search queries paired with Wikipedia passages containing the answers. It includes over 300K natu-
rally occurring questions, each annotated with both a long answer (usually a paragraph) and a short
answer (typically a phrase). NQ reflects realistic information-seeking behavior across diverse topics
such as history, science, and current events, with varying complexity. We use it as an in-domain
benchmark, as it contributes to REX-RAG’s training.

TriviaQA (Joshi et al., 2017) is a reading comprehension dataset containing over 95K question-
answer pairs sourced from trivia websites and paired with evidence documents from Wikipedia and
the web. Not all documents are guaranteed to contain the answer, requiring models to perform effec-
tive retrieval. The questions emphasize factual knowledge, making the dataset ideal for evaluating
retrieval-augmented systems.

PopQA (Mallen et al., 2023) targets popular factual questions about widely known topics such as
celebrities, movies, and sports events. It evaluates models’ ability to answer questions about current
and trending topics that may not appear in training corpora, highlighting the importance of real-time
retrieval for up-to-date knowledge.

HotpotQA (Yang et al., 2018) is a multi-hop QA dataset with over 113K Wikipedia-based exam-
ples, where each question requires reasoning across at least two paragraphs. It includes bridge and
comparison questions and provides supporting facts. As an in-domain benchmark, it plays a key
role in evaluating REX-RAG’s multi-hop reasoning performance.

2WikiMultiHopQA (Ho et al., 2020) extends multi-hop QA by requiring reasoning over two
Wikipedia articles using varied operations like numerical, logical, and compositional reasoning.
Each question involves exactly two hops and is annotated with reasoning paths and supporting evi-
dence, facilitating fine-grained evaluation of multi-step reasoning.

MuSiQue (Trivedi et al., 2022) focuses on compositional multi-hop reasoning across multiple doc-
uments. Questions often involve temporal or relational reasoning and require synthesizing scattered
information. It includes both answerable and unanswerable questions, testing models’ ability to
detect insufficient context.
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Bamboogle (Press et al., 2023) is a challenging multi-hop QA benchmark designed to stress-test
reasoning capabilities. Questions involve complex inference steps, including temporal and causal
reasoning, often under ambiguous or incomplete information. It highlights the limitations of current
QA systems and the need for more advanced reasoning strategies.

C.3 COMPUTATIONAL ENVIRONMENT AND INFRASTRUCTURE

All experiments in this study were conducted on a cluster of 8 NVIDIA A800 80GB GPUs, pro-
viding the computational resources necessary for large-scale reinforcement learning training and
evaluation of retrieval-augmented generation systems.

Reinforcement Learning Framework. We implemented our REX-RAG training pipeline using
VERL (Sheng et al., 2024), an open-source distributed reinforcement learning framework developed
by ByteDance for efficient large language model training. VERL is specifically designed to handle
the computational challenges of RLHF at scale, providing optimized implementations of policy
optimization algorithms such as PPO and GRPO.

Retrieval Infrastructure. Our retrieval system is built upon FAISS (Facebook AI Similarity
Search) (Johnson, Douze, and Jégou, 2019) for efficient similarity search and indexing. We em-
ploy the E5 embedding model (Wang et al., 2022) to encode both queries and documents into dense
vector representations, enabling semantic similarity matching for retrieval operations. The knowl-
edge base consists of Wikipedia passages from the DPR corpus (Karpukhin et al., 2020), specifically
the Wiki-18 dataset. The entire retrieval system is deployed using FastAPI.

Data Processing and Evaluation Pipeline. For data preprocessing, evaluation metrics computa-
tion, and baseline comparisons, we adopted the experimental framework from Search-R1 (Jin et al.,
2025b). This includes standardized data loading procedures, question-answer pair formatting, re-
trieval corpus preparation, and evaluation protocols that ensure fair comparison across different
methods. The Search-R1 framework provides implementations for computing exact match accuracy
for multi-hop reasoning evaluation.

Prompt Generation and Template Management. We utilized GPT-4.5 for generating high-quality
prompts and reasoning templates used throughout our experiments. This mainly includes the gener-
ation of exploration prompts for policy training, as shown in Appendix G.

C.4 HYPER-PARAMETER CONFIGURATION AND TUNING

Table 7: Primary hyperparameters used by REX-RAG. Performance-related parameters were tuned
for optimal GPU utilization, while other parameters follow Search R1 baseline configuration.

Category Hyperparameter Value

Performance

Training Batch Size 512
Mini Batch Size 256

Max Token Length 24,000
GPU Memory Utilization 0.8

Max Batched Tokens 8,192
Max Sequences per Batch 1,024

Training

Actor Learning Rate 1× 10−6

Warmup Steps Ratio 0.285
Weight Decay 0.01
PPO Epochs 1

Policy

Clip Ratio 0.2
KL Coefficient 0.001

Use Dynamic Batch Size True

Generation

Max Search Turns 5
Response Length 500

Temperature 1.0
Top-p Value 1.0
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Our hyperparameter configuration strategy primarily focused on tuning algorithm-agnostic param-
eters that optimize GPU computational performance, particularly those related to macro batch size
and GPU utilization settings. This approach ensures efficient resource utilization while maintaining
training stability. For all other hyperparameters not directly related to computational performance,
we maintained consistency with the Search R1 baseline configuration to ensure fair comparison and
reproducibility. Table 7 presents the key hyperparameters used in our REX-RAG implementation.

The performance-oriented hyperparameters in the first category were specifically tuned to optimize
computational efficiency on our hardware configuration. The training batch size of 512 and PPO
mini batch size of 256 were selected to maximize throughput while maintaining gradient stability.
The GPU memory utilization of 0.8 ensures efficient memory usage without risking out-of-memory
errors during training. The token length and sequence limits were configured to balance between
accommodating longer reasoning chains and maintaining computational feasibility.

To support deeper reasoning and allow recovery from failed attempts, we increased the Max Search
Turns from 2 (as used in Search-R1) to 5. This extension enables the model to conduct further re-
trieval after initial errors, which is essential for our exploration-driven method. Notably, we kept the
overall maximum token budget unchanged, ensuring that this change does not introduce significant
additional computational overhead.

All remaining hyperparameters, including learning rates, regularization coefficients, and generation
parameters, were kept consistent with the Search-R1 baseline to ensure that performance improve-
ments can be attributed to our proposed REX-RAG methodology rather than hyperparameter opti-
mization advantages.

D ERROR CASE ANALYSIS

In this section, we conduct a detailed analysis of several challenging cases where our model failed.
By dissecting these failures, we aim to provide valuable insights into the persistent challenges of
complex question answering and highlight promising directions for future research. We categorize
these errors into three main types: Failures in Entity Disambiguation and Errors in Logical Rea-
soning. Our analysis reveals that while REX-RAG significantly improves performance, these edge
cases represent the next frontier of challenges.

D.1 FAILURES IN ENTITY DISAMBIGUATION

Case 1: Incorrect Entity Association

Input: Who is the uncle of Nicaea Of Macedon?
Model Output: Phalion
Ground Truth: Cassander

Model’s Reasoning Process:

<think> To answer this question, I need to determine who the uncle of Nicaea of Macedon
↪→ is.

<search> Nicaea of Macedon </search>
<information> Nicaea of Macedon was a daughter of the powerful regent Antipater. </

↪→ information>
<think> To find her uncle, I need to search for Antipater’s brothers. </think>
<search> Antipater brothers </search>
<information> Antipater the Idumaean ... had a brother named Phalion... </information>
<think> Based on the information, Antipater had a brother named Phalion. Therefore, the

↪→ uncle is Phalion. </think>
<answer> Phalion </answer>

Analysis: The model correctly identified that Nicaea was the daughter of Antipater. However, the query ”Antipater brothers”
returned information for Antipater the Idumaean (father of Herod the Great), a more prominent historical figure in the search index,
instead of Antipater the Macedonian regent. The model incorrectly associated Nicaea with the wrong Antipater and thus identified
the wrong brother (Phalion). The correct entity, Antipater the regent, had a son named Cassander, who would be Nicaea’s brother,
not uncle. This highlights a key challenge: even if the model knows what to look for (Antipater’s brother), the search results can be
misleading.

Among the observed failure modes, Failures in Entity Disambiguation are the most common. This
error occurs when a model is unable to distinguish between entities that share the same or simi-
lar names, leading to the retrieval of incorrect information. This issue is particularly damaging in
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multi-hop reasoning scenarios, where an early disambiguation error can derail the entire subsequent
reasoning chain. The iterative retrieval mechanism in REX-RAG is designed to mitigate this by
allowing the model to refine its understanding. However, when initial search results are overwhelm-
ingly dominated by a more famous but incorrect entity, the model can still be led astray.

D.2 ERRORS IN LOGICAL REASONING

A second category of failure involves errors in the logical reasoning step, which occurs after all nec-
essary information has been correctly retrieved. In these instances, the model successfully gathers
the right facts but falters when performing a final comparison or logical deduction (e.g., compar-
ing dates or numbers). While REX-RAG pushes performance by improving information retrieval
and enhancing logical consistency, the bottleneck of model’s intrinsic reasoning capability causes
occasional failures even when information retrieval is perfect.

Case 2: Error in Final Comparison

Input: Which film whose director is younger, Dagudu Moothalu or Port Of Seven Seas?
Model Output: Port Of Seven Seas
Ground Truth: Dagudu Moothalu

Model’s Reasoning Process:

<think> I need to find the directors of both films and their ages. </think>
<search> Dagudu Moothalu director </search>
<information> Dagudu Moothalu (1964) ... directed by Adurthi Subba Rao. </information>
<search> Port Of Seven Seas director </search>
<information> Port of Seven Seas (1938) ... directed by James Whale. </information>
<search> Adurthi Subba Rao age </search>
<information> Adurthi Subba Rao (16 December 1912 - 1 October 1975) </information>
<search> James Whale age </search>
<information> James Whale ... suicide ... on 29 May 1957 at the age of 67. [born in

↪→ 1889] </information>
<think> Adurthi Subba Rao was born in 1912, and James Whale was born in 1889. Therefore

↪→ , James Whale is younger. </think>
<answer> Port Of Seven Seas </answer>

Analysis: The model correctly executed a complex query plan: it identified both directors (Adurthi Subba Rao and James Whale)
and retrieved their birth years (1912 and 1889, respectively). However, it failed at the final step of comparing the two dates,
incorrectly concluding that a person born in 1889 is younger than one born in 1912. This is a pure reasoning failure. Another
case exhibited a similar flaw, where the model correctly found George E. Mahoney’s birth year (1901) and Paulo Roberto Falcão’s
(1953) but wrongly concluded that Mahoney was younger. These cases show that even when the RAG component works perfectly,
the core reasoning capacity of the LLM can be fragile.

E LIMITATIONS, DISCUSSION, AND FUTURE WORK

Limited Exploration Strategy Our current exploration mechanism relies on a relatively simple
strategy—injecting prompts from a pre-constructed prompt pool to guide the model toward alter-
native reasoning paths. While effective, this approach may fall short of the full potential of more
sophisticated exploration techniques. From the prompt perspective, online generation of exploration
prompts conditioned on the model’s current reasoning state may offer greater adaptivity and contex-
tual relevance than our static prompt set. From the policy perspective, incorporating more structured
search procedures, such as backtracking trees or trajectory-level search algorithms, could enable
more systematic exploration across the reasoning space. Moreover, our method emphasizes local
trajectory perturbation via prompt insertion, rather than global restructuring of the reasoning path.
Despite these limitations, our results demonstrate that end-to-end optimization under an exploratory
policy is both feasible and beneficial, laying the groundwork for future work on more principled and
expressive exploration strategies.

Computational Overhead and Adaptive Sampling Limitations The mixed sampling strategy
inherently introduces computational overhead compared to standard policy optimization approaches.
Our resampling mechanism requires a two-stage process: first performing normal sampling to as-
sess question difficulty through initial trajectory evaluation, then conducting exploratory sampling
based on the observed failure rates. This sequential approach increases computational complexity
as it necessitates generating (1 − α)G additional exploratory trajectories from the probe policy πε,
resulting in approximately 12% more trajectory sampling in our experiments. While this overhead
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is substantially more efficient than uniform oversampling approaches (which require 20% additional
trajectories for minimal gains), the computational cost scales linearly with the resampling parameter
p and the exploration ratio α. A more efficient approach would involve predicting question diffi-
culty a priori and automatically adjusting sampling quantities accordingly, eliminating the need for
the initial sampling phase. However, developing reliable difficulty prediction mechanisms remains
an open challenge. Furthermore, the policy realignment mechanism requires computing importance
sampling ratios for each token, adding non-negligible computational complexity during training.

Lack of Validation in Broader Agentic Tasks While REX-RAG demonstrates consistent im-
provements across seven open-domain question answering datasets, its effectiveness has only been
validated within the RAG (retrieval-augmented generation) framework. Our method specifically
targets reasoning-intensive QA tasks where external information retrieval and multi-turn reasoning
are tightly coupled. As such, it remains unclear whether the proposed exploration and policy re-
alignment strategies generalize to broader agentic scenarios—such as tool use, web navigation, or
embodied planning—where action spaces, environmental feedback, and task dynamics differ sub-
stantially. Extending our framework to these settings would require adapting both the structured in-
teraction protocol and the rollout mechanism to accommodate more complex state-action transitions.
Future work may explore the applicability of REX-RAG’s core ideas beyond QA, investigating how
exploration with distribution correction can benefit general-purpose decision-making agents.

Simplistic Trigger Mechanism To clearly isolate and evaluate the core contribution, REX-RAG
intentionall adopt a straightforward “Exact Match” criterion to trigger exploration. While this bi-
nary decision framework provides a clear and interpretable baseline for our experiments, it does
not capture the full spectrum of reasoning quality. For instance, it may overlooks flawed reasoning
paths that happen to yield a correct answer, thereby missing valuable learning opportunities, and
it incorrectly penalizes responses that are semantically equivalent to the ground truth but differ in
phrasing. Future work should therefore focus on developing more intelligent triggers. This could
involve integrating semantic similarity scores, model confidence levels, and specialized error classi-
fiers. Furthermore, leveraging uncertainty quantification based on the model’s internal state would
enable a more discerning and efficient exploration strategy, maximizing learning while minimizing
computational cost.

F STRUCTURED SEARCH INTERACTION PROTOCOL

The structured search interaction protocol employed in REX-RAG follows the framework estab-
lished by Search-R1 (Jin et al., 2025b), which defines a systematic approach for integrating rea-
soning and retrieval operations through specialized tokens and prompt templates. The structured
interaction protocol relies on four primary special tokens that delineate different phases of the rea-
soning and retrieval process:

F.1 SPECIAL TOKENS

<think> and </think> encapsulate the model’s internal reasoning process, allowing it to en-
gage in chain-of-thought reasoning without external interference. Within these tags, the model can
perform logical deduction, analyze given information, identify knowledge gaps, and plan subsequent
actions. This internal reasoning phase is crucial for determining when external retrieval is necessary
and formulating appropriate search queries.

<search> and </search> trigger external information retrieval operations. When the model
generates these tokens, the content within them is interpreted as a search query that is executed
against the external knowledge base. This mechanism allows for dynamic knowledge acquisition
during the reasoning process.

<information> and </information> contain the retrieved external knowledge that is re-
turned by the search engine in response to search queries. This mechanism allows for dynamic
knowledge acquisition during the reasoning process.

<information> and </information> contain the retrieved external knowledge that is re-
turned by the search engine in response to search queries. The content within these tags represents
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the top search results that are automatically inserted into the model’s context after a search opera-
tion. This information serves as additional context that the model can analyze and incorporate into
itse content within these tags represents the top search results that are automatically inserted into
the model’s context after a search operation. This information serves as additional context that the
model can analyze and incorporate into its reasoning process.

These special tokens serve multiple purposes: they provide clear demarcation between different
operational phases, enable selective training on specific components of the reasoning process, and
facilitate systematic evaluation of reasoning quality versus retrieval effectiveness.

<answer> and </answer> mark the final response generation phase, where the model synthe-
sizes information from both its internal reasoning and retrieved external knowledge to produce a
comprehensive answer. The content within these tags represents the model’s final output, incorpo-
rating insights gained througning and retrieval process.

These special tokens serve multiple purposes: they provide clear demarcation between different
operational phases, enable selective training on specific components of the reasoning process, and
facilitate systematic evaluation of reasoning quality versus retrieval effectiveness.

F.2 INSTRUCTION PROMPTS

The prompt template structure orchestrates the interaction between reasoning and retrieval compo-
nents through a carefully designed format that guides the model’s behavior throughout the question-
answering process. The template follows a think-search-answer paradigm that promotes systematic
problem-solving. The entire prompt template is demonstrated in Fig. 4.

Figure 4: Complete prompt template and example interaction for the structured search protocol

Structured Search Interaction Protocol

Prompt Template:
Answer the given question. You must
conduct reasoning inside <think>
and </think> first every time you
get new information. After reason-
ing, if you find you lack some knowl-
edge, you can call a search engine
by <search> query </search>, and
it will return the top searched re-
sults between <information> and
</information>. You can search as
many times as you want. If you find
no further external knowledge needed,
you can directly provide the answer in-
side <answer> and </answer> with-
out detailed illustrations. For example,
<answer> xxx </answer>. Ques-
tion: [question]

Example Interaction:
Question: What is the capital of France and when
was it founded?
<think> I need to find information about Paris, the
capital of France, and its founding date. </think>
<search> Paris France capital founding date his-
tory </search>
<information> Paris is the capital of France. The
city was founded in the 3rd century BC by the Parisii
tribe... </information>
<think> Based on the retrieved information, I
now have the answer to both parts of the question.
</think>
<answer> The capital of France is Paris, which was
founded in the 3rd century BC. </answer>

G REVISION PROMPTS AND EXAMPLES

The revision prompts are formulated to express uncertainty and encourage critical self-evaluation
without being overly prescriptive. Prompts are designed to maintain the natural reasoning flow
while introducing a reflective pause that can lead to error correction and improved reasoning quality.

The Table 8 presents all 30 revision prompts used in our implementation. These prompts are ran-
domly selected during training to provide diverse expressions of self-doubt and reflection.
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Table 8: Complete collection of revision prompts used in REX-RAG for triggering self-reflection
during reasoning

ID Revision Prompt Text ID Revision Prompt Text

0 <think> Perhaps I’ve overlooked critical points or slipped
up in my logic.

15 <think> Concerned I might have overlooked key aspects or
made subtle errors.

1 <think> I wonder if vital information escaped my notice or
if I made an error.

16 <think> I might have unintentionally ignored essential de-
tails or misunderstood something.

2 <think> There might be key gaps in my understanding or
errors in reasoning.

17 <think> Revisiting carefully, perhaps errors or oversights
went unnoticed earlier.

3 <think> It’s possible I’ve missed something important or
misunderstood crucial details.

18 <think> Maybe important points slipped my attention, or I
made a miscalculation.

4 <think> I suspect errors crept in, or essential points went
unnoticed.

19 <think> It’s likely I’ve overlooked something crucial or
stumbled in logic.

5 <think> Maybe I’ve misjudged something important or ne-
glected key facts.

20 <think> Reflecting, I could’ve missed critical clues or
made errors in judgment.

6 <think> Reflecting now, I might have overlooked critical
data or erred somewhere.

21 <think> Possibly, I misunderstood something fundamental
or missed key evidence.

7 <think> Possibly, I’ve missed significant insights or made
a mistake.

22 <think> Concerned about potential unnoticed mistakes or
overlooked essential details.

8 <think> I’m sensing a gap or error might be present in my
recent reasoning.

23 <think> Perhaps my earlier step wasn’t entirely accurate or
lacked vital points.

9 <think> I could have misinterpreted important facts or
overlooked necessary details.

24 <think> It’s conceivable that I’ve neglected critical infor-
mation or erred.

10 <think> Aware that my reasoning might be flawed or lack-
ing crucial points.

25 <think> Wondering if I’ve mistakenly dismissed some-
thing important or misunderstood it.

11 <think> I need to reconsider—I might’ve skipped vital in-
formation or erred.

26 <think> Maybe my previous reasoning has blind spots or
unnoticed errors.

12 <think> There’s a chance my previous thinking has unno-
ticed mistakes or omissions.

27 <think> I’m doubting if crucial points were missed or mis-
takes made earlier.

13 <think> I feel there might be something critical I over-
looked or misunderstood.

28 <think> Feeling uncertain—perhaps critical details slipped
past or were misunderstood.

14 <think> Perhaps my earlier reasoning has hidden mistakes
or missing information.

29 <think> Recognizing possible gaps or missteps I didn’t
previously notice.

H USAGE OF LLM

Writing Assistance LLMs are employed to assist in the writing and refinement of this manuscript.
This included tasks such as proofreading for grammatical errors, improving sentence structure for
clarity, and rephrasing content to enhance readability. It is important to note that all AI-generated
text is thoroughly reviewed, critically evaluated, and edited by the authors to ensure the accuracy
and integrity of the final content. The authors take full responsibility for all statements and claims
made in this paper.

Code Implementation LLMs are used as a tool to facilitate the implementation of algorithms and
data processing scripts. This involves generating boilerplate code, suggesting solutions for specific
programming challenges, and debugging. All code generated by LLMs is manually verified and
tested by the authors to ensure its correctness, efficiency, and adherence to the project’s require-
ments.

Research Applications Beyond supporting tasks, LLMs are integral to the research itself, serving
multiple functions as detailed throughout the paper. These applications include acting as the base
model for our experiments, refining and rephrasing prompts to guide model behavior, and other
research-specific uses that are explicitly mentioned in the relevant sections of this work.
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