
Supplementary Material:

Better Safe Than Sorry: Preventing Delusive Adversaries with
Adversarial Training

A Experimental Setup

Experiments run with NVIDIA GeForce RTX 2080 Ti GPUs. We report the number with a single run
of experiments. Our implementation is based on PyTorch, and the code to reproduce our results is
available at https://github.com/TLMichael/Delusive-Adversary.

A.1 Datasets and Models

Table 4 reports the parameters used for the datasets and models.

CIFAR-102. This dataset [63] consists of 60,000 32 × 32 colour images (50,000 images for
training and 10,000 images for testing) in 10 classes (“airplane”, “car”, “bird”, “cat”, “deer”, “dog”,
“frog”, “horse”, “ship”, and “truck”). Early stopping is done with holding out 1000 examples from
the training set. We use various architectures for this dataset, including VGG-11, VGG-16, VGG-19
[108], ResNet-18, ResNet-50 [49], and DenseNet-121 [52]. The initial learning rate is set to 0.1.
For supervised learning on this dataset, we run 150 epochs on the training set, where we decay the
learning rate by a factor 0.1 in the 100th and 125th epochs. For self-supervised learning, we run 70
epochs, where we decay the learning rate by a factor 0.1 in the 40th and 55th epochs. The license for
this dataset is unknown3.

SVHN4. This dataset [81] consists of 630,420 32× 32 colour images (73,257 images for training,
26,032 images for testing, and 531,131 additional images to use as extra training data) in 10 classes
(“0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, and “9”). Early stopping is done with holding out 1000
examples from the training set. We use the ResNet-18 architecture for this dataset. The initial learning
rate is set to 0.01. We run 50 epochs on the training set, where we decay the learning rate by a factor
0.1 in the 30th and 40th epochs. The license for this dataset is custom (non-commercial)5.

Two-class ImageNet6. Following Feng et al. [32], this dataset is a subset of ImageNet [95] that
consists of 2,700 224× 224 colour images (2,600 images for training and 100 images for testing)
in 2 classes (“bulbul”, “jellyfish”). Early stopping is done with holding out 380 examples from the
training set. We use the ResNet-18 architecture for this dataset. The initial learning rate is set to 0.1.
We run 100 epochs on the training set, where we decay the learning rate by a factor 0.1 in the 75th
and 90th epochs. The license for this dataset is custom (research, non-commercial)7.

MNIST-CIFAR8. Following Shah et al. [104], this dataset consists of 11,960 64 × 32 colour
images (10,000 images for training and 1,960 images for testing) in 2 classes: images in class −1
and class 1 are vertical concatenations of MNIST digit zero & CIFAR-10 car and MNIST digit one
& CIFAR-10 truck images, respectively. We use various architectures for this dataset, including
VGG-16, ResNet-50, and DenseNet-121. The initial learning rate is set to 0.05. We run 100 epochs
on the training set, where we decay the learning rate by a factor 0.2 in the 50th and 150th epochs and
a factor 0.5 in the 100th epoch. The license for this dataset is unknown9.

2https://www.cs.toronto.edu/~kriz/cifar.html
3https://paperswithcode.com/dataset/cifar-10
4http://ufldl.stanford.edu/housenumbers/
5https://paperswithcode.com/dataset/svhn
6https://github.com/kingfengji/DeepConfuse
7https://paperswithcode.com/dataset/imagenet
8https://github.com/harshays/simplicitybiaspitfalls
9https://paperswithcode.com/dataset/mnist
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Parameter CIFAR-10 SVHN Two-class ImageNet MNIST-CIFAR

# training examples 50,000 73,257 2,600 10,000
# test examples 10,000 26,032 100 1,960
# features 3,072 3,072 150,528 6,144
# classes 10 10 2 2
batch size 128 128 32 256
learning rate 0.1 0.01 0.1 0.05
SGD momentum 0.9 0.9 0.9 0.9
weight decay 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−5

Table 4: Experimental setup and parameters for the each dataset.

A.2 Adversarial Training

Unless otherwise specified, we perform adversarial training to train robust classifiers by follow-
ing Madry et al. [74]. Specifically, we train against a projected gradient descent (PGD) adversary,
starting from a random initial perturbation of the training data. We consider adversarial perturba-
tions in `p norm where p = {2,∞}. Unless otherwise specified, we use the values of ε provided
in Table 5 to train our models. We use 7 steps of PGD with a step size of ε/5. For overcom-
ing simplicity bias on MNIST-CIFAR, we modify the original ε-ball used in Shah et al. [104]
(i.e., B(x, ε) = {x′ ∈ X : ‖x − x′‖∞ ≤ 0.3}) to the entire space of the MNIST features
B(x, ε) = {x′ ∈ X : ‖xm − x′m‖∞ +∞ · ‖xc − x′c‖∞ ≤ 1}, where x represents the vertical
concatenation of a MNIST image xm and a CIFAR-10 image xc.

Adversary CIFAR-10 SVHN Two-class ImageNet

`∞ 0.032 - 0.1
`2 0.5 0.5 -

Table 5: Value of ε used for adversarial training of each dataset and `p norm.

A.3 Delusive Adversaries

Six delusive attacks are considered to validate our proposed defense. We reimplement the L2C
attack [32] using the code provided by the authors10. The other five attacks are constructed as follows.
To execute P1 ∼ P4, we perform normalized gradient descent (`p-norm of gradient is fixed to be
constant at each step). At each step we clip the input to in the [0, 1] range so as to ensure that it is
a valid image. To execute P5, noises are sampled from Gaussian distribution and then projected to
the ball for `2-norm bounded perturbations; for `∞-norm bounded perturbations, noises are directly
sampled from a uniform distribution. Unless otherwise specified, the attacker’s ε are the same with
adversarial training used by the defender. Details on the optimization procedure are shown in Table 6.

Parameter P1 P2 P3 P4 P5

step size ε/5 ε/5 ε/5 ε/5 ε
iterations 100 100 500 500 1

Table 6: Parameters used for optimization procedure to construct each delusive dataset in Section 4.

B Omitted Figures

10https://github.com/kingfengji/DeepConfuse
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(a) VGG-19
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(b) ResNet-18

38.5

74.3

13.6
23.1

8.9

89.9 92.0 91.5 90.5 90.4

0

20

40

60

80

100

N
at

u
ra

l A
cc

u
ra

cy
 (

%
)

Standard training Adversarial training

93.7

(c) ResNet-50
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(d) DenseNet-121

Figure 8: Natural accuracy on CIFAR-10 under `2 threat model. The horizontal orange line indicates
the natural accuracy of a standard model trained on the clean training set.
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(a) Pretext task
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(b) Downstream task

Figure 9: Rotation-based SSL on CIFAR-10 using ResNet-18 under `2 threat model. The horizontal
line indicates the natural accuracy of a standard model trained on the clean training set.

(a) (b)

Figure 10: Left: Random samples from the CIFAR-10 training set: the original training D; the
perturbed training sets D̂P1, D̂P2, D̂P3, D̂P4, and D̂P5. The threat model is the `2 ball with ε = 0.5.
Right: First five examples from the SVHN training set: the original training D; the perturbed training
sets D̂P1, D̂P2, D̂P3, D̂P4, and D̂P5. The threat model is the `2 ball with ε = 0.5.
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(a)

jellyfish bulbul bulbuljellyfish jellyfish

(b)

Figure 11: Left: Random samples from the CIFAR-10 training set: the original training D; the
perturbed training sets D̂P1, D̂P2, D̂P3, D̂P4, and D̂P5. The threat model is the `∞ ball with ε = 0.032.
Right: First five examples from the two-class ImageNet training set: the original training D; the
perturbed training sets D̂P1, D̂P2, D̂P3, D̂P4, and D̂P5. The threat model is the `∞ ball with ε = 0.1.

0° 0° 0° 0° 0°

Figure 12: Random samples from the CIFAR-10 training set for rotation-based self-supervised
learning: the original training D; the perturbed training sets D̂P1, D̂P2, D̂P3, D̂P4, and D̂P5. The
threat model is the `2 ball with ε = 0.5.

21



C Proofs

In this section, we provide the proofs of our theoretical results in Section 3.

C.1 Proof of Theorem 1

The main tool in proving our key results is the following lemma, which characterizes the equivalence
of adversarial risk and the DRO problem bounded in an∞-Wasserstein ball.
Lemma 4. Given a classifier f : X → Y , for any data distribution D, we have

E
(x,y)∼D

[
max

x′∈Bε(x,ε)
`(f(x′), y)

]
= max
D′∈BW∞ (D̂,ε)

E
(x,y)∼D

[`(f(x), y)]

This lemma is proved by Proposition 3.1 in Staib and Jegelka [110] and Lemma 3.3 in Zhu et al. [147],
which indicates that adversarial training is actually equivalent to the DRO problem that minimizes
the worst-case distribution constrained by the∞-Wasserstein distance.

Theorem 1, restated below, shows that adversarial training on the poison data is optimizing an upper
bound of natural risk on the original data.

Theorem 1 (restated). Given a classifier f : X → Y , for any data distribution D and any delusive
distribution D̂ such that D̂ ∈ BW∞(D, ε), we have

Rnat(f,D) ≤ max
D′∈BW∞ (D̂,ε)

Rnat(f,D′) = Radv(f, D̂).

Proof. The first inequality comes from the symmetry of Wasserstein distance:

W∞(D, D̂) = W∞(D̂,D),

which means that the original distribution exists in the neighborhood of D̂:

D ∈ BW∞(D̂, ε).
Thus the natural risk on the original distribution can be upper bounded by DRO on the delusive
distribution.

For the last equality, we simply use the fact in Lemma 4 that adversarial risk is equivalent to DRO
defined with respect to the∞-Wasserstein distance. This concludes the proof.

C.2 Proof of Theorem 2

We first review the original mixture-Gaussian distribution D, the corresponding delusive distribution
D̂1, and D̂2.

The original mixture-Gaussian distribution D:

y
u·a·r∼ {−1,+1}, x ∼ N (y · µ, σ2I), where µ = (1, η, . . . , η) ∈ Rd+1. (8)

The first delusive mixture-Gaussian distribution D̂1:

y
u·a·r∼ {−1,+1}, x ∼ N (y · µ̂1, σ

2I), where µ̂1 = (1,−η, . . . ,−η) ∈ Rd+1. (9)

The second delusive mixture-Gaussian distribution D̂2:

y
u·a·r∼ {−1,+1}, x ∼ N (y · µ̂2, σ

2I), where µ̂2 = (1, 3η, . . . , 3η) ∈ Rd+1. (10)

Theorem 2, restated below, compares the effect of the delusive distributions on natural risk.

Theorem 2 (restated). Let fD, fD̂1
, and fD̂2

be the Bayes optimal classifiers for the mixture-

Gaussian distributions D, D̂1, and D̂2, defined in Eqs. 5, 6, and 7, respectively. For any η > 0, we
have

Rnat(fD,D) < Rnat(fD̂2
,D) < Rnat(fD̂1

,D).
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Proof. In the mixture-Gaussian distribution setting described above, the Bayes optimal classifier is
linear. In particular, the expression for the classifier of D is

fD(x) = arg max
c∈Y

Pry|x(y = c) = sign(µ>x).

Similarly, the Bayes optimal classifiers for D̂1 and D̂2 are respectively given by

fD̂1
(x) = sign(µ̂>1 x) and fD̂2

(x) = sign(µ̂>2 x).

Now we are ready to calculate the natural risk of each classifier. The natural risk of fD(x) is

Rnat(fD(x),D) = Pr
(x,y)∼D

[fD(x) 6= y]

= Pr
(x,y)∼D

[
sign(µ>x) 6= y

]
= Pr

[
y ·

(
N (y, σ2) +

d∑
i=1

ηN (yη, σ2)

)
< 0

]

= Pr

[
N (1, σ2) +

d∑
i=1

ηN (η, σ2) < 0

]
= Pr

[
N (1 + dη2, (1 + dη2)σ2) < 0

]
= Pr

[
N (0, 1) >

√
1 + dη2

σ

]
.

The natural risk of fD̂1
(x) is

Rnat(fD̂1
(x),D) = Pr

(x,y)∼D

[
fD̂1

(x) 6= y
]

= Pr
(x,y)∼D

[
sign(µ̂>1 x) 6= y

]
= Pr

[
N (1, σ2)−

d∑
i=1

ηN (η, σ2) < 0

]
= Pr

[
N (1− dη2, (1 + dη2)σ2) < 0

]
= Pr

[
N (0, 1) >

1− dη2

σ
√

1 + dη2

]
.

Similarly, the natural risk of fD̂2
(x) is

Rnat(fD̂2
(x),D) = Pr

(x,y)∼D

[
fD̂2

(x) 6= y
]

= Pr
(x,y)∼D

[
sign(µ̂>2 x) 6= y

]
= Pr

[
N (1, σ2) +

d∑
i=1

3ηN (η, σ2) < 0

]
= Pr

[
N (1 + 3dη2, (1 + 9dη2)σ2) < 0

]
= Pr

[
N (0, 1) >

1 + 3dη2

σ
√

1 + 9dη2

]
.

Since η > 0 and d > 0, we have
√

1 + dη2 > 1+3dη2√
1+9dη2

> 1−dη2√
1+dη2

. Therefore, we obtain

Rnat(fD,D) < Rnat(fD̂2
,D) < Rnat(fD̂1

,D).
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C.3 Proof of Theorem 3

We consider the problem of minimizing the adversarial risk on some delusive distribution D̂ by using
a linear classifier11. Specifically, this can be formulated as:

min
w,b

E
(x,y)∼D̂

[
max
‖ξ‖∞≤ε

1
(
sign(w>(x+ ξ) + b) 6= y

)]
, (11)

where 1(·) is the indicator function and ε = 2η, the same budget used by the delusive adversary.
Denote by f(x) = sign(w>x+ b) the linear classifier.

First, we show that the optimal linear `∞ robust classifier for D̂1 will rely solely on robust features,
similar to the cases in Lemma D.5 of Tsipras et al. [119] and Lemma 2 of Xu et al. [134].

Lemma 5. Minimizing the adversarial risk of the loss (11) on the distribution D̂1 (9) results in a
classifier that assigns 0 weight to features xi for i ≥ 2.

Proof. The adversarial risk on the distribution D̂1 can be written as

Radv(f, D̂1) = Pr [∃ ‖ξ‖∞ ≤ ε, f(x+ ξ) 6= y]

= Pr

[
min
‖ξ‖∞≤ε

(y · f(x+ ξ)) < 0

]
= Pr

[
max
‖ξ‖∞≤ε

(f(x+ ξ)) > 0 | y = −1

]
· Pr [y = −1]

+ Pr

[
min
‖ξ‖∞≤ε

(f(x+ ξ)) < 0 | y = +1

]
· Pr [y = +1]

= Pr

[
max
‖ξ‖∞≤ε

(
w1(N (−1, σ2) + ξ1) +

d+1∑
i=2

wi(N (η, σ2) + ξi) + b

)
> 0

]
︸ ︷︷ ︸

Radv(f,D̂(−1)
1 )

·1
2

+ Pr

[
min
‖ξ‖∞≤ε

(
w1(N (1, σ2) + ξ1) +

d+1∑
i=2

wi(N (−η, σ2) + ξi) + b

)
< 0

]
︸ ︷︷ ︸

Radv(f,D̂(+1)
1 )

·1
2
.

Then we prove the lemma by contradiction. Consider any optimal solutionw for which wi < 0 for
some i ≥ 2, we have

Radv(f, D̂(−1)
1 ) = Pr


∑
j 6=i

max
|ξj |≤ε

(
wj(N (−µ̂1,j , σ

2) + ξj) + b
)

︸ ︷︷ ︸
A

+ max
|ξi|≤ε

(
wi(N (η, σ2) + ξi)

)
︸ ︷︷ ︸

B

> 0

 .
Because wi < 0, B is maximized when ξi = −ε. Then, the contribution of terms depending on wi to
B is a normally-distributed random variable with mean η − ε < 0. Since the mean is negative, setting
wi to zero can only decrease the risk, contradicting the optimality of w. Formally,

Radv(f, D̂(−1)
1 ) = Pr

[
A + wiN (η − ε, σ2) > 0

]
> Pr [A > 0] .

We can also assume wi > 0 and similar contradiction holds. Similar argument holds for
Radv(f, D̂(+1)

1 ). Therefore, the adversarial risk is minimized when wi = 0 for i ≥ 2.

Different from the case in Lemma 5, below we show that the optimal linear `∞ robust classifier for
D̂2 will rely on both robust and non-robust features.

11Here we only employing linear classifiers, since considering non-linearity is highly nontrivial for minimizing
the `∞ adversarial risk on the mixture-Gaussian distribution [25].
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Lemma 6. Minimizing the adversarial risk of the loss (11) on the distribution D̂2 (10) results in a
classifier that assigns positive weights to features xi for i ≥ 1.

Proof. The adversarial risk on the distribution D̂1 can be written as

Radv(f, D̂2) = Pr

[
max
‖ξ‖∞≤ε

(
w1(N (−1, σ2) + ξ1) +

d+1∑
i=2

wi(N (−3η, σ2) + ξi) + b

)
> 0

]
︸ ︷︷ ︸

Radv(f,D̂(−1)
2 )

·1
2

+ Pr

[
min
‖ξ‖∞≤ε

(
w1(N (1, σ2) + ξ1) +

d+1∑
i=2

wi(N (3η, σ2) + ξi) + b

)
< 0

]
︸ ︷︷ ︸

Radv(f,D̂(+1)
2 )

·1
2
.

Then we prove the lemma by contradiction. Consider any optimal solutionw for which wi ≤ 0 for
some i ≥ 1, we have

Radv(f, D̂(−1)
2 ) = Pr


∑
j 6=i

max
|ξj |≤ε

(
wj(N (−µ̂2,j , σ

2) + ξj) + b
)

︸ ︷︷ ︸
C

+ max
|ξi|≤ε

(
wi(N (−µ̂2,i, σ

2) + ξi)
)

︸ ︷︷ ︸
D

> 0

 .
Because wi ≤ 0, D is maximized when ξi = −ε. Then, the contribution of terms depending on wi to
D is a normally-distributed random variable with mean −µ̂2,i − ε < 0. Since the mean is negative,
setting wi to be positive can decrease the risk, contradicting the optimality of w. Formally,

Radv(f, D̂(−1)
2 ) = Pr

[
C + wiN (−µ̂2,i − ε, σ2) > 0

]
> Pr

[
C + pN (−µ̂2,i − ε, σ2) > 0

]
,

where p > 0 is any positive number. Similar contradiction holds forRadv(f, D̂(+1)
1 ). Therefore, the

optimal solution must assigns positive weights to all features.

Now we are ready to derive the optimal linear robust classifiers.

Lemma 7. For the distribution D̂1 (9), the optimal linear `∞ robust classifier is

fD̂1,rob
(x) = sign(µ̂>1,robx), where µ̂1,rob = (1, 0, . . . , 0).

Proof. By Lemma 5, the robust classifier for the distribution D̂1 has zero weight on non-robust
features (i.e., wi = 0 for i ≥ 2). Also, the robust classifier will assign positive weight to the robust
feature (i.e., w1 > 0). This is similar to the case in Lemma 6 and we omit the proof here. Therefore,
the adversarial risk on the distribution D̂1 can be simplified by solving the inner maximization
problem first. Formally,

Radv(f, D̂1) = Pr [∃ ‖ξ‖∞ ≤ ε, f(x+ ξ) 6= y]

= Pr

[
min
‖ξ‖∞≤ε

(y · f(x+ ξ)) < 0

]
= Pr

[
max
‖ξ‖∞≤ε

(f(x+ ξ)) > 0 | y = −1

]
· Pr [y = −1]

+ Pr

[
min
‖ξ‖∞≤ε

(f(x+ ξ)) < 0 | y = +1

]
· Pr [y = +1]

= Pr

[
max
‖ξ‖∞≤ε

(
w1(N (−1, σ2) + ξ1) + b

)
> 0

]
· Pr [y = −1]

+ Pr

[
min
‖ξ‖∞≤ε

(
w1(N (1, σ2) + ξ1) + b

)
< 0

]
· Pr [y = +1]

= Pr
[
w1N (ε− 1, σ2) + b > 0

]
· Pr [y = −1]

+ Pr
[
w1N (1− ε, σ2) + b < 0

]
· Pr [y = +1] ,
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which is equivalent to the natural risk on a mixture-Gaussian distribution D̂∗1 : x ∼ N (y · µ̂∗1, σ2I),
where µ̂∗1 = (1 − ε, 0, . . . , 0). The Bayes optimal classifier for D̂∗1 is fD̂∗1 (x) = sign(µ̂∗>1 x).
Specifically,

Rnat(f, D̂∗1) = Pr [f(x) 6= y]

= Pr [y · f(x) < 0]

= Pr
[
w1N (ε− 1, σ2) + b > 0

]
· Pr [y = −1]

+ Pr
[
w1N (1− ε, σ2) + b < 0

]
· Pr [y = +1] ,

which can be minimized when w1 = 1 − ε and b = 0. At the same time, fD̂∗1 (x) is equivalent to
fD̂1,rob

(x), since sign((1− ε)x1) = sign(x1). This concludes the proof of the lemma.

Lemma 8. For the distribution D̂2 (10), the optimal linear `∞ robust classifier is

fD̂2,rob
(x) = sign(µ̂>2,robx), where µ̂2,rob = (1− 2η, η, . . . , η).

Proof. By Lemma 6, the robust classifier for the distribution D̂2 has positive weight on all features
(i.e., wi > 0 for i ≥ 1). Therefore, the adversarial risk on the distribution D̂2 can be simplified by
solving the inner maximization problem first. Formally,

Radv(f, D̂2) = Pr [∃ ‖ξ‖∞ ≤ ε, f(x+ ξ) 6= y]

= Pr

[
min
‖ξ‖∞≤ε

(y · f(x+ ξ)) < 0

]
= Pr

[
max
‖ξ‖∞≤ε

(
w1(N (−1, σ2) + ξ1) +

d+1∑
i=2

wi(N (−3η, σ2) + ξi) + b

)
> 0

]
· Pr [y = −1]

+ Pr

[
min
‖ξ‖∞≤ε

(
w1(N (1, σ2) + ξ1) +

d+1∑
i=2

wi(N (3η, σ2) + ξi) + b

)
< 0

]
· Pr [y = +1]

= Pr

[
max
|ξ1|≤ε

(
w1(N (−1, σ2) + ξ1)

)
+

d+1∑
i=2

max
|ξi|≤ε

(
wi(N (−3η, σ2) + ξi)

)
+ b > 0

]
· Pr [y = −1]

+ Pr

[
min
|ξ1|≤ε

(
w1(N (1, σ2) + ξ1)

)
+

d+1∑
i=2

min
|ξi|≤ε

(
wi(N (3η, σ2) + ξi)

)
+ b < 0

]
· Pr [y = +1]

= Pr

[
w1N (ε− 1, σ2) +

d+1∑
i=2

wiN (ε− 3η, σ2) + b > 0

]
· Pr [y = −1]

+ Pr

[
w1N (1− ε, σ2) +

d+1∑
i=2

wiN (3η − ε, σ2) + b < 0

]
· Pr [y = +1]

= Pr

[
w1N (2η − 1, σ2) +

d+1∑
i=2

wiN (−η, σ2) + b > 0

]
· Pr [y = −1]

+ Pr

[
w1N (1− 2η, σ2) +

d+1∑
i=2

wiN (η, σ2) + b < 0

]
· Pr [y = +1] ,

which is equivalent to the natural risk on a mixture-Gaussian distribution D̂∗2 : x ∼ N (y · µ̂∗2, σ2I),
where µ̂∗2 = (1 − 2η, η, . . . , η). The Bayes optimal classifier for D̂∗2 is fD̂∗2 (x) = sign(µ̂∗>2 x).
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Specifically,

Rnat(f, D̂∗2) = Pr [f(x) 6= y]

= Pr [y · f(x) < 0]

= Pr

[
w1N (2η − 1, σ2) +

d+1∑
i=2

wiN (−η, σ2) + b > 0

]
· Pr [y = −1]

+ Pr

[
w1N (1− 2η, σ2) +

d+1∑
i=2

wiN (η, σ2) + b < 0

]
· Pr [y = +1] ,

which can be minimized when w1 = 1−2η, wi = η for i ≥ 2, and b = 0. Also, fD̂∗2 (x) is equivalent
to fD̂2,rob

(x). This concludes the proof of the lemma.

We have established that the optimal linear classifiers fD̂1,rob
and fD̂2,rob

in adversarial training. Now
we are ready to compare their natural risks with standard classifiers. Theorem 3, restated below,
indicates that adversarial training can mitigate the effect of delusive attacks.

Theorem 3 (restated). Let fD̂1,rob
and fD̂2,rob

be the optimal linear `∞ robust classifiers for the

delusive distributions D̂1 and D̂2, defined in Eqs. 6 and 7, respectively. For any 0 < η < 1/3, we
have

Rnat(fD̂1
,D) > Rnat(fD̂1,rob

,D) and Rnat(fD̂2
,D) > Rnat(fD̂2,rob

,D).

Proof. The natural risk of fD̂1,rob
(x) is

Rnat(fD̂1,rob
(x),D) = Pr

(x,y)∼D

[
fD̂1,rob

(x) 6= y
]

= Pr
(x,y)∼D

[
sign(µ̂>1,robx) 6= y

]
= Pr

[
N (1, σ2) < 0

]
= Pr

[
N (0, 1) >

1

σ

]
.

Similarly, the natural risk of fD̂2,rob
(x) is

Rnat(fD̂2,rob
(x),D) = Pr

(x,y)∼D

[
fD̂2,rob

(x) 6= y
]

= Pr
(x,y)∼D

[
sign(µ̂>2,robx) 6= y

]
= Pr

[
(1− 2η)N (1, σ2) +

d∑
i=1

ηN (η, σ2) < 0

]
= Pr

[
N (1− 2η + dη2, ((1− 2η)2 + dη2)σ2) < 0

]
= Pr

[
N (0, 1) >

1− 2η + dη2

σ
√

(1− 2η)2 + dη2

]
.

Recall that the natural risk of the standard classifier fD̂1
(x) is

Rnat(fD̂1
(x),D) = Pr

[
N (0, 1) >

1− dη2

σ
√

1 + dη2

]
,
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and the natural risk of the standard classifier fD̂2
(x) is

Rnat(fD̂2
(x),D) = Pr

[
N (0, 1) >

1 + 3dη2

σ
√

1 + 9dη2

]
.

It is easy to see that 1−dη2√
1+dη2

< 1. Thus, we have

Rnat(fD̂1
,D) > Rnat(fD̂1,rob

,D).

Also, 1+3dη2√
1+9dη2

< 1−2η+dη2√
(1−2η)2+dη2

is true when 0 < η < 1/3 and d > 0. Therefore, we obtain

Rnat(fD̂2
,D) > Rnat(fD̂2,rob

,D).

This concludes the proof.

D Practical Attacks for Testing Defense (Detailed Version)

In this section, we introduce the attacks used in our experiments to show the destructiveness of
delusive attacks on real datasets and thus the necessity of adversarial training.

In practice, we focus on the empirical distribution Dn over n data points drawn from D. To avoid
the difficulty to search through the entire∞-Wasserstein ball, one common choice is to consider the
following set of empirical distributions [147]:

A(Dn, ε) =

 1

n

∑
(x,y)∼Dn

δ(x′, y) : x′ ∈ B(x, ε)

 , (12)

where δ(x, y) is the dirac measure at (x, y). Note that the considered set A(Dn, ε) ⊆ BW∞(Dn, ε),
since each perturbed point x′ is at most ε-away from x.

The L2C attack proposed in Feng et al. [32] is actually searching for the worst-case data in A(Dn, ε)
with `∞ metric. However, L2C directly optimizes the bi-level optimization problem (4), resulting in a
very huge computational cost. Instead, we present five efficient attacks below, which are inspired by
“non-robust features suffice for classification” [56]. Our delusive attacks are constructed by injecting
non-robust features correlated consistently with a specific label to each example.

Poison 1 (P1: Adversarial perturbations): The first construction is similar to that of the determin-
istic dataset in Ilyas et al. [56]. In our construction, the robust features are still correlated with their
original labels. We modify each input-label pair (x, y) as follows. We first select a target class t
deterministically according to the source class y (e.g., using a fixed permutation of labels). Then, we
add a small adversarial perturbation to x in order to ensure that it is misclassified as t by a standard
model. Formally:

xadv = arg min
x′∈B(x,ε)

` (fD(x′), t) , (13)

where fD is a standard classifier trained on the original distributionD (or its finite-sample counterpart
Dn). Finally, we assign the correct label y to the perturbed input. The resulting input-label pairs
(xadv, y) make up the delusive dataset D̂P1. This attack resembles the mixture-Gaussian distribution
D̂1 in Eq. (6).

It is worth noting that this type of data poisoning was mentioned in the addendum of Nakkiran [79],
but was not gotten further exploration. Concurrently, this attack is also suggested in Fowl et al. [34]
and achieves state-of-the-art performance by employing additional techniques such as differentiable
data augmentation. Importantly, our P3 attack (a variant of P1) can yield a competitive performance
compared with Fowl et al. [34] under `∞ threat model (see Table 2 in our main text).

Poison 2 (P2: Hypocritical perturbations): This attack is motivated by recent studies on so-called
“hypocritical examples” [115] or “unadversarial examples” [99]. Here we inject helpful non-robust
features to the inputs so that a standard model can easily produce a correct prediction. Formally:

xhyp = arg min
x′∈B(x,ε)

` (fD(x′), y) . (14)
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The resulting input-label pairs (xhyp, y) make up the delusive dataset D̂P2, where the helpful features
are prevalent in all examples. However, those artificial features are relatively sparse in the clean data.
Thus the resulting classifier that overly relies on the artificial features may perform poorly on the
clean test set. This attack resembles the mixture-Gaussian distribution D̂2 in Eq. (7).

As a note, this attack can be regarded as a special case of the error-minimizing noise proposed
in Huang et al. [53], where an alternating iterative optimization process is designed to generate
perturbations. In contrast, our P2 attack is a one-level problem that makes use of a pre-trained
standard classifier.

Poison 3 (P3: Universal adversarial perturbations): This attack is a variant of P1. To improve the
transferability of the perturbation between examples, we adopt the class-specific universal adversarial
perturbation [77, 57]. Formally:

ξt = arg min
ξ∈B(0,ε)

E
(x,y)∼D

` (fD(x+ ξ), t) , (15)

where t is chosen deterministically based on y. The resulting input-label pairs (x+ ξt, y) make up
the delusive dataset D̂P3. Intuitively, if specific features repeatedly appears in all examples from the
same class, the resulting classifier may easily capture such features. Although beyond the scope of
this paper, we note that Zhao et al. [144] concurrently find that the class-wise perturbation is also
closely related to backdoor attacks.

Poison 4 (P4: Universal hypocritical perturbations): This attack is a variant of P2. We adopt
class-specific universal unadversarial perturbations, and the resulting input-label pairs (x+ ξy, y)

make up the delusive dataset D̂P4.

Poison 5 (P5: Universal random perturbations): This attack injects class-specific random per-
turbations to training data. We first generate a random perturbation ry ∈ B(0, ε) for each class y
(using Gaussian noise or uniform noise). Then the resulting input-label pairs (x+ ry, y) make up
the delusive dataset D̂P5. Despite the simplicity of this attack, we find that it is surprisingly effective
in some cases.
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