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A Proof of Theorem 11

In Section 3.3 in the paper, we presented Theorem 1 about the curvature of the complex hyperbolic2

space Hn
C (Goldman, 1999):3

Theorem 1. The curvature is not constant in Hn
C. It is pinched between −1 (in the directions of4

complex projective lines) and −1/4 (in the directions of totally real planes).5

The sketch explanation is that all unit tangent vectors are equivalent, but not all directions are spanned6

by two unit tangent vectors. Before proving Theorem 1, we need to introduce the definition of Kähler7

structure (Mok, 1989).8

Definition 1 (Kähler structure). A Kähler structure can be defined in any of the following equivalent9

ways:10

1. A complex structure with a closed, positive (1, 1)-form.11

2. A Riemannian structure with a complex structure such that the corresponding exterior12

2-form is closed.13

3. A symplectic structure with a compatible integrable almost complex structure which is14

positive.15

Recall that in Section 3.3, we defined the complex hyperbolic space Hn
C using the projectivization of16

the negative zone with a Hermitian form 〈〈z,w〉〉. Denote ω as the imaginary part of the Hermitian17

form 〈〈, 〉〉, i.e., ω(z,w) = 1
2i (〈〈z,w〉〉 − 〈〈w, z〉〉), then according to (Goldman, 1999), the metric ω18

is positive and closed, and necesssarily has type (1, 1). Then by the first definition in Definition 1,19

Hn
C is a Kähler structure.20

Let M be a Kähler manifold and z ∈ M . Denote TzM as the tangent space of M at z and21

J : TM → TM is an endomorphism. As proved in (Kobayashi & Nomizu, 1963), the curvature of22

real 2-planes in the tangent space TzM has the following properties:23

Theorem 2. Let M be a connected Kähler manifold of complex dimension n ≥ 2. If the holomorphic24

sectional curvature K(p), where p is a plane in TzM invariant by J , depends only on z, then M is a25

space of constant holomorphic sectional curvature.26

Next, we give a proposition in (Kobayashi & Nomizu, 1963), which is about the curvature of a plane.27

Proposition 1. If u,v is an orthonormal basis for a plane p and if we set the curvature of p as28

K(p) = R(u,v), where R(u,v) is the Riemann curvature tensor, then29

K(p) =
1

4
(1 + 3 cos2 α(p)),

where α(p) is the angle between p and J(p).30
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Finally, we prove Theorem 1 as follows.31

Proof. Let M be a Kähler manifold and z ∈ M . From Theorem 2, the corresponding sectional32

curvature function of real 2-planes in TzM is completely determined by the sectional curvature33

function restricted to complex lines in TzM . If the sectional curvature of every complex line in TM34

equals κ, then M is said to have constant holomorphic sectional curvature κ.35

Then from Proposition 1, we can know that in this case, the sectional curvature of a 2-dimensional36

subspace S ⊂ TM is37

K(S) = κ
1 + 3 cos2 α(S)

4
, (A.1)

where α(S) is the angle of holomorphy, defined as the smallest angle between two nonzero vectors38

from two linear subspaces of the underlying real vector space of M .39

In particular, the complex hyperbolic space Hn
C is a Kähler structure with κ = −1. Since 0 ≤40

cos2 α(S) ≤ 1, then from Eq. (A.1), we can have −1 ≤ K(S) ≤ −1/4 for any 2-dimensional41

subspace S ⊂ TM of Hn
C, i.e., the (sectional) curvature is not constant in Hn

C, but pinched between42

−1 and −1/4. Thus we proved the non-constant curvature of Hn
C.43

Specifically, we discuss the complex projective lines and totally real planes in the unit ball model of44

the complex hyperbolic space:45

BnC = {(z1, · · · , zn, 1)||z1|2 + · · ·+ |zn|2 < 1}. (A.2)

First let’s consider the case of complex projective lines. Consider a complex line L in Cn that46

intersects the unit ball model BnC. Let z be any point in L∩Bn
C. We can apply an element of PU(n, 1)47

to L so that it becomes the last coordinate axis {(0, zn)|zn ∈ C}, whose intersection with BnC is the48

disk |zn| < 1. Then the restriction of the Bergman metric to this disc is the Poincaré metric (Beardon,49

2012) of constant curvature −1.50

In order to see this, let z = (0, zn, 1) and w = (0, wn, 1), z,w ∈ L ∩ BnC, then from Eq. (9) in51

Section 4.1, the distance between z and w is given by52

dBn
C

(z,w) = arcosh(2
〈〈z,w〉〉〈〈w, z〉〉
〈〈z, z〉〉〈〈w,w〉〉

− 1), (A.3)

where the Hermitian form 〈〈z,w〉〉 is a standard Hermitian form:53

〈〈z,w〉〉 = z1w1 + · · ·+ znwn − zn+1wn+1. (A.4)

Then we have54

cosh2(
dBn

C
(z,w)

2
) =
〈〈z,w〉〉〈〈w, z〉〉
〈〈z, z〉〉〈〈w,w〉〉

=
|znwn − 1|2

(|zn|2 − 1)(|wn|2 − 1)
, (A.5)

which is just the Poincaré metric (Beardon, 2012).55

Next consider a totally real plane p. Any totally real plane p is the image under an element of56

PU(n, 1) of the subspace comprising those points of BnC with real coordinates, that is actually an57

embedded copy of the real hyperbolic space Hn
R = {(x1, . . . , xn)|x1, . . . , xn ∈ R}. This subspace58

intersects BnC in the subset consisting of those points with x21 + · · · + x2n < 1. Then the Bergman59

metric restricted to this real-space unit ball is just the Klein-Beltrami metric (Ratcliffe et al., 1994) on60

the unit ball in Rn with constant curvature −1/4.61

To see this, let x = (x1, . . . , xn, 1) and y = (y1, . . . , yn, 1), x,y ∈ Hn
R ∩ BnC, then apply the similar62

process with the above, we have63

cosh2(
dBn

C
(x,y)

2
) =
〈〈x,y〉〉〈〈y,x〉〉
〈〈x,x〉〉〈〈y,y〉〉

=
(x1y1 + · · ·+ xnyn − 1)2

(x21 + · · ·+ x2n − 1)(y21 + · · ·+ y2n − 1)
, (A.6)

which is the Klein-Beltrami metric (Ratcliffe et al., 1994) on the unit ball in Rn with constant64

curvature −1/4.65

Therefore, we proved that the curvature of Hn
C is −1 in the directions of complex projective lines66

while −1/4 in the directions of totally real planes.67
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B Derivation of distance gradient in the unit ball model68

The distance function in the unit ball model is given by Eq. (A.3). We need to compute the distance69

gradient ∇EdBn
C

(z,w) =
∂dBnC

(z,w)

∂x + i
∂dBnC

(z,w)

∂y during the Riemannian optimization. The full70

derivation is as follows.71

First, we need to introduce Wirtinger derivatives (Wirtinger, 1927), which constructs a differential72

calculus for differential functions on complex domains.73

Definition 2 (Wirtinger derivatives). The partial derivatives of a (complex) function f(z) of a74

complex variable z = x + iy ∈ C, x, y ∈ R, with respect to z and z̄ = x − iy, respectively, are75

defined as:76

∂f(z, z̄)

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
)f(z, z̄),

∂f(z, z̄)

∂z̄
=

1

2
(
∂

∂x
+ i

∂

∂y
)f(z, z̄).

The Wirtinger derivatives can be rewritten as:77

∂f(z, z̄)

∂x
= (

∂

∂z
+

∂

∂z̄
)f(z, z̄), (B.1)

∂f(z, z̄)

∂y
= i(

∂

∂z
− ∂

∂z̄
)f(z, z̄), (B.2)

Let p = cosh(dBn
C

(z,w)) = 2
〈〈z,w〉〉〈〈w,z〉〉
〈〈z,z〉〉〈〈w,w〉〉 − 1, then dBn

C
(z,w) = arcosh(p) = ln(p+

√
p2 − 1).78

Let z = (z1, . . . , zn, 1) ∈ BnC, then79

∂dBn
C

(z,w)

∂zj
=
∂dBn

C
(z,w)

∂p
· ∂p
∂zj

=
1√
p2 − 1

· ∂p
∂zj

=
2√
p2 − 1

·
∂

(z1w1+···+znwn−1)·〈〈w,z〉〉
(z1z1+···+znzn−1)·〈〈w,w〉〉

∂zj

=
2√
p2 − 1

·
( wj〈〈w, z〉〉
〈〈z, z〉〉 · 〈〈w,w〉〉

− zj〈〈z,w〉〉 · 〈〈w, z〉〉
〈〈z, z〉〉2 · 〈〈w,w〉〉

)
, (B.3)

for 1 ≤ j ≤ n. Similarly, we can have80

∂dBn
C

(z,w)

∂zj
=

2√
p2 − 1

·
( wj〈〈z,w〉〉
〈〈z, z〉〉 · 〈〈w,w〉〉

− zj〈〈z,w〉〉 · 〈〈w, z〉〉
〈〈z, z〉〉2 · 〈〈w,w〉〉

)
. (B.4)

Then by Eqs. (B.1), (B.3), and (B.4), we can get81

∂dBn
C

∂xj
=
∂dBn

C
(z,w)

∂zj
+
∂dBn

C
(z,w)

∂zj
=

4√
p2 − 1

(Re(〈〈z,w〉〉wj)

〈〈z, z〉〉〈〈w,w〉〉
− 〈〈z,w〉〉〈〈w, z〉〉xj
〈〈z, z〉〉2〈〈w,w〉〉

)
. (B.5)

Similarly, by Eqs. (B.2), (B.3), and (B.4), we can get82

∂dBn
C

∂yj
= i(

∂dBn
C

(z,w)

∂zj
−
∂dBn

C
(z,w)

∂zj
) =

4√
p2 − 1

(Im(〈〈z,w〉〉wj)

〈〈z, z〉〉〈〈w,w〉〉
− 〈〈z,w〉〉〈〈w, z〉〉yj
〈〈z, z〉〉2〈〈w,w〉〉

)
,

(B.6)
where Re(·) and Im(·) denote the real and the imaginary part respectively. Then we can have83

∂dBn
C

∂x
=

4√
p2 − 1

(Re(〈〈z,w〉〉w)

〈〈z, z〉〉〈〈w,w〉〉
− 〈〈z,w〉〉〈〈w, z〉〉x
〈〈z, z〉〉2〈〈w,w〉〉

)
, (B.7)

∂dBn
C

∂y
=

4√
p2 − 1

(Im(〈〈z,w〉〉w)

〈〈z, z〉〉〈〈w,w〉〉
− 〈〈z,w〉〉〈〈w, z〉〉y
〈〈z, z〉〉2〈〈w,w〉〉

)
, (B.8)

which are Eqs. (17) and (18) in Section 4.3 in the paper.84

3



000

1

1

1 2

2
2

3

3

3 4

4

4 5

5

5

66

6

balanced tree: r=2, h=2 
-hyperbolicity=0δ

compressed graph: m=7, k=1 
-hyperbolicity=0δ

compressed graph: m=7, k=1 
-hyperbolicity=0δ

0

1

2
3

4

5

6

compressed graph: m=7, k=2 
-hyperbolicity=0.5δ

Figure 1: Simple examples of the synthetic data. The numbers {0, 1, . . . , 6} represent the nodes. The
compressed graph-(m = 7, k = 2) on the right are aggregated from the middle two compressed
graphs-(m = 7, k = 1).

C Definition of δ-hyperbolicity85

In this section, we give the definition of δ-hyperbolicity (Gromov, 1987), which measures the tree-86

likeness of graphs. The lower δ corresponds to the more tree-like graph. Trees have 0 δ-hyperbolicity.87

Definition 3 (δ-hyperbolicity). Let a, b, c, d be vertices of the graph G. Let S1, S2 and S3 be88

S1 = dist(a, b) + dist(d, c), S2 = dist(a, c) + dist(b, d), S3 = dist(a, d) + dist(b, c).

Suppose M1 and M2 are the two largest values among S1, S2, S3 and M1 ≥ M2. Define89

hyp(a, b, c, d) = M1 −M2. Then the δ-hyperbolicity of G is defined as90

δ(G) =
1

2
max

a,b,c,d∈V (G)
hyp(a, b, c, d).

That is, δ(G) is the maximum of hyp over all possible 4-tuples (a, b, c, d) divided by 2.91

D More experiments92

D.1 Synthetic data93

In Section 5.1.1 in the paper, we introduced how we generate the synthetic data:94

Synthetic. We generate various balanced trees and compressed graphs using the NetworkX package.195

For balanced trees, we generate the balanced tree with degree r and depth h. For compressed96

graphs, we generate k random trees on m nodes and then aggregate their edges to form a graph.97

We give some examples of the synthetic data in Figure 1. As we can see, the compressed graphs-98

(m = 7, k = 1) are random trees on 7 nodes, so their δ-hyperbolicities are 0. The compressed99

graph-(m = 7, k = 2) is no longer a tree after aggregating from two trees. Its local structures are100

more varying and complicated.101

D.2 Hardware102

We conduct all the experiments except TreeRep on four NVIDIA GTX 1080Ti GPUs with 8GB103

memory each. For TreeRep, we need more memory to store the distance matrices, so we use a 96-core104

NVIDIA T4 GPU server with 503GB memory.105

D.3 Hyperparameters106

For the baselines (TreeRep (Sonthalia & Gilbert, 2020),2 Euclidean, Poincaré (Nickel & Kiela,107

2017), and Hyperboloid (Nickel & Kiela, 2018)),3 we use their public codes to train the embeddings.108

For all methods, we tune the hyperparameters by grid search. For the graph reconstruction task,109

1https://networkx.org/documentation/stable/reference/generators.html
2https://github.com/rsonthal/TreeRep.
3https://github.com/facebookresearch/poincare-embeddings. The repository provides the im-

plementation for Euclidean, Poincaré, and Hyperboloid.
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Table 1: Hyperparameters of all methods.

Model Synthetic ICD10 YAGO3-wikiObjects WordNet-noun

TreeRep

iterations: 20; iterations: 32; iterations: 32; iterations: 1;
optimization: no opt; optimization: no opt; optimization: no opt; optimization: no opt;
pre-allocation fraction: 2.0; pre-allocation fraction: 1.3; pre-allocation fraction: 1.3; pre-allocation fraction: 1.3;
nthreads: 16; nthreads: 16; nthreads: 16; nthreads: 16;
terminated edge weight: 0; terminated edge weight: 0; terminated edge weight: 0; terminated edge weight: 0;
trials/dataset: 3 trials/dataset: 3 trials/dataset: 3 trials/dataset: 3

Euclidean -

manifold: euclidean; manifold: euclidean; manifold: euclidean;
learning rate: 1; learning rate: 1; learning rate: 1;
epochs: 1500; epochs: 1200; epochs: 1500;
dampening: 0.75; dampening: 0.75; dampening: 0.75;
burnin: 20; burnin: 20; burnin: 20;
burnin multiplier: 0.01; burnin multiplier: 0.01; burnin multiplier: 0.01;
negative sample: 50; negative sample: 50; negative sample: 50;
negative multiplier: 0.1; negative multiplier: 0.1; negative multiplier: 0.1;
max norm: 50000 max norm: 50000 max norm: 50000

Poincaré

manifold: poincare; manifold: poincare; manifold: poincare; manifold: poincare;
learning rate: 0.3; learning rate: 1; learning rate: 1; learning rate: 1;
epochs: 1500; epochs: 1500; epochs: 1200; epochs: 1500;
dampening: 0.75; dampening: 1.0; dampening: 1.0; dampening: 1.0;
burnin: 20; burnin: 20; burnin: 20; burnin: 20;
burnin multiplier: 0.01; burnin multiplier: 0.01; burnin multiplier: 0.01; burnin multiplier: 0.01;
negative sample: 50; negative sample: 50; negative sample: 50; negative sample: 50;
negative multiplier: 0.1; negative multiplier: 0.1; negative multiplier: 0.1; negative multiplier: 0.1;
max norm: 1 − e−5 max norm: 1 − e−5 max norm: 1 − e−5 max norm: 1 − e−5

Hyperboloid

manifold: lorentz; manifold: lorentz; manifold: lorentz; manifold: lorentz;
learning rate: 0.3; learning rate: 0.5; learning rate: 1; learning rate: 0.5;
epochs: 1500; epochs: 1500; epochs: 1200; epochs: 1500;
dampening: 0.75; dampening: 1.0; dampening: 1.0; dampening: 1.0;
burnin: 20; burnin: 20; burnin: 20; burnin: 20;
burnin multiplier: 0.01; burnin multiplier: 0.01; burnin multiplier: 0.01; burnin multiplier: 0.01;
negative sample: 50; negative sample: 50; negative sample: 50; negative sample: 50;
negative multiplier: 0.1; negative multiplier: 0.1; negative multiplier: 0.1; negative multiplier: 0.1;
max norm: no-maxnorm max norm: no-maxnorm max norm: no-maxnorm max norm: no-maxnorm

UnitBall

manifold: unitball; manifold: unitball; manifold: unitball; manifold: unitball;
learning rate: 8; learning rate: 11; learning rate: 14; learning rate: 12;
epochs: 1500; epochs: 200; epochs: 1200; epochs: 900;
dampening: 0.75; dampening: 1.0; dampening: 1.0; dampening: 1.0;
burnin: 20; burnin: 20; burnin: 20; burnin: 20;
burnin multiplier: 0.01; burnin multiplier: 0.01; burnin multiplier: 0.01; burnin multiplier: 0.01;
negative sample: 50; negative sample: 50; negative sample: 50; negative sample: 50;
negative multiplier: 0.1; negative multiplier: 0.1; negative multiplier: 0.1; negative multiplier: 0.1;
max norm: 1 − e−5 max norm: 1 − e−5 max norm: 1 − e−5 max norm: 1 − e−5

we tune the hyperparameters on balanced tree-(15,3) in 20-dimensional embedding spaces (10-110

dimensional complex hyperbolic space for UnitBall), while for the link prediction task, we tune111

the hyperparameters on the validation sets in 32-dimensional embedding spaces (16-dimensional112

complex hyperbolic space for UnitBall). The hyperparameters are given in Table 1.113

D.4 Evaluation114

Our evaluation closely follows the setting of (Nickel & Kiela, 2017, 2018), which infers the hierarchies115

from distances in the embedding space. Specifically, for each test edge (z, w), we compute the116

distance between the embeddings dBn
C

(z,w) and rank it among the distances of all unobserved edges117

for z: {dBn
C

(z,w′) : (z, w′) /∈ Training}. We then report the following evaluation metrics of the118

rankings. Denote Etest as the test edge set and V = {z|∃w, (z, w) ∈ Etest} as the test node set. Let119

NEz = {w1, w2, . . . , w|NEz|} be the ground truth neighbor set of node z.120

Mean average precision (MAP). The average precision (AP) is a way to summarize the precision-121

recall curve into a single value representing the average of all precisions and the MAP score is122

calculated by taking the mean AP over all classes. For a node z, from the learned embeddings, we123

can obtain the nodes closest to its embedding z. Let Rz,wi
be the smallest set of such nodes that124

contains wi (the i-th neighbor of z). Then the MAP is defined as:125

MAP =
1

|V |
∑
z∈V

1

|NEz|
∑

wi∈NEz

Precision(Rz,wi).

Mean reciprocal rank (MRR). The MRR is a statistic measure for evaluating a list of possible126

responses to a sample of queries, ordered by the probability of correctness. For a node z, from the127

learned embeddings, we can rank its distances with other nodes from the smallest to the largest. Let128
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Table 2: Evaluation of graph reconstruction on the real-world data (the dimension is 32 for TreeRep
and 16 for UnitBall). For memory cost, the unit is GiB.

ICD10 YAGO3-wikiObjects WordNet-noun
MRR Hits@1 Memory MRR Hits@1 Memory MRR Hits@1 Memory

TreeRep 26.74 91.97 30 36.71 95.39 21 16.99 90.51 226
UnitBall 47.47 98.93 0.005 39.65 96.10 0.005 28.88 94.95 0.02

rankwi
be the rank of wi (the i-th neighbor of z). Then the MRR is defined as:129

MRR =
1

|V |
∑
z∈V

1

|NEz|
∑

wi∈NEz

1

rankwi

.

The proportion of correct types that rank no larger than N (Hits@N ). Hits@N measures130

whether the top N predictions contain the ground truth labels. For a node z, from the learned131

embeddings, we can obtain the set of N nodes closest to its embedding z, denoted as RN
z . Then the132

Hits@N is defined as:133

Hits@N =
1

|V |
∑
z∈V

I(|RN
z ∩NEz| ≥ 1),

where I(|RN
z ∩NEz| ≥ 1) is the indicator function.134

D.5 Comparison with TreeRep on real-world data reconstruction135

In this section, we compare UnitBall with TreeRep on the real-world taxonomy reconstruction task.136

The results are presented in Table 2. As we analyzed in Section 5.3.1, TreeRep, as a combinatorial137

construction-based embedding method, is more suitable for the graph reconstruction task. Its138

performance is much better than that on the link prediction task. In addition, UnitBall outperforms139

TreeRep on reconstructing real-world taxonomies with varying structures.140

We also notice the memory issues of the combinatorial construction-based embedding methods.141

Although TreeRep is very efficient in embedding tree structures since it does not need the gradient-142

based optimization steps, it costs more memory resources for constructing the tree structures from143

data. It is basically a computation time vs. memory cost trade-off issue. For a graph with m nodes,144

TreeRep needs to construct a matrix of size c · m × c · m to construct the tree structure, where145

1 ≤ c ≤ 2 is a hyperparameter. We report the memory cost (GiB) in Table 2. UnitBall costs much146

less memory to learn the embeddings.147

D.6 More results on various dimensions148

In Section 5.3.2, we reported the performances in different embedding dimensions on YAGO3-149

wikiObjects because of the page limits. Here we present the results in 8-d, 32-d, and 128-d embedding150

spaces (4-d, 16-d and 64-d complex hyperbolic spaces for UnitBall) on ICD10 and WordNet-noun in151

Table 3. Again, we see that with the increase of the embedding dimension, Euclidean can have big152

improvements, but its performances in 128-d still cannot surpass UnitBall and the hyperbolic models153

in 8-d. UnitBall outperforms the baselines almost all the time. Although on WordNet-noun, UnitBall154

in 4-d has slightly lower MAP and MRR than Poincaré and Hyperboloid in 8-d, it has significantly155

higher Hits@3.156

D.7 Comparison with trainable curvature method AttH157

Our work focuses on the representation of single-relation graphs, which is a different research158

topic with multi-relational graph embeddings or knowledge graph embeddings, so it is hard to find159

an appropriate experimental setting to compare them. Nevertheless, to address the concerns of160

comparison with the trainable curvature method, here we evaluate AttH (Chami et al., 2020) on the161

single-relation taxonomy link prediction task. We tune the hyperparameters on the validation set and162

report the mean results over 5 running executions.163

6



Table 3: Evaluation of taxonomy link prediction in different embedding dimensions (the embedding
dimension for UnitBall is half of other models). The best results are shown in boldface. The second
best results are underlined. TreeRep is not applicable to 128-d WordNet-noun due to the large
memory cost so we do not include the results.

ICD10
8-dimensional 32-dimensional 128-dimensional

MAP MRR Hits@3 MAP MRR Hits@3 MAP MRR Hits@3
Euclidean 2.57 2.57 1.32 3.75 3.72 2.39 10.83 10.48 4.66
TreeRep 3.44 3.90 6.03 4.96 7.92 8.49 8.09 8.74 17.23
Poincaré 35.73 34.94 53.10 35.24 34.45 52.71 34.47 33.70 52.19
Hyperboloid 35.56 34.77 51.90 34.80 34.01 52.88 34.93 34.15 52.98
UnitBall 44.05 43.26 61.54 47.88 46.96 70.28 46.54 45.59 70.03

WordNet-noun
8-dimensional 32-dimensional 128-dimensional

MAP MRR Hits@3 MAP MRR Hits@3 MAP MRR Hits@3
Euclidean 1.07 1.05 0.63 5.59 5.36 3.16 14.33 13.35 8.82
Poincaré 25.23 23.78 27.63 25.46 23.99 27.80 25.33 23.86 27.41
Hyperboloid 25.73 24.24 27.67 25.65 24.15 27.50 25.77 24.27 27.65
UnitBall 24.91 23.76 30.27 27.29 25.93 32.95 27.29 25.91 32.77

Table 4: Evaluation of taxonomy link prediction on YAGO3-wikiObjects (the dimension is 32 for
AttH and 16 for UnitBall).

MAP MRR Hits@1 Hits@3

AttH 30.22 28.47 9.10 43.83
UnitBall 33.33 31.85 15.62 47.41

From the results in Table 4, we see that UnitBall outperforms AttH in the single hypernymy relation164

link prediction task. However, UnitBall cannot infer multiple relations like AttH for now. Motivated165

by our theoretical grounding and empirical success, we believe the future work of the complex166

hyperbolic embeddings will have promising improvements on multi-relational graph embeddings.167
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