
Point Transformer V2: Grouped Vector Attention
and Improved Sampling – Supplementary Material

Xiaoyang Wu1 Yixing Lao1 Li Jiang2 Xihui Liu1 Hengshuang Zhao1∗
1The University of Hong Kong 2Max Planck Institute

{xywu3, hszhao}@cs.hku.hk

In the appendix, we provide more experiment details in Sec. A, more experiment results in Sec. B.

A Experiment Details

This section describes the model architectures adopted in the experiments and describes the experi-
mental settings for each dataset in detail.

A.1 Model Architecture

In Fig. 1, we show the detailed network architectures for semantic segmentation and shape classifica-
tion. Tuples under each stage block indicate the number of sampled points and feature dimensions of
attention blocks, and the number of sampled points is determined by grid sizes, as specified in the
main paper.

La
be

l: 
ch

ai
r

(𝑁!, 96)(𝑁, 48) (𝑁", 192) (𝑁#, 384) (𝑁$, 384) (𝑁#, 384) (𝑁", 192) (𝑁!, 96) (𝑁, 48) (𝑁, 𝐷%&')

(𝑁$, 512)(𝑁#, 384)(𝑁", 192)(𝑁!, 96)(𝑁, 48) (1, 𝐷%&')

GVA Block

Grid Down

Grid Up

AvgPool

MLP

Figure 1: Network architectures for semantic segmentation (top) and classification (bottom).

A.2 Experiment Setting

Experimental environment. Software and hardware environment:

• CUDA version: 11.1

• cuDNN version: 8.0.5

• PyTorch version: 1.10.1

• GPU: Nvidia RTX A6000 × 4

• CPU: Intel Xeon Platinum 8180 @ 2.50 GHz × 2

∗Corresponding Author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Table 1: Data augmentation.

Drop Points Rotate Flip Scale Jitter Distort Chromatic Grid Size

ScanNet v2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.02m
S3DIS ✓ ✓ ✓ ✓ ✓ 0.05m
ModelNet40 ✓ ✓

Table 2: Training Setting.

Epoch Learning Rate Weight Decay Scheduler Optimizer Batch Size

ScanNet v2 600 0.005 0.02 Cosine AdamW 16
S3DIS 3000 0.005 0.05 MultiStep AdamW 16
ModelNet40 300 0.05 0.0001 MultiStep SGD 32

Data license. Our experiments use open-source datasets widely applied for 3D recognition research.
The ScanNet v2 [1] dataset is under the MIT license, while S3DIS [2] and ModelNet40 [3] have
custom licenses that only allow academic use.

Data preprocessing and augmentation. For S3DIS and ModelNet40 datasets, we adopt the data
preprocessing of PTv1 [4] with slight adjustments to the augmentation. For ScanNet v2, we estimate
normal vectors for points as additional feature input. The data augmentation strategies are different
for each dataset, as shown in Table 1. The detailed settings for each type of data augmentation will
be available in our open-source code.

Training details. Our specific model training settings are available in Table 2. For the segmentation
task, AdamW is used to reduce overfitting of the model. Scheduler with a cosine annealing policy
has a better performance on ScanNet v2, which has more data than S3DIS. We use cross-entropy loss
for all experiments.

B Additional Quantitative Results

In this section, more quantitative results are provided to validate and analyze our proposed network
architecture.

B.1 Depths of Decoder Blocks

We show ablation experiments on the depths of each decoder block with different unpooling methods
in Table 3. Applying at least one attention block in each decoding stage can significantly improve the
model performance, and this phenomenon is more evident while utilizing our mapping pooling. But
deeper decoders (from a depth of 1 to 2 for each decoder block) do not improve performance. These
phenomena are reasonable since the naive unpooling methods such as interpolation and mapping
require a learnable block to optimize the sampled features. In 2D, deconvolution with stride is widely
used to unpooling and optimize features simultaneously, and such a process usually does not require
a deep network.

Table 3: Results of different decoder depths for two upsampling strategy (mIoU%).

Decoder Depths [0, 0, 0, 0] [1, 1, 1, 1] [2, 2, 2, 2]

Grid Mapping 73.5 75.4 74.8
Neighbors Interpolation 73.6 74.4 73.9

B.2 Ablation study on Position Encoding Multiplier

Table 4 shows an additional ablation study on PE Multiplier. PE Multiplier does not work well
with PTv1 since PTv1 already overfits to the training set. Adding more capacity to the PTv1 will
not help improve the performance. On PTv2, the group vector attention (GVA) has an effect of
reducing overfitting and enhancing generalization. With GVA restricting the capacity of the attention
mechanism, the addition of PE Multiplier can focus on learning complex point cloud positional
relations. PE Multiplier compliments group vector attention to achieve a good balance of network
capacity.

2



Table 4: Position Encoding Multiplier ablation.
PTv1 PTv2

PE Multiplier ✗ ✓ ✗ ✓

Params (M) 11.4 14.6 9.6 12.8
Time (ms) 1023 1055 220 266
mIoU (%) 72.3 72.1 75.0 75.4

Table 5: Combined pooing and unpooling time comparison.

(a) FPS-kNN pooling and unpooling [5, 4] execution time (ms).

n=10K n=20K n=40K n=80K n=160K n=320K

r=1/2 36 91 255 955 3644 14336
r=1/4 20 39 131 488 1842 7207
r=1/6 15 28 90 334 1241 4811
r=1/8 12 22 70 256 942 3632

(b) Grid-kNN pooling and unpooling [6] execution time (ms).

n=10K n=20K n=40K n=80K n=160K n=320K

r=1/2 4 6 10 17 52 141
r=1/4 4 6 9 17 36 109
r=1/6 4 5 9 16 23 69
r=1/8 4 6 9 16 22 67

(c) Grid pooling and unpooling (ours) execution time (ms).

n=10K n=20K n=40K n=80K n=160K n=320K

r=1/2 0.94 0.98 1.01 1.02 1.03 1.35
r=1/4 0.93 0.97 0.98 0.98 1.00 1.33
r=1/6 0.93 0.96 0.97 0.98 1.00 1.32
r=1/8 0.93 0.96 1.03 0.98 1.00 1.32

B.3 Comparison of Pooling Methods

We compare three different feature-level pooling methods: FPS-kNN, Grid-kNN, and our partition-
based pooling implemented by grid. FPS-kNN pooling [5, 4] uses the farthest point sampling (FPS)
to sample a specified number of points and then query k nearest neighbor points for pooling. Strided
KPConv [6] uses a uniform grid to sample points and then applies the kNN method to index neighbors,
leading to an uncontrollable overlapping of the pooling receptive field. We name this method Grid-
kNN Pooling. Our method values non-overlapping receptive fields and fusion points within each
non-overlaping grid cell. To distinguish it from the previous sampling-based method, we name it
Grid Pooling.

Benchmark with synthetic data. Table 5 provides benchmark results for the different pooling
methods with synthetic data. We generate n points uniformly at random in the unit cube space.
The sampling ratio r the sample size divided by the population size. For comparison, we keep the
sampling ratio r the same for different pooling methods. For Grid-kNN and Grid Pooling, the grid
size is computed as (n× r)−

1
3 since the point cloud is sampled uniformly at random. We show the

combined time of pooling and uppooling for these three methods.

References
[1] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner.

Scannet: Richly-annotated 3d reconstructions of indoor scenes. In CVPR, 2017. 2

[2] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio Savarese.
3d semantic parsing of large-scale indoor spaces. In CVPR, 2016. 2

[3] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3d shapenets: A deep representation for volumetric shapes. In CVPR, 2015. 2

3



[4] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point transformer. In ICCV, 2021.
2, 3

[5] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 3

[6] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and
Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In ICCV, 2019. 3

4


	Experiment Details
	Model Architecture
	Experiment Setting

	Additional Quantitative Results
	Depths of Decoder Blocks
	Ablation study on Position Encoding Multiplier
	Comparison of Pooling Methods


