
APPENDIX

A PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1 For any Model M : X → (Y → [0, 1]) and given canonical calibration mapping
R(p) = P

[
[M(X)](Y ) ≤ p

]
, R ◦M is quantile calibrated

Proof: To show that R◦M is quantile calibrated. we need to show that P[(R◦M)[X][Y ] ≤ p] = p,
∀p ∈ [0, 1] since we are assuming that R (p) is invertible function, which gives us that it is surjective.
An equivalent way of showing this is that P[ (R ◦M) [X][Y ] ≤ R(p)] = R (p) ∀p ∈ [0, 1]

P
[
(R ◦M)[X][Y ] ≤ R(p)

]
= P

[
R−1

(
(R ◦M)[X][Y ]

)
≤ R−1

(
R(p)

)]
R−1 is strictly increasing

= P
[
(M[X])[Y ] ≤ p

]
= R(p) By definition

�

A.2 PROOF OF CLAIM 1,2,3

Claim 1 Let Y be a random variable with CDF F , and let G = R ◦ F be its CDF after composing
with mapping R obtained from isotonic regression characterized by C = {c(1), c(2), · · · , c(n)}. If
there exist i−1, i, i+1 ∈ {0, n}∧ c(i)− c(i−1) 6= c(i+1)− c(i) then the CDF G is not differentiable
and its corresponding probability density function g is not continuous at F−1(c(i))

Proof: First, G can be expressed as follows

G(x) =



F (x)

nc(1)
. −∞ < x ≤ F−1(c(1))

F (x)− c(1)
n(c(2) − c(1))

+ 1
n F−1(c(1)) < x ≤ F−1(c(2))

F (x)− c(2)
n(c(3) − c(2))

+ 2
n F−1(c(2)) < x ≤ F−1(c(3))

...
...

F (x)− c(n−1)
c(n) − c(n−1)

+ n−1
n F−1(c(n−1)) < x ≤ F−1(c(n))

Let a = F−1(c(1)). We will show that G not differentiable at a. Similarly we can show that it is not
differentiable at the other n− 2 switching points.

The left derivative is as follows

lim
x→a−

G(x)−G(a)
x− a

= lim
x→a−

F (x)

n.c(1)
− F (a)

n.c(1)

x− a
=

1

nc(1)
lim
x→a−

F (x)− F (a)
x− a

=
F ′(a)

nc(1)

1



The right derivative is as follows

lim
x→a+

G(x)−G(a)
x− a

= lim
x→a+

F (x)− c(1)
n(c(2) − c(1))

+ 1
n −

1
n

x− a
(1)

=
1

n.(c(2) − c(1))
lim
x→a+

F (x)− F (a)
x− a

=
F ′(a)

n.(c(2) − c(1))

Hence G is not differentiable.

Although the CDF is not differentiable at only a finite number of points, we can still get the PDF by
piece-wise differentiation.

g(x) =



f(x)

nc(1)
. −∞ < x ≤ F−1(c(1))

f(x)

n(c(2) − c(1))
F−1(c(1)) < x ≤ F−1(c(2))

f(x)

n(c(3) − c(2))
F−1(c(2)) < x ≤ F−1(c(3))

...
...

f(x)

n.(c(n) − c(n−1))
F−1(c(n−1)) < x ≤ F−1(c(n))

(2)

Now consider for any i− 1, i, i+ 1 ∈ {0, n} s.t ci − ci−1 6= ci+1 − ci. Let a = F−1(ci) then

lim
x→a−

g(x) = lim
x→a−

f(x)

n(c(i) − c(i−1))
=

f(a)

n(c(i) − c(i−1))

lim
x→a+

g(x) = lim
x→a+

f(x)

n(c(i+1) − c(i))
=

f(a)

n(c(i+1) − c(i))

Since the right limit and left limit do not coincide and by construction of point a, we have that limit
does not exist and therefore g(x) is not continuous at a

Note that, most of times, the hypothesis is satisfied, so the smoothness is lost. �

Claim 2 Let Yiso be transformed random variable after applying isotonic mapping R on random
variable Y . Then the expectation of Yiso is as follows

E[Yiso] = µ− σ2

n

n−1∑
i=0

f(F−1(c(i+1)))− f(F−1(c(i)))
(c(i+1) − c(i))

Proof: Assume that, before transformation, the random variable is distributed X ∼ N (µ, σ2) so

f(x) =
1√
2πσ2

exp
−(x− µ)2

2σ2
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E[Yiso] =

∫ ∞
−∞

x.g(x)dx

=

n−1∑
i=0

∫ F−1(c(i+1))

F−1(c(i))

x.
f(x)

n.(c(i+1) − c(i))
dx

=

n−1∑
i=0

1

n(c(i+1) − c(i))

∫ F−1(c(i+1))

F−1(c(i))

x.
1√

2π.σ2
exp
−(x− µ)2

2.σ2
dx

=

n−1∑
i=0

1

n(c(i+1) − c(i))

∫ F−1(c(i+1))

F−1(c(i))

(x− µ+ µ).
1√

2π.σ2
exp
−(x− µ)2

2.σ2
dx

x = x− µ+ µ

=

n−1∑
i=0

1

n(c(i+1) − c(i))

∫ F−1(c(i+1))

F−1(c(i))

(x− µ) 1√
2π.σ2

exp
−(x− µ)2

2.σ2︸ ︷︷ ︸
= t and use sub

dx

+

n−1∑
i=0

1

n(c(i+1) − c(i))

∫ F−1(c(i+1))

F−1(c(i))

µ
1√

2π.σ2
exp
−(x− µ)2

2.σ2
dx using linearity

=

n−1∑
i=0

1

n(c(i+1) − c(i))

[ −σ2

√
2π.σ2

exp
−(x− µ)2

2.σ2

]x=F−1(c(i+1))

x=F−1(c(i))

+

n−1∑
i=0

µ

n(c(i+1) − c(i))
F (F−1(c(i+1)))− F (F−1(ci)) using def of cdf

=

n−1∑
i=0

−σ2

n

f(F−1(c(i+1)))− f(F−1(c(i)))
(c(i+1) − c(i))

+ µ

n−1∑
i=0

1

n

F (F−1(c(i+1)))− F (F−1(ci))
(c(i+1) − c(i))︸ ︷︷ ︸

1

= µ− σ2

n

n−1∑
i=0

f(F−1(c(i+1)))− f(F−1(c(i)))
(c(i+1) − c(i))

�

Lemma 1 Let fµ,σ, Fµ,σ, F−1µ,σ be density, distribution, and quantile functions, respectively, of the
normal distribution with mean µ and std σ. Then

fµ,σ

[
F−1µ,σ

(
Fµ0,σ0

(y0)
)]

=
σ0
σ
fµ0,σ0

(y0)

Proof: We use the following three properties of normally distributed random variables

1. Fµ,σ(y) = F0,1(
y−µ
σ )

2. fµ,σ(y) = 1
σf0,1(

y−µ
σ )

3. F−1µ,σ(p) = σ.F−10,1 (p) + µ
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fµ,σ

[
F−1µ,σ

(
Fµ0,σ0

(y0)
)]

= fµ,σ

[
F−1µ,σ

(
F0,1(

y0 − µ0

σ0
)
)]

by using (1)

= fµ,σ

[
σ.F−10,1 (F0,1(

y0 − µ0

σ0
)) + µ

]
by using (3)

= fµ,σ

[
σ.
y0 − µ0

σ0
+ µ

]
F−1F (x) = x

=
1

σ
f0,1

[σ.y0 − µ0

σ0
+ µ− µ

σ

]
by using (2)

=
1

σ
f0,1

[y0 − µ0

σ0

]
=
σ0
σ
.
1

σ0
f0,1

[y0 − µ0

σ0

]
Mul and Div by σ0

=
σ0
σ
fµ0,σ0

(y0) by using (2)

�

Claim 3

E[Yiso] = µ− σ
n∑
i=0

1

n

σ(i+1)p(i+1) − σ(i)p(i)
c(i+1) − c(i)︸ ︷︷ ︸

δ

Proof: We first re-substitute c(i) = Fµ(i),σ(i)
(y(i)) and p(i) = fµ(i),σ(i)

(y(i)), then using the above
claim, substituting that f(F−1(c(0))) = f(F−1(0)) = lim

x→−∞
f(x) = 0

µ− σ2

n

n∑
i=0

f(F−1(c(i+1)))− f(F−1(c(i)))
(c(i+1) − c(i))

= µ− σ2

n

n∑
i=0

f(F−1(Fµ(i+1),σ(i+1)
(y(i+1))))− f(F−1(Fµ(i+1),σ(i+1)

(y(i+1))))

(c(i+1) − c(i))

= µ− σ

n

[σ(1)p(1)
c(1)

+

n−1∑
i=1

σ(i+1)p(i+1) − σ(i)p(i)
c(i+1) − c(i)

]
by using f(F−1(c(0))) = 0, c(0) = 0

= µ− σ

n

[ n−1∑
i=0

σ(i+1)p(i+1) − σ(i)p(i)
c(i+1) − c(i)

]
σ(0) = 0, p(0) = 0, c(0) = 0

�

A.3 PROOFS OF CLAIM 4 AND CLAIM 5

Claim 4 Let M be any regression model. Then M is perfectly quantile calibrated iff

KL
(
[M(X)](Y )||U

)
= 0

Proof: Since we have that KL
(
[M(X)](Y )||U

)
we have that M(X)](Y ) , Uniform[0, 1] from

which we have that P
[
[M(X)](Y ) ≤ p

]
= p ∀p which is the definition of quantile regularization.

�

Claim 5 Let fµ,σ be the marginal distribution of Y and
(
Fµx,σx = M [x]

)∣∣∣X = x be the model’s

predicted cumulative distribution for x ∈ X , then if fµ,σ[F−1µx,σx
(p)] = fµx,σx

(F−1µx,σx
(p)) ∀x, ∀p ∈

[0, 1], we have that M is Quantile Calibrated.
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Proof:
fM [X][Y ](p) =

∫
X
f
M [x][Y ]

∣∣∣X=x
(p) . fX(x)dx

=

∫
X

d

dp
P
[(
M [x][Y ]

∣∣∣X = x
)
≤ p
]
. fX(x)dx

=

∫
X

d

dp
P
[
(Fµx,σx [Y ] ≤ p

]
. fX(x)dx

=

∫
X

d

dp
P
[
(Y ≤ F−1µx,σx

(p)
]
. fX(x)dx

=

∫
X

d

dp

[
Fµ,σ[F

−1
µx,σx

(p)]
]
. fX(x)dx

=

∫
X
fµ,σ[F

−1
µx,σx

(p)] .
1

fµx,σx
(F−1µx,σx(p))

. fX(x)dx

=

∫
X
1 . fX(x)dx

= 1

Since we have thatM [X][Y ]Uniform[0, 1] we can conclude thatM is Perfectly Quantile Calibrated.
�

B EXPERIMENTS

B.1 BAYESIAN LINEAR REGRESSION

For Bayesian Linear Regression we use sklearn’s Bayesian Ridge Regression.

B.2 UCI EXPERIMENTS

We consider following datasets (size-of-data,num-input-features): AirFoil (1503,6) , Bouston Hous-
ing (506,13), Concrete Strength (1030,8),Fish Toxicity (908,7),Kin8nm (8192, 9), Protein Structure
(45730, 10), Red Wine (1599, 12), White Wine (4898, 12), Yacht Hydrodynamics (308,6), year
prediction MSD (515345,91)
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B.3 CALIBRATION PLOTS FOR DROPOUT-VI
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(a) Airfoil
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(b) Boston
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(c) Concrete
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(d) White Wine

Figure 1: Dashed line (y=x) indicates perfect Calibration. The more closer to Dashed line the better
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B.4 CALIBRATION PLOTS FOR DEEP ENSEMBLES
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(a) Airfoil

0.0 0.2 0.4 0.6 0.8 1.0
actual

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ict
ed

base
qr
iso
ideal

(b) Boston
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(c) Red
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(d) Yacht Hydrodynamics

Figure 2: Dashed line (y=x) indicates perfect Calibration. The more closer to Dashed line the better
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