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We propose a topological description of neural network expressive power. We adopt the topology of the space of decision boundaries realized by a neural 
architecture as a measure of its intrinsic expressive power. By sampling a large number of neural architectures with di�erent sizes and design, we show how such 
measure of expressive power depends on the properties of the architectures, like depth, width and other related quantities.     

What is expressive power?
Expressive power is the number of di�erent problems 
a Neural Network can solve. In our work we restrict 
ourselves to binary classification problems. 

How is it measured?
We evaluate how complex and how di�erent, 
topologically, are the decision boundaries that a given 
Neural Network architecture can express.

We measure how spread out is the space of 
persistence diagrams of the decision boundaries that 
an architecture can express.   

1. Sample the space 
of Neural Networks

Figure 1 : The decision boundaries of two paths in the parameter space of two di�erent 
architectures. A very simple one  (top row) and one with one hidden layer (bottom row). Note how 
the simple architecture can only produce decision boundaries with trivial homology, no matter the 
parameter values. In our methodology the bottom row architecture is more expressive since the 
space of its decision boundaries is more "topologically diverse".
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2. Evaluate the persistent homology 
of each decision boundary

Sampling Decision Boundary
We use a novel method to sample points from 
the decision boundary of two classes A and B. 
Our method is faster and more scalable  than the 
one proposed by Ramamurthy et all 2018.

Our method uniformly samples points from the 
edges of Voronoi cells belonging to points of 
di�erent classes.

Figure 2: Left is an illustration of the decision boundary, the edges of Voronoi cells 
belonging to points of di�erent classes (black and white). Right is an example of 
our method of sampling 1000 points (black) from this boundary given two classes 
(orange and green). 

3. Measure the spread 
of the space

Figure 3: Embedding of the metric space (P, Wp) where PP is the space of persistence diagrams of 
the decision boundaries obtained from di�erent parameter vectors. Along with the Wasserstein 
distance between the persistence diagrams. The embedding into 2 dimensions was done using UMAP 
(McInnes et all 2018).

Figure 4: Spread values (y-axis) for di�erent architectures. Each architecture always has the same 
number of neurons per layer. On the left we have the HH1 spread, that is the spread of the metric 
space constructed from the 0-dimensional persistence diagrams of the decision boundaries and the 
Wasserstein distance between them. On the right we have the HH1 spread which is constructed 
analogously.  

What is spread?
Spread introduced by Willerton 2015 is a notion 
of diversity for metric spaces. For a metric space 
(X,d) spread is defined as 
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Consider a Neural Network architecture FF of n parameters. 
It is trivial to see that there is a direct mapping from FF to 
R^n. We can therefore explore FF by sampling R^n.

In this  poster we show results for architectures of 1-10 
hidden layers with 5, 7, 9 and 10 neurons. For each we 
uniformly sample a set of 2000 parameters in [-1, 1] . 

For each parameter vector there exists a Neural Network 
and each Neural Network describes a decision boundary.  
Our work aims at mesuring expressive power by evaluating 
how "topologically diverse" are the decision boundaries, 
given a uniform distribution of parameter vectors.

2.1 Approximating decision boundary: The decision boundary for a given problem is not unique. 
We consider here one that maximizes the distance between each class. This is reasonable since 
any other disparity metric (for example support) is based on distance. Under this assumption, the 
decision boundary we aim to approximate is the union of the edges of adjacent Voronoi cells 
corresponding to points of di�erent classes and is unique. 

2.2 Topological properties of decision 
boundaries: For a given architecture we 
sampled 2000 parameter vectors. Each 
parameter vector defines a decision 
boundary captured in the step above. We 
compute its persistent homology. We do 
it using the python package Ripser (Tralie 
et all. 2018).

Since the input space is always 2 
dimensions we compute only  HH1 and 
H1H homology.

For each architecture we now have 
associated 2000 persistence diagrams. 
We consider their pairwise Wasserstein 
distance and construct a metric space for 
each architecture.

We then measure the spread (Willerton 2015) of each metric space 
associated with each architecture. 

Our results show (among others) that: 1. Spread is weakly correlated with 
the number of parameters in the architecture. 2.  Spread grows with 
depth and width, although not exponentially as observed in geometric 
properties by (Poole et all 2016). 3. Spread has complex correlations with 
other architecture parameters such as the presence of a bottleneck.
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