
Appendix

A Related works

In this section, we review closely related literature on decentralized optimization, communication-
efficient algorithms, and communication compression.

Decentralized optimization Decentralized optimization, which is a special class of linearly con-
strained (consensus constraint) optimization problems, has been studied for a long time [3, 9]. Many
centralized algorithms can be intuitively converted into decentralized counterparts by using gossip
averaging [14, 53], which mixes parameters from neighboring clients to enforce consensus.

However, direct applications of gossip averaging often lead to either slow convergence or high error
floors [34], and many fixes have been proposed in response [44, 56, 38, 7, 35]. Among them, gradient
tracking [38, 7, 35], which applies the idea of dynamic average consensus [59] to global gradient
estimation, provides a systematic approach to reduce the variance and has been successfully applied
to decentralize many algorithms with faster rates of convergence. For nonconvex problems, a small
sample of gradient tracking aided algorithms include GT-SAGA [55], D-GET [48], GT-SARAH [54],
and DESTRESS [22]. Our BEER algorithm also leverages gradient tracking to eliminate the strong
bounded gradient and bounded dissimilarity assumptions.

Communication-efficient algorithms While decentralized optimization is a classical topic, the focus
on communication efficiency is relatively new due to the advances in large-scale machine learning.
Roughly speaking, there are primarily two kinds of approaches to reduce communication cost: 1) local
methods: in each communication round, clients run multiple local update steps before communicating,
in the hope of reducing the number of communication rounds; 2) compressed methods: clients
send compressed communication messages, in the hope of reducing the communication cost per
communication round.

Both categories have received significant attention in recent years. For local methods, a small sample
of examples include FedAvg [32], Local-SVRG [10], SCAFFOLD [13] and FedPAGE [58]. On the other
hand, many compressed methods are proposed recently such as [1, 15, 49, 47, 16, 26, 11, 25, 40, 8, 57].
In this paper, we will adopt the second approach based on communication compression to enhance
communication efficiency.

Decentralized nonconvex optimization with compression As discussed earlier and summarized
in Table 1, there have been limited existing works on decentralized nonconvex optimization with
communication compression. In particular, SQuARM-SGD [45] can be viewed as CHOCO-SGD
with momentum, but its theoretical convergence rate is slower than the original CHOCO-SGD.
Deepsqueeze [51] and CHOCO-SGD have a close relationship, where Deepsqueeze can be viewed as
decentralized SGD (DSGD or D-PSGD) with the explicit error feedback framework, and CHOCO-SGD
uses control variables to implicitly handle the compression error.

B Examples of Compression Operators

We provide some examples of compression operators satisfying Definition 1 that are used in our
experiments.

gsgdb [1] gsgdb : Rd → Rd (b > 1), or random dithering, is a compression operator satisfying the
following formula

gsgdb(x) :=
∥x∥
τ

· sign(x) · 2−(b−1) ·
⌊
2(b−1)|x|

∥x∥ + u

⌋
,

where τ = 1 +min
{

d
22(b−1) ,

√
d

2(b−1)

}
, and u is the random dithering vector uniformly sampled from

[0, 1]d. It follows that gsgdb satisfies Definition 1 with α = 1/τ .

topk [2, 47] topk : Rd → Rd is a compression operator satisfying the following formula

topk(x) := x⊙ u(x),
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where u(x) ∈ {0, 1}d that satisfies ∥u∥1 = k and ui = 1 for all i ∈ I such that |xi| ≥ |xj | for any
i ∈ I and j ∈ [d] \ I. In words, topk keeps the coordinates of x with the k largest absolute values,
and sets the other coordinates to 0. It follows that topk(x) satisfies Definition 1 with α = k/d.

C Additional Experiments

This section provides two numerical experiments in addition to Section 5 to investigate BEER’s
performance under different network topologies and compression operators. Analogous to Section 5,
we run logistic regression with nonconvex regularization (α = 0.05) on unshuffled a9a dataset split
evenly to 40 agents, and use FDLA matrix for weighted information aggregation.

C.1 Comparison between different communication topologies

This experiment compares BEER’s performance on the following network topologies: ring topology
(ρ = 0.022), star topology (ρ = 0.049), grid topology (ρ = 0.063), and Erdös-Rènyi topology with
connectivity probability p = 0.5 and p = 0.2 (ρ = 0.51 and ρ = 0.77, respectively). All experiments
use the same best-tuned step size η = 0.5, batch size 100 and γ = 0.7, to guarantee convergence
while achieving fast convergence.
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Figure 4: The training gradient norm and testing accuracy against communication rounds for BEER
using biased gsgdb compression [1] with b = 5 on logistic regression with nonconvex regularization
on unshuffled a9a dataset.

Figure 4 shows the experiment results, which empirically verifies that BEER is robust to network
topologies, i.e., despite the huge difference of spectral gap ρ between different topologies, BEER
can use nearly the same hyperparameters to obtain similar performance. The experiment results
complement our theoretical analysis and show that BEER may converge way better in practice despite
its cubic dependency of 1/ρ in Theorem 2.

C.2 Comparison between different compression schemes

This experiment compares BEER’s performances on a ring topology using the following compression
algorithms: identity (no compression), gsgd5 and top10, which are defined in Appendix B. Parameters
are chosen such that BEER with different compression operators transfer similar amount of data per
communication round. All experiments use the same best-tuned step size η = 0.5, batch size 100 and
γ = 0.7, except that we use η = 0.005 and γ = 0.8 for top10 compression.

Results are shown in Figure 5. From the right two panels in Figure 5, we can conclude using any
compression operator outperforms the non-compressed baseline, in the sense that, all compressors
converge to a solution with lower gradient norm and higher testing accuracy at a lower communication
cost. From the second to the left panel in Figure 5, we can find in terms of communication rounds and
testing accuracy, different compression operators can lead to significantly behaviors. For example,
BEER with gsgd5 compression operator converges faster than BEER without compression, but BEER
with top10 compression operator converges slower than BEER without compression. Among all
experiments, BEER with gsgd5 reaches the highest final testing accuracy, while behaves similar to
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Figure 5: The training gradient norm and testing accuracy against communication rounds (left two
panels) and communication bits (right two panels) for BEER using different compression algorithms
on logistic regression with nonconvex regularization on unshuffled a9a dataset.

BEER without compression in terms of communication rounds, which implies that gsgdb (random
quantization) may be a more practical compression operator, or may be more suitable for BEER.

D Proof of Main Theorems

D.1 Technical preparation

We first recall some classical inequalities that helps our derivation.

Proposition 1 Let {v1, . . . ,vτ} be a set of τ vectors in Rd. Then, ∀β > 0, we have

⟨vi,vj⟩ ≤
β

2
∥u∥2 + 1

2β
∥v∥2, (7)

∥vi + vj∥2 ≤ (1 + β)∥vi∥2 +
(
1 +

1

β

)
∥vj∥2, (8)∥∥∥∥∥

τ∑
i=1

vi

∥∥∥∥∥
2

≤ τ

τ∑
i=1

∥vi∥2. (9)

Here, (7) is referred as the Cauchy-Schwarz inequality, (8) and (9) are referred as Young’s inequality.

Additional notation The following notation will be used throughout our proof:
∇F (X) := [∇f1(x1),∇f2(x2), . . . ,∇fn(xn)],

∇Fb(X) := [∇f1(x1),∇f2(x2), . . . ,∇fn(xn)],

∇F (x̄) := [∇f1(x̄),∇f2(x̄), . . . ,∇fn(x̄)],

∇̃bF (x̄) := [∇̃bf1(x̄), ∇̃bf2(x̄), . . . , ∇̃bfn(x̄)],

where x̄ := 1
nX1 with X = [x1,x2, . . . ,xn].

Properties of the mixing matrix We make note of several useful properties of the mixing matrix
in the following lemma.

Lemma 1 Let W be a mixing matrix satisfying Assumption 1 and has spectral gap ρ, then for any
matrix M ∈ Rd×n and m̄ = 1

nM1, we have∥∥MW − m̄1⊤∥∥2
F
=

∥∥MW − m̄1⊤W
∥∥2
F
≤ (1− ρ)

∥∥M − m̄1⊤∥∥2
F
. (10)

In addition, for any γ ∈ (0, 1], the matrix W̃ = I+γ(W −I) satisfies Assumption 1 with a spectral
gap at least γρ.

Proof: The first claim follows from the spectral decomposition of W . Since W is a doubly stochastic
matrix, the largest absolute eigenvalue of W is 1 and the corresponding eigenvector is 1. Let
v2, . . . ,vn be the eigenvectors of W corresponding to the remaining eigenvalues. Then, we have∥∥MW − m̄1⊤∥∥2

F
=

∥∥MW − m̄1⊤W
∥∥2
F
=

r∑
i=1

∥W (mi − m̄i1)∥2 ,
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where the first equality follows from 1⊤W = 1⊤, mi denotes the transpose of i-th row of matrix
M , and m̄i denotes the average of mi. Now we decompose mi − m̄i1 using the eigenvectors of
W . Noting that

1⊤(mi − m̄i1) = 1⊤mi − 1⊤1
1

n
1⊤mi = 0,

and thus we can write

mi − m̄i1 =

n∑
j=2

cjvj

for some {cj}nj=2. Then, we have

∥W (mi − m̄i1)∥2 =

∥∥∥∥∥∥W
n∑

j=2

cjvj

∥∥∥∥∥∥
2

≤ (1−ρ)2
n∑

j=2

c2j ≤ (1−ρ)

n∑
j=2

c2j = (1−ρ) ∥mi − m̄i1∥2 ,

and we conclude the proof of this claim.

For the second claim, recall the fact that if v is an eigenvector of W corresponding to the eigenvalue
λ, then v is also an eigenvector of W̃ with the corresponding eigenvalue (1− γ) + γλ. This claim
follows from simple computation based on this relation. □

A key consequence of gradient tracking Before diving in the proofs of the main theorems, we
record a key property of gradient tracking. Specifically, we have the following lemma.

Lemma 2 If v̄0 = 1
n∇̃bF (X0)1, then for any t ≥ 1, we have

v̄t =
1

n
∇̃bF (Xt)1, (11)

and
x̄t+1 = x̄t − η

n
∇̃bF (Xt)1. (12)

Proof: We first prove (11) by induction. For the base case (t = 0), the relation (11) is obviously true
by the means of initialization. Now suppose that at the t-th iteration, the relation (11) is true, i.e.,

v̄t =
1

n
∇̃bF (Xt)1,

then at the (t+ 1)-th iteration, we have

v̄t+1 =
1

n
V t+11

=
1

n
V t1+

1

n
γGt(W − I)1+

1

n

(
∇̃bF (Xt+1)− ∇̃bF (Xt)

)
1 (13)

=
1

n
V t1+

1

n

(
∇̃bF (Xt+1)− ∇̃bF (Xt)

)
1

=
1

n
∇̃bF (Xt+1)1.

where (13) follows from the update rule of BEER (cf. Line 6), the penultimate line follows from
W1 = 1, and the last line follows from the induction hypothesis at the t-th iteration. Thus the
induction hypothesis is also true at the (t+ 1)-th iteration, and we complete the proof of (11).

For (12), it follows from the update rule of BEER (cf. Line 3) that

x̄t+1 = x̄t +
γ

n
Ht(W − I)1− η

n
V t1

= x̄t − ηv̄t = x̄t − η

n
∇̃bF (Xt)1,

where the second line uses W1 = 1 and (11). □
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D.2 Recursive relations of main errors

As mentioned previously, the proof is centered around controlling the following set of errors which
we repeat below for convenience (cf. (5)),

(compression approximation error:) Ωt
1 = E

∥∥Ht −Xt
∥∥2
F
, Ωt

2 = E
∥∥Gt − V t

∥∥2
F
,

(consensus error:) Ωt
3 = E

∥∥Xt − x̄t1⊤∥∥2
F
, Ωt

4 = E
∥∥V t − v̄t1⊤∥∥2

F
,

(gradient norm:) Ωt
5 = E

∥∥v̄t
∥∥2 .

In particular, we aim to build a set of recursive relations of Ωt
1 to Ωt

4, which will be specified in the
following lemma.

Lemma 3 Suppose Assumptions 1, 2 and 3 hold, then for any t ≥ 0, we have

Ωt+1
1 ≤

(
1− α

2
+

6γ2C

α

)
Ωt

1 + 0 · Ωt
2 +

6γ2C

α
Ωt

3 +
6η2

α
Ωt

4 +
6nη2

α
Ωt

5, (14a)

Ωt+1
2 ≤ 18γ2CL2

α
Ωt

1 +

(
1− α

2
+

6γ2C

α

)
Ωt

2 +
18γ2CL2

α
Ωt

3

+
6γ2C + 18L2η2

α
Ωt

4 +
18L2η2n

α
Ωt

5 +
12nσ2

bα
, (14b)

Ωt+1
3 ≤ 6γC

ρ
Ωt

1 + 0 · Ωt
2 +

(
1− γρ

2

)
Ωt

3 +
6η2

γρ
Ωt

4 + 0 · Ωt
5, (14c)

Ωt+1
4 ≤ 18γCL2

ρ
Ωt

1 +
6γC

ρ
Ωt

2 +
18γCL2

ρ
Ωt

3

+

(
1− γρ

2
+

18L2η2

γρ

)
Ωt

4 +
18nη2L2

γρ
· Ωt

5 +
12nσ2

bγρ
, (14d)

where
C = ∥W − I∥2 = σmax(W − I)2 (15)

is the square of the maximum singular value of the matrix W − I .

Note that the eigenvalues of W and I all lies in [−1, 1], and thus clearly C ≤ 4.

Proof: We will establish the inequalities in (14) one by one.

Bounding Ωt
1 in (14a) First from the update rule of BEER (cf. Line 5), we have∥∥Ht+1 −Xt+1

∥∥2
F
=

∥∥Ht + C(Xt+1 −Ht)−Xt+1
∥∥2
F

≤ (1− α)
∥∥Xt+1 −Ht

∥∥2
F

≤
(
1− α

2

)∥∥Xt −Ht
∥∥2
F
+

2

α

∥∥Xt+1 −Xt
∥∥2
F
, (16)

where the first inequality comes from the definition of compression operators (Definition 1) and the
second inequality comes from Young’s inequality. It then boils down to bound

∥∥Xt+1 −Xt
∥∥2
F

, for
which we have∥∥Xt+1 −Xt

∥∥2
F

=
∥∥γHt(W − I)− ηV t

∥∥2
F

=
∥∥γ(Ht −Xt)(W − I) + γ(Xt − x̄t1⊤)(W − I)− ηV t

∥∥2
F

≤ 3γ2C
∥∥Xt −Ht

∥∥
F
+ 3γ2C

∥∥Xt − x̄t1⊤∥∥2
F
+ 3η2

∥∥V t
∥∥2
F

= 3γ2C
∥∥Xt −Ht

∥∥
F
+ 3γ2C

∥∥Xt − x̄t1⊤∥∥2
F
+ 3η2

∥∥V t − v̄t1⊤∥∥2
F
+ 3η2n

∥∥v̄t
∥∥2 , (17)

where in the first line we use the update rule of BEER (cf. Line 3), in the second line we use the
property of the mixing matrix 1⊤W = 1⊤, and in the third line, we apply Young’s inequality (cf. (9)).
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In the fourth line, we use ∥v∥2 = ∥v − v̄1∥2 + nv̄2 for any vector v with an average v̄. Plugging
this back into (16), we get∥∥Ht+1 −Xt+1

∥∥2
F
≤

(
1− α

2
+

6γ2C

α

)∥∥Xt −Ht
∥∥2
F
+

6γ2C

α

∥∥Xt − x̄t1⊤∥∥2
F

+
6η2

α

∥∥V t − v̄t1⊤∥∥2
F
+

6nη2

α

∥∥v̄t
∥∥2 .

Plugging in the definitions of Ωt
i, we obtain (14a).

Bounding Ωt
2 in (14b) Similar to the derivation of (14a), by applying the update rule of Gt in

BEER (Line 8), the definition of compression operators (Definition 1), and Young’s inequality, we
have ∥∥V t+1 −Gt+1

∥∥2
F
=

∥∥Gt + C(V t+1 −Gt)− V t+1
∥∥2
F

≤ (1− α)
∥∥Gt − V t+1

∥∥2
F

≤
(
1− α

2

)∥∥Gt − V t
∥∥2
F
+

2

α

∥∥V t+1 − V t
∥∥2
F
. (18)

It then boils down to bound
∥∥V t+1 − V t

∥∥2
F

. By the update rule of BEER (cf. Line 6), we have∥∥V t+1 − V t
∥∥2
F

=
∥∥∥γGt(W − I) + (∇̃bF (Xt+1)− ∇̃bF (Xt))

∥∥∥2
F

=
∥∥∥γ(Gt − V t)(W − I) + γ(V t − v̄t1⊤)(W − I) + (∇̃bF (Xt+1)− ∇̃bF (Xt)

∥∥∥2
F

(i)

≤ 3γ2C
∥∥Gt − V t

∥∥2
F
+ 3γ2C

∥∥V t − v̄t1⊤∥∥2
F
+ 3

∥∥∥∇̃bF (Xt+1)− ∇̃bF (Xt)
∥∥∥2
F

(ii)

≤ 3γ2C
∥∥Gt − V t

∥∥2
F
+ 3γ2C

∥∥V t − v̄t1⊤∥∥2
F
+ 3

∥∥∇F (Xt+1)−∇F (Xt)
∥∥2
F
+

6nσ2

b
(iii)

≤ 3γ2C
∥∥Gt − V t

∥∥2
F
+ 3γ2C

∥∥V t − v̄t1⊤∥∥2
F
+ 3L2

∥∥Xt+1 −Xt
∥∥2
F
+

6nσ2

b
(iv)

≤ 3γ2C
∥∥Gt − V t

∥∥2
F
+ (3γ2C + 9L2η2)

∥∥V t − v̄t1⊤∥∥2
F

+ 9γ2CL2
∥∥Xt −Ht

∥∥2
F
+ 9γ2CL2

∥∥Xt − x̄t1⊤∥∥2
F
+ 9L2η2n

∥∥v̄t
∥∥2 + 6nσ2

b
,

where (i) comes from Young’s inequality (cf. (9)) and basic facts of matrix norm (cf. (15)), (ii) comes
from the bounded variance assumption (Assumption 3), (iii) comes from the smoothness assumption
(Assumption 2), and (iv) follows from (17). Combining the above inequality with (18), we have∥∥V t+1 −Gt+1

∥∥2
F

≤
(
1− α

2

)∥∥Gt − V t
∥∥2
F
+

2

α

∥∥V t+1 − V t
∥∥2
F

≤
(
1− α

2
+

6γ2C

α

)∥∥Gt − V t
∥∥2
F
+

6γ2C + 18L2η2

α

∥∥V t − v̄t1⊤∥∥2
F

+
18γ2CL2

α

∥∥Xt −Ht
∥∥2
F
+

18γ2CL2

α

∥∥Xt − x̄t1⊤∥∥2
F
+

18L2η2n

α

∥∥v̄t
∥∥2 + 12nσ2

bα
.

Plugging in the definitions of Ωt
i, we obtain (14b).

Bounding Ωt
3 in (14c) To bound the consensus error

∥∥Xt+1 − x̄t+11⊤
∥∥2
F

, by the update rule of
BEER (cf. Line 3), we have∥∥Xt+1 − x̄t+11⊤∥∥2

F

=
∥∥Xt + γHt(W − I)− ηV t − x̄t1⊤ + ηv̄t1⊤∥∥2

F
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(i)
=

∥∥∥XtW̃ − x̄t1⊤ + γ(Ht −Xt)(W − I)− ηV t + ηv̄t1⊤
∥∥∥2
F

(ii)

≤ (1 + β)(1− γρ)
∥∥Xt − x̄t1⊤∥∥2

F
+

(
1 +

1

β

)(
2γ2

∥∥(Ht −Xt)(W − I)
∥∥2
F
+ 2η2

∥∥V t − v̄t1⊤∥∥2
F

)
(iii)

≤
(
1− γρ

2

)∥∥Xt − x̄t1⊤∥∥2
F
+

(
1 +

2

γρ

)(
2γ2

∥∥(Ht −Xt)(W − I)
∥∥2
F
+ 2η2

∥∥V t − v̄t1⊤∥∥2
F

)
(iv)

≤
(
1− γρ

2

)∥∥Xt − x̄t1⊤∥∥2
F
+

(
1 +

2

γρ

)(
2γ2C

∥∥Ht −Xt
∥∥2
F
+ 2η2

∥∥V t − v̄t1⊤∥∥2
F

)
≤

(
1− γρ

2

)∥∥Xt − x̄t1⊤∥∥2
F
+

6γC

ρ

∥∥Ht −Xt
∥∥2
F
+

6η2

γρ

∥∥V t − v̄t1⊤∥∥2
F
,

where (i) follows from the definition W̃ = I + γ(W − I), (ii) follows from applying Young’s
inequality twice and Lemma 1, i.e.∥∥∥XtW̃ − x̄t1⊤

∥∥∥
F
≤ (1− γρ)

∥∥Xt − x̄t1⊤∥∥2
F
,

(iii) follows by choosing β = γρ/2, and (iv) uses the definition of C (cf. (15)). Plugging in the
definitions of Ωt

i, we obtain (14c).

Bounding Ωt
4 in (14d) First, note that∥∥V t+1 − v̄t+11⊤∥∥2

F
=

∥∥V t+1 − v̄t1⊤ + v̄t1⊤ − v̄t+11⊤∥∥2
F

=
∥∥V t+1 − v̄t1⊤∥∥2

F
− n

∥∥v̄t+1 − v̄t
∥∥2

≤
∥∥V t+1 − v̄t1⊤∥∥2

F
.

Thus by the update rule of BEER (cf. Line 6), we have∥∥V t+1 − v̄t+11⊤∥∥2
F

≤
∥∥V t+1 − v̄t1⊤∥∥2

F

=
∥∥∥V t + γGt+1(W − I) + ∇̃bF (Xt+1)− ∇̃bF (Xt)− v̄t1⊤

∥∥∥2
F

=
∥∥∥(V tW̃ − v̄t1⊤) + γ(Gt+1 − V t)(W − I) + (∇̃bF (Xt+1)− ∇̃bF (Xt))

∥∥∥2
F

(i)

≤
(
1− γρ

2

)∥∥V t − v̄t1⊤∥∥2
F
+

(
1 +

2

γρ

)(
2γ2C

∥∥Gt − V t
∥∥2
F
+ 2L2

∥∥Xt+1 −Xt
∥∥2
F
+

4nσ2

b

)
(ii)

≤
(
1− γρ

2

)∥∥V t − v̄t1⊤∥∥2
F
+

6γC

ρ

∥∥Gt − V t
∥∥2
F
+

6L2

γρ

∥∥Xt+1 −Xt
∥∥2
F
+

12nσ2

bγρ

≤
(
1− γρ

2
+

18L2η2

γρ

)∥∥V t − v̄t1⊤∥∥2
F
+

6γC

ρ

∥∥Gt − V t
∥∥2
F

+
18γCL2

ρ

∥∥Xt −Ht
∥∥2
F
+

18γCL2

ρ

∥∥Xt − x̄t1⊤∥∥2
F
+

18nη2L2

γρ

∥∥v̄t
∥∥2 + 12nσ2

bγρ
,

where (i) and (ii) are obtained similarly as the derivation of (14c), and the last line follows from (17).
Thus, we can get (14d) by plugging in the definitions of Ωt

i and conclude the proof. □

D.3 Proof of Theorem 1 and 2

Note that Theorem 2 is a strict generalization of Theorem 1, and thus we will directly prove Theorem
2. This proof makes use of Lemma 2 and Lemma 3, by constructing some proper Lyapunov function
and demonstrate its descending property using a linear system argument, which is also used in, e.g.,
Li et al. [22], Liao et al. [29].
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Step 1: establishing a “descent” property of the function value First, we have the following
inequality captures the “descent” of the function value.

f(x̄t+1)

(i)

≤ f(x̄t)− η
〈
v̄t,∇f(x̄t)

〉
+

η2L

2

∥∥v̄t
∥∥2

= f(x̄t)− η

2

∥∥∇f(x̄t)
∥∥2 − η

2

∥∥v̄t
∥∥2 + η

2

∥∥∇f(x̄t)− v̄t
∥∥2 + η2L

2

∥∥v̄t
∥∥2

= f(x̄t)− η

2

∥∥∇f(x̄t)
∥∥2 + η

2

∥∥∇f(x̄t)− v̄t
∥∥2 − (

η

2
− η2L

2

)∥∥v̄t
∥∥2

(ii)

≤ f(x̄t)− η

2

∥∥∇f(x̄t)
∥∥2 + η

2n2

∥∥∥∇F (x̄t)1− ∇̃bF (Xt)1
∥∥∥2 − (

η

2
− η2L

2

)∥∥v̄t
∥∥2

= f(x̄t)− η

2

∥∥∇f(x̄t)
∥∥2 + η

2n2

∥∥∇F (x̄t)1−∇F (Xt)1
∥∥2 − (

η

2
− η2L

2

)∥∥v̄t
∥∥2

+
η

2n2

∥∥∥∇F (Xt)1− ∇̃bF (Xt)1
∥∥∥2 + η

n2

〈
∇F (Xt)1− ∇̃bF (Xt)1,∇F (x̄t)1−∇F (Xt)1

〉
,

where (i) comes from the L-smooth assumption (Assumption 2), (ii) comes from Lemma 2. Take ex-
pectation on both sides, and using the bounded variance assumption (Assumption 3) and independence
of stochastic samples, we get

Ef(x̄t+1)

≤ Ef(x̄t)− η

2
E
∥∥∇f(x̄t)

∥∥2 + η

2n2
E
∥∥∇F (x̄t)1−∇F (Xt)1

∥∥2 − (
η

2
− η2L

2

)
E
∥∥v̄t

∥∥2 + ησ2

2bn

(i)

≤ Ef(x̄t)− η

2
E
∥∥∇f(x̄t)

∥∥2 + η

2n
E
∥∥∇F (Xt)−∇F (x̄t)

∥∥2
F
−

(
η

2
− η2L

2

)
E
∥∥v̄t

∥∥2 + ησ2

2bn

(ii)

≤ Ef(x̄t)− η

2
E
∥∥∇f(x̄t)

∥∥2 + ηL2

2n
E
∥∥Xt − x̄t1⊤∥∥2

F
−

(
η

2
− η2L

2

)
E
∥∥v̄t

∥∥2 + ησ2

2bn
,

where (i) comes from Young’s inequality, and (ii) comes from the L-smooth assumption (Assumption
2) again. Finally, by substituting definitions of Ωt

3 and Ωt
5, we reach

Ef(x̄t+1) ≤ Ef(x̄t)− η

2
E
∥∥∇f(x̄t)

∥∥2 + ηL2

2n
Ωt

3 −
(
η

2
− η2L

2

)
Ωt

5 +
ησ2

2bn
. (19)

Step 2: constructing the Lyapunov function By representing

Ωt = [Ωt
1 Ωt

2 Ωt
3 Ωt

4]
⊤, (20)

Lemma 3 can be written more compactly as

Ωt+1 ≤


1− α

2 + 6γ2C
α 0 6γ2C

α
6η2

α
18γ2CL2

α 1− α
2 + 6γ2C

α
18γ2CL2

α
6γ2C+18L2η2

α
6γC
ρ 0 1− γρ

2
6η2

γρ
18γCL2

ρ
6γC
ρ

18γCL2

ρ 1− γρ
2 + 18L2η2

γρ


︸ ︷︷ ︸

=:A

Ωt

+


6nη2

α
18L2η2n

α
0

18nη2L2

γρ


︸ ︷︷ ︸

=:b1

Ωt
5 +


0

12n
α
0

12n
γρ


︸ ︷︷ ︸
=:b2

σ2

b
. (21)

Define the Lyapunov function

Φt = Ef(x̄t)− f∗ +
c1L

n
· Ωt

1 +
c2ρ

2

nL
· Ωt

2 +
c3L

n
· Ωt

3 +
c4ρ

2

nL
Ωt

4
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= Ef(x̄t)− f∗ + s⊤Ωt, (22)
where

s =

[
c1L

n

c2ρ
2

nL

c3L

n

c4ρ
2

nL

]
for some constants c1, c2, c3, c4 that will be specified later.

By (21) from Lemma 3 and the descent property (19), we have
Φt+1

= Ef(x̄t+1)− f∗ + s⊤Ωt+1

≤ Ef(x̄t)− f∗ − η

2
E
∥∥∇f(x̄t)

∥∥2 + ηL2

2n
Ωt

3 −
(
η

2
− η2L

2

)
Ωt

5 +
ησ2

2bn
+ s⊤

(
AΩt +Ωt

5b1 +
σ2

b
b2

)
(23)

≤ Φt −
η

2
E
∥∥∇f(x̄t)

∥∥2 − (
η

2
− η2L

2

)
Ωt

5 +
ησ2

2bn
+ (s⊤A− s⊤ + q⊤)Ωt + s⊤(Ωt

5b1 + b2
σ2

b
)

= Φt −
η

2
E
∥∥∇f(x̄t)

∥∥2 + (s⊤A− s⊤ + q⊤)Ωt −
(
η

2
− η2L

2
− s⊤b1

)
Ωt

5 +
( η

2n
+ s⊤b2

) σ2

b
,

where q = [0 0 ηL2

2n 0]⊤. For a moment we assume that there exist some constants
c1, c2, c3, c4 > 0 such that

s⊤(A− I) + q⊤ ≤ 0, (24a)

η

2
− η2L

2
− s⊤b1 ≥ 0, (24b)

leading to

Φt+1 ≤ Φt −
η

2
E
∥∥∇f(x̄t)

∥∥2 + ( η

2n
+ s⊤b2

) σ2

b
≤ Φt −

η

2
E
∥∥∇f(x̄t)

∥∥2 + 36c4σ
2

cγLbα
.

The proof is thus completed by recursing the above relation over t = 0, . . . , T − 1.

Step 3: verifying (24) It boils down to verify (24) is feasible, and it is equivalent to verify there
exist parameters c1, c2, c3, c4, γ, η > 0 satisfying the following matrix inequality:[

I −A⊤

−b1

]
diag

[
L

n
,
ρ2

nL
,
L

n
,
ρ2

nL

]c1c2c3
c4

 ≥
[

q
η2L
2 − η

2

]
.

Note that by choosing γ = cγρα, η = cηγρ
2/L, and setting cγ ≤ 1

6
√
C

and cη ≤ 1
9 , we get

1− α

2
+

6γ2C

α
≤ 1− α

4
, 1− γρ

2
+

18L2η2

γρ
≤ 1− γρ

4
. (25)

Now, it suffices to show that there exist c1, c2, c3, c4, cγ , cη > 0 such that the following inequalities
are satisfied:

αL
4n − 18c2γαρ

4L

n − 6cγαL
n − 18Ccγαρ

2L
n

0 αρ2

4nL 0 − 6Ccγαρ
2

nL

− 6cγργCL
n − 18cγργL

n
γρL
2n − 18CγρL

n

− 6c2ηcγγρ
3

nL − 6Cγρ3(1+3c2ηρ
4)

nL − 6c2ηγρ
3

nL
γρ3

4nL
−12cηcγρ

3 η
2 −36cηcγρ

5 η
2 0 −36cηρ

η
2


c1c2c3
c4

 ≥


0
0

cηγρL
2n
0(

cηcγαρ
3 − 1

)
η
2

 .

Given α ≤ 1, ρ ≤ 1, this can be further reduced to show the existence of c1, c2, c3, c4, cγ , cη > 0
such that 

1 −72Cc2γ −24Ccγ −72Ccγ
0 1 0 −24Ccγ

−12Ccγ −35Ccγ 1 −36C
−24c2ηcγ −24cγ(1 + 3c2η) −24c2η 1
−12cηcγ −36cηcγ 0 −36cη


c1c2c3
c4

 ≥


0
0
cη
0

−1 + cηcγ

 .

This can be easily verified by noting that as long as cη and cγ are set sufficiently small, it is
straightforward to find feasible c1, c2, c3, c4.
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D.4 Proof of Theorem 3 and 4

Since Theorem 4 is a generalization of Theorem 3, it suffices to directly prove Theorem 4. The proof
strategy of Theorem 4 is similar to that of Theorem 2. However, in order to achieve the advertised
linear convergence rate under the PL condition (Assumption 4), we need to use a slightly different
linear system.

Denote κ := L/µ. Taking the same Lyapunov function Φt in (22), by the same argument of
Section D.3 up to (23), we have

Φt+1

≤ Ef(x̄t)− f∗ − η

2
E
∥∥∇f(x̄t)

∥∥2 + ηL2

2n
Ωt

3 −
(
η

2
− η2L

2

)
Ωt

5 +
ησ2

2bn
+ s⊤

(
AΩt +Ωt

5b1 +
σ2

b
b2

)
≤ (1− ηµ)(Ef(x̄t)− f∗) + (s⊤A+ q⊤)Ωt −

(
η

2
− η2L

2
− s⊤b1

)
Ωt

5 +
( η

2n
+ s⊤b2

) σ2

b

= (1− ηµ)Φt +
(
s⊤A− (1− ηµ)s⊤ + q⊤)Ωt −

(
η

2
− η2L

2
− s⊤b1

)
Ωt

5 +
( η

2n
+ s⊤b2

) σ2

b
,

where q = [0 0 ηL2

2n 0]⊤, and the second inequality follows from the PL condition (Assumption
4). If we can establish that there exist there exist some constants c1, c2, c3, c4 such that

s⊤(A− (1− ηµ)I) + q⊤ ≤ 0, (26a)

η

2
− η2L

2
− s⊤b1 ≥ 0, (26b)

we arrive at

Φt+1 ≤ (1− ηµ)Φt +
( η

2n
+ s⊤b2

) σ2

b
≤ (1− ηµ)Φt +

36c4σ
2

cγLbα
.

Recursing the above relation then complete the proof.

It then boils down to establish (26). By similar arguments as Section D.3, in view of (25) and
α ≤ 1, ρ ≤ 1, it is sufficient to show there exist constants c1, c2, c3, c4, cγ , cη > 0 such that

1− 4cηcγ
κ −72Cc2γ −24Ccγ −72Ccγ

0 1− 4cηcγ
κ 0 −24Ccγ

−12Ccγ −35Ccγ 1− 2cη
κ −36C

−24c2ηcγ −24cγ(1 + 3c2η) −24c2η 1− 4cη
κ

−12cηcγ −36cηcγ 0 −36cη


c1c2c3
c4

 ≥


0
0
cη
0

−1 + cηcγ

 .

This can be easily verified by noting that as long as cη and cγ are set sufficiently small, it is
straightforward to find feasible c1, c2, c3, c4.
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