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Motivation

• Most current approaches to integrating topological information into machine
learning implicitly map persistence diagrams to a Hilbert space, resulting in
deformation of the underlying metric structure whilst also generally requiring
prior knowledge about the true topology of the space.

• In this paper we give an algorithm for Fuzzy c-Means (FCM) clustering directly
on the space of persistence diagrams, enabling unsupervised learning that au-
tomatically captures the topological structure of data, with no prior knowledge
or additional processing of persistence diagrams.

• We prove the same convergence guarantees as traditional FCM clustering: every
convergent subsequence of iterates tends to a local minimum or saddle point.

• We run experiments where the fuzzy nature of our topological clustering is cap-
italised on: lattice structure classification in materials science and pre-trained
model selection in machine learning.

Fuzzy clustering persistence diagrams

We extend the FCM algorithm originally proposed by [1]. Our rjk is the same as
traditional FCM clustering, adapted with the Wasserstein distance. That is,

rjk =

(
c∑

l=1

W2(Mk,Dj)

W2(Ml,Dj)

)−1

. (1)

To update Mk, we compute the weighted Fréchet mean D̂ of the persistence
diagrams {Dj}nj=1 with the weights {r2

jk}nj=1. Specifically,

Mk ←− arg min
D̂

n∑
j=1

r2
jkW2(D̂,Dj)

2, for k = 1, . . . , c. (2)

As the weighted Fréchet mean extends weighted centroids to general metric
spaces, this gives our fuzzy cluster centres. By alternatively updating (1) and
(2) we get a sequence of iterates. Theorem 1 provides the same convergence
guarantees as traditional FCM clustering.

Theorem 1. Every convergent subsequence of the sequence of iterates obtained
by alternatively updating membership values and cluster centres with (1) and
(2) tends to a local minimum or saddle point of the cost function J(R,M) =∑n

j=1

∑c
k=1 r

2
jkW2(Mk,Dj)

2.

Computing the weighted Fréchet mean

Turner et al. [2] give an algorithm for the computation of Fréchet means. We
extend their algorithm and proof of convergence to the weighted case.

We start by finding matched points[
x

(i)
j

]m
i=1
←− Hungarian(Mk,Dj), for each j = 1, . . . , n. (3)

Partition 1, . . . , n into the indices of the off-diagonal points J
(i)
OD and the indices

of the diagonal points J
(i)
D . If J

(i)
OD = ∅, then y(i) is a copy of the diagonal.

Otherwise, let w be the weighted mean of the off-diagonal points and w∆ be the
point on the diagonal closest to w. Then our update is
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, for i = 1, . . . ,m. (4)

We alternate between (3) and (4) until the matching remains the same. Theorem
2 proves that this algorithm converges to a local minimum of the Fréchet function.

Theorem 2. Given diagrams Dj, membership values rjk, and the Fréchet function
F (D̂) =

∑n
j=1 r

2
jkW2(D̂,Dj)

2, then Mk = {y(i)}mi=1 is a local minimum of F if
and only if there is a unique optimal pairing from Mk to each of the Dj and each
y(i) is updated via (4).

Experiments: Synthetic data

Figure 1: Given datasets with zero, one, or two holes (left), we cluster their persistence diagrams
(middle), resulting in cluster centres (right) with zero, one, or two off-diagonal points: our cluster
centres reflect the topology of the datasets.

Experiments: Lattice structures

Figure 2: Our algorithm is able to cluster transformed carbon allotropes (left two) and FCC/BCC
structures (right two) from materials science where comparable Wasserstein barycentre clustering
algorithms fail.

A key property for machine learning in materials science has been identified as
“invariance to the basis symmetries of physics [...] rotation, reflection, transla-
tion” [3]. The properties of persistence diagrams mean that we can successfully
cluster the atomic coordinates derived from the same base unit-cell regardless of
the transformations applied to the coordinate system, fulfilling the key property
identified above.

Experiments: Decision boundaries

We cluster the 1-persistence diagram of the decision boundaries of models and
tasks. Our clustering successfully captures information about the performance of
a model on potentially unseen tasks.
Table 1: Performance increase/decrease over average task performance when using learnt fuzzy
membership values for model selection. The increase in performance demonstrates that our fuzzy
clustering automatically clusters models near tasks they perform well on.

Performance change vs random model selection (%)

Top-3 Top-2 Top-1

MNIST +6.17±2.18 +10.81±1.88 +20.88±4.08

FashionMNIST +16.46±4.00 +21.94±4.73 +23.30±8.72

Kuzushiji +6.61±1.78 +11.18±2.45 +21.89±5.54
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