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ABSTRACT

High-quality data plays an indispensable role in the era of large models, but the
use of unauthorized data for model training greatly damages the interests of data
owners. To overcome this threat, several unlearnable methods have been pro-
posed, which generate unlearnable examples (UEs) by compromising the training
availability of data. Clearly, due to unknown training purposes and the powerful
representation learning capabilities of existing models, these data are expected to
be unlearnable for models across multiple tasks, i.e., they will not help improve
the model’s performance. However, unexpectedly, we find that on the multi-task
dataset Taskonomy, UEs still perform well in tasks such as semantic segmentation,
failing to exhibit cross-task unlearnability. This phenomenon leads us to question:
How far are we from attaining truly unlearnable examples? We attempt to answer
this question from the perspective of model optimization. To this end, we observe
the difference in the convergence process between clean and poisoned models us-
ing a simple model architecture. Subsequently, from the loss landscape we find
that only a part of the critical parameter optimization paths show significant dif-
ferences, implying a close relationship between the loss landscape and unlearn-
ability. Consequently, we employ the loss landscape to explain the underlying
reasons for UEs and propose Sharpness-Aware Learnability (SAL) to quantify the
unlearnability of parameters based on this explanation. Furthermore, we propose
an Unlearnable Distance (UD) to measure the unlearnability of data based on the
SAL distribution of parameters in clean and poisoned models. Finally, we con-
duct benchmark tests on mainstream unlearnable methods using the proposed UD,
aiming to promote community awareness of the capability boundaries of existing
unlearnable methods.

1 INTRODUCTION

High-quality data is the new oil of our era, giving rise to a series of impressive works such as large
language models (LLMs). In pursuit of the Scaling Law, publicly available but unauthorized data
may be unwittingly used during model training, severely harming the interests of data owners. To
avoid this threat, Unlearnable Examples (UEs) have been proposed, which actively disrupt data us-
ability in training by adding imperceptible perturbations. Existing unlearnable methods have deeply
explored images, rendering unlearnable examples almost unhelpful for training image classification
models and exhibiting single-task unlearnability. However, once data is public or leaked, its train-
ing purpose is unknown, meaning the data may be used to train various models with different tasks,
e.g., semantic segmentation and object detection. However, multi-task unlearnability of UEs has not
only been understudied but also largely overlooked.

Furthermore, we investigate the multi-task unlearnability of unlearnable examples, generated by un-
learnable methods based on proxy models and heuristics. For the former, constructing UEs necessi-
tates model training to identify effective perturbations, such as EM (Huang et al., 2021) In contrast,
heuristic methods introduce specific bias information, assisting the model in finding “shortcuts”
during training and disregarding the data’s inherent features, such as OPS (Wu et al., 2022). Since
heuristic methods primarily cater to classification tasks, we employ the representative unlearnable
methods (EM, OPS and AR) to generate UEs and evaluate the performance gap between its poi-
soned model and clean model under multi-task scenarios, as depicted in Figure 6 in Appendix A.1.
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We also compare the performance of different tasks during EM (Error-Minizing) training, includ-
ing similar tasks and tasks with significant differences. The results show that the EM still fails to
exhibit unlearnability consistent with the nature of the tasks under multi-task scenarios, as shown
in Figure 7 in Appendix A.1. Surprisingly, on the Taskonomy dataset (Zamir et al., 2018), the UEs
generated by existing methods have a minimal negative impact on model performance, suggesting
that existing UEs do not cause model training to fail. In other words, current Unlearnable Examples
have not genuinely achieved multi-task unlearnability. Furthermore, the experimental results also
demonstrate that existing UEs fail in cross-task scenarios (see Appendix A.2). This observation
raises the question: How far are we from attaining truly unlearnable examples?

To answer this question, we need a reasonable metric to evaluate the unlearnability of UEs. Existing
unlearnability evaluation depends on the performance of models after training, for example, the
difference in accuracy between models trained on UEs and clean samples in classification tasks.
However, this metric cannot explain the cause of UEs and relies on the specific form of downstream
tasks. Furthermore, we observed that the model parameters trained on clean datasets have higher
values than those trained on UEs. This implies that with the same model initialization, the parameter
updates of the poisoned models are slower and the magnitude of updates is lower, as shown in
Figure 9 in Appendix A.3. Therefore, unlike existing work, considering that UEs directly impact
the parameter update process during model training, we attempt to assess data unlearnability from
the perspective of model optimization.

As a result, we explore the connection between unlearnability and the training process. First, we
observe the model convergence process on clean samples and UEs through the loss landscape. We
find that only a small number of key parameters exhibit significant differences between the two
models, and these key parameters cannot converge on UEs. This suggests that there is a more
direct connection between parameter updates and unlearnability. We then attempt to describe this
connection, stating that if a sample is unlearnable, the direction of parameter updates should move
along contour lines, or the magnitude of parameter updates should be so small that they are almost
zero, meaning the loss can be considered as not decreasing. In practice, it is difficult for parameters
to update strictly along contour lines, but the latter may be feasible under approximate conditions.
Specifically, if the parameters are in a globally flat area with sparse contour line density, the impact
of parameter updates on the loss is relatively negligible.

Building on this understanding, we propose the Sharpness-Aware Learnability (SAL) metric to char-
acterize the unlearnability of parameters. We conduct experiments in both multi-task and single-task
settings and find that SAL exhibits high consistency with traditional unlearnability metrics (i.e., the
difference of model performance), demonstrating the rationality of SAL. Based on SAL, we fur-
ther introduce Unlearnable Distance (UD) of samples for intuitively comparing the unlearnability
of protected data. Lastly, we benchmark existing methods to reveal the current state of unlearnable
examples. In summary, our contributions can be outlined as follows:

• We are the first to uncover that existing unlearnable methods fail to maintain unlearnability
in multi-task models, thus offering new research directions to enhance the practicality of
unlearnable examples.

• We focus on the training phase instead of simple test accuracy, and put forward an expla-
nation for the effectiveness of unlearnable examples by analyzing the loss landscape. We
further introduce Sharpness-Aware Learnability (SAL) and Unlearnable Distance (UD) as
metrics for measuring the unlearnability of model parameters and data, respectively.

• Utilizing the proposed UD, we benchmark existing unlearnable methods and provide a
more intrinsic tool for evaluating UEs. Our approach ascertains the gap between existing
research efforts and the truly UEs while encouraging the development of more practical
unlearnable methods from a novel perspective.

2 RELATED WORK

Unlearnable Examples. Data poisoning techniques that introduce perturbations to the entire train-
ing dataset, referred to as “unlearnable datasets” or simply “poisons”, are also known as availability
attacks (Fowl et al., 2021; Yu et al., 2022), generalization attacks (Yuan & Wu, 2021), delusive at-
tacks (Tao et al., 2021), or unlearnable examples (Huang et al., 2021). In this study, unlearnable
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datasets are considered defensive measures, as their primary purpose is to prevent the exploitation
of data. Conversely, attempting to learn from unlearnable datasets is regarded as an attack.

Unlearnable datasets are generated by applying perturbations to clean samples while ensuring that
the labels are unchanged. All methods for crafting UEs aim to address the following bi-level maxi-
mization problem:

max
δ∈∆

E(x,y)∼Dtest [L(f(x), y; θ(δ))], (1)

θ(δ) = argmin
θ

E(xi,yi)∼Dtrain [L (f (xi + δi) , yi; θ)] . (2)

Equation 2 describes the process of training a model on unlearnable data, where θ denotes the model
parameters. Equation 1 states that the unlearnable data should be chosen so that the trained network
has high test loss, and thus fails to generalize to the test set.

Existing Explanations. There are multiple explanations for why unlearnable datasets hinder the
generalization of networks on test sets: error-minimizing perturbations lead to overfitting (Huang
et al., 2021), error-maximizing noise promotes the learning of non-robust features (Fowl et al.,
2021), convolutional layers are receptive to autoregressive patterns (Sandoval-Segura et al., 2022b).
These various explanations stem from different optimization objectives and theories. However, the
predominant explanation is provided by (Yu et al., 2022), who discover nearly perfect linear sepa-
rability of perturbations across all considered unlearnable datasets. They propose that unlearnable
datasets introduce learning shortcuts as a result of the linear separability of perturbations. How-
ever, existing explanations treat the model trained on UEs as a whole and focus only one-sidedly
on its accuracy on a clean test set, in addition to the fact that existing explanations have difficulty
explaining why UEs fail in multi-task scenarios. In addition, some studies have revealed that UEs
tend to exhibit a high peak accuracy and lower final accuracy on test dataset of classification tasks
(Sandoval-Segura et al., 2022a; Zhu et al., 2024). However, since learning is a dynamic process
that is only completed during the training phase, it is challenging and even wrong to discern the
underlying reasons for the fluctuation in accuracy numbers. To truly understand the inherence and
impact of unlearnability, one must focus on the training process itself.

Loss Landscape Sharpness. The notion of the loss landscape sharpness and its connection to
generalization has been extensively studied, both empirically (Keskar et al., 2016; Jiang et al.,
2019; Neyshabur et al., 2017; Li et al., 2018) and theoretically (Dziugaite & Roy, 2017). These
studies have motivated the development of methods (Chaudhari et al., 2019) that aim to improve
model generalization by manipulating or penalizing sharpness. Among these methods, Sharpness-
Aware Minimization (SAM) (Foret et al., 2020; Andriushchenko & Flammarion, 2022; Wen et al.,
2022) has shown to be highly effective and scalable for DNNs across various tasks (Li et al., 2024).
The loss landscape helps illustrate how training data is learned. Similarly, it can be employed to
demonstrate how UEs are unlearned. In this paper, we start from loss landscape analysis and then
borrow the use of sharpness to explain unlearnability.

3 SHARPNESS-AWARE UNLEARNABILITY EXPLANATION

3.1 EXPLORATION OF THE MODEL OPTIMIZATION PROCESS

Experimental Setting. For the toy classification task, we employ a single-layer linear layer as
the classification model with input and output dimensions of (12, ) and (10, ), respectively. We
manually construct a dataset containing 5,000 samples and 10 classes using the make classification
method in the scikit-learn library. We utilize CrossEntropy as the discriminator and SGD (with a
learning rate of 0.1) as the optimizer. We train for 10 epochs and collect trajectories for plotting
the loss landscape every 5 steps. For MNIST, we train a classifier using LeNet-5, with the same
discriminator and optimizer (with a learning rate of 0.001 and momentum of 0.9). For both datasets,
we employ OPS to generate class-wise perturbations to construct UEs.

Visulization of Loss Landscape. The parameters in DNNs are very high dimensional and there are
a lot of nonlinearities involved, making it hard to imagine what is going on during the optimization.
While much work has studied the loss landscape of deep networks in vanilla training, there has been
little discussion of poisoning training, especially for training on UEs. Here we study the difference
between the loss landscapes of the vanilla and poisoning training and the convergence trajectories
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of the models. Note that the two parameters that need to be chosen for 2D loss landscape plotting to
estimate the effect of overall model parameter changes on loss is difficult because DNNs often have
millions of parameters. Therefore, the fewer model parameters, the more accurate the estimation,
and the 2D loss landscape and convergence trajectories can better reflect the actual training process.
Furthermore, when there are only two parameters, the loss landscape can fully and accurately repre-
sent the training process. However, this extreme case is not suitable for poison training. Therefore,
we choose a single linear layer classifier with parameter dimensions of (12,10) to balance the re-
quirements of the model’s ability to learn effectively under regular training settings and the potential
interference between an excessive number of parameters.
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Figure 1: Optimization in loss landscape of training process on Toy Classification task. We use PCA
for dimensionality reduction and the x, y-axis are selected Top 2 parameters. The training campaign
of the model on UEs tends to take detours rather than shortcuts to the target minimum. However,
only very few parameters converge in line with the model performance. For ease of comparison,
we employ the same colour bars in all figures. The fewer contour lines in the bottom two figures
are due to the loss fluctuations being significantly lower than those in the top two figures. Refer to
Appendix A.5 for loss landscape on MNIST dataset and more details of PCA.

To better demonstrate the degree of influence of different parameters on model convergence during
model optimization, we use principal component analysis (PCA) on the optimization path and get
the top 2 components (parameters) to visualize the loss over the 2 orthogonal directions with the
most variance, as well as to choose the 3rd and 4th components, respectively. In Figure 1, we
use a simple linear classification task with a very small number of parameters to show how UEs
work. For a real-world scenario, we adopt MNIST as datasets for image classification task and the
corresponding visualization is shown in Figure 10 in Appendix A.5. There are two conclusions that
can be drawn from these loss landscape visualizations. Firstly, the model trained on UEs initially
approaches the global optimum and then gradually deviates, indicating that the model is not yet fully
affected by UEs during the early stages of poison training. This is consistent with our experimental
results in Section 3.3. The second is that various parameters have varying levels of importance in
model training. This leads us to speculate that only a few key parameters in DNNs undergo normal
“learning” and updating during the training campaign. In simpler terms, a small subset of parameters
significantly influences the model’s ability to learn when trained on UEs, whereas most secondary
parameters do not undergo normal “learning”. Hence, we suppose that the abnormal updates of key
parameters reflect this unlearnability of models, and unlearnable perturbations to the samples make
it difficult to update the parameters properly. The evaluation of UEs should take into account the
updates of model parameters, rather than solely relying on simple test accuracy.
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3.2 UNVEILING THE RELATIONSHIP BETWEEN LOSS LANDSCAPE AND UNLEARNABILITY

The loss landscape provides an intuitive visualization of the model’s optimization trajectory, illus-
trating how training data is learned. Similarly, it can be employed to demonstrate how UEs are
unlearned. Hence, we propose to explore the relationship between Loss Landscape and unlearn-
ability. If a sample is unlearnable, it needs to satisfy one of the following two conditions: (1) the
parameter update direction moves along the contour lines; (2) the parameter update magnitude is
small enough so that the training loss barely changes. Implementing the first condition is quite chal-
lenging, as parameters are usually updated in a direction perpendicular to the gradient. Therefore,
we need to strive to satisfy the second condition as much as possible.

As shown in Figure 2(a), we display two regions with dense and sparse contour lines, respectively.
When the parameters are in the flat area of the loss landscape, the change in loss after the parameter
update is minimal, presenting a performance similar to the second condition. In contrast, in the
steep area, even small parameter updates can cause the loss to decrease rapidly. Thus, we believe
that the steepness of the loss landscape can reflect the unlearnability of UEs. In Figure 2(b), within a
certain range of parameter updates, the fluctuations in loss in the flat area are relatively small, which
inspired us to propose Sharpness-Aware Learnability. Our focus is on the relationship between the
fluctuation of loss within a certain region and the perturbation of parameters. When training on UEs,
the optimization direction should be as tangential to the gradient direction as possible, rather than in
the opposite direction as with adversarial examples, to ensure that no useful information is learned.

(a) (b)

Figure 2: (a) Training loss landscape of ResNet-46. It is more difficult for the model to converge
to the target optimal point in flatten regions (lower SAL) for the same step size compared to sharp
regions. (b) When the neighborhood is flatter, the smaller the SAL of the model parameters is,
meaning that it is difficult for the model to escape from the local minima because this requires more
steps compared to when it is in a sharp neighborhood.

3.3 SAL FOR SINGLE-TASK SCENARIOS

Definition 1 (Sharpness-Aware Learnability, SAL). Inspired by (Zhu et al., 2023), in this work,
we define the Sharpness-Aware Learnability of layer parameters of model trained on particular
dataset as SAL. Given a weight perturbation scaling factor ϵ > 0 and a neural network θ, the SAL
of layer parameters θl at training epoch t is defined as:

SAL (θl, ϵ, t) = max
∥v∥p≤ϵ

|L(θl + v;Dtr)− L (θl;Dtr)| , (3)

where θ is a l-layer DNN and θl is the l-th layer parameters. v is the perturbation of θl, and
the parameters of the remaining layers are temporarily frozen. The target training loss (e.g. cross-
entropy) is denoted by L. ∥ · ∥p ≤ ϵ is denoted as the ℓp norm. Dtr denotes the training dataset.

Considering that all current unlearnable methods target a single task (e.g. image classification), we
first focus on monitoring SAL on a single task, as well as explaining why SAL is a better explanation
of why and how existing unlearnable methods work.
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Figure 3: Most parameters in the model trained on UEs exhibit a low SAL (except for TAP, which is
considered as adversarial examples), while a small number of parameters on clean training maintain
a relatively high SAL (darker green and larger SAL). This suggests that UEs exert unlearnability by
reducing the SAL of the parameters. Results on other UEs are in Figure 11 in Appendix A.6

Experimental Setting. Unless stated separately, all experiments in our graphical results are on
CIFAR-10 (Krizhevsky et al., 2009) trained with ResNet18 (He et al., 2016). We generate sample-
wise perturbations for all the UEs mentioned except for OPS and we follow their default generating
setting. We limit the perturbation budget to ℓ∞ = 8/255. After generating the poisoned dataset, the
model is randomly initialized and re-trained from scratch, via SGD for 100 epochs with an initial
learning rate of 0.1 and decay by 0.1 by default. For SAL searching, we set ∥ · ∥p = ∥ · ∥2 and
ϵ = 0.05, the iterative step for optimizing v is 10.

Figure 3 shows the visualization of SAL of different layer parameters as training proceeds, visual-
ization on more UEs is shown in Figure 11. We observe that models trained on unlearnable datasets
have a lower SAL compared to those trained on vanilla datasets, and the SAL of these parameters
further decreases with training proceeding. Although this generally corresponds to the pattern of
their demonstrated test accuracy, where methods that exhibit lower test dataset accuracy have fewer
unlearnable parameters, there are also exceptions: TAP (Fowl et al., 2021) use adversarial examples
for availability attack and get a significant test accuracy degradation. This helps us to distinguish
which methods truly demonstrate unlearnability and which are simply conventional poisoning at-
tacks. In summary, SAL can better explain the origins and working principles of unlearnability.

3.4 SAL FOR MULTI-TASK SCENARIOS

Background and Experimental Setting. We observe that while existing unlearnable and availabil-
ity attack methods are effective across datasets, model architectures, and training methods, there is
a lack of discussion regarding multi-task scenarios. Intuitively, we believe this is primarily because
most of the current unlearnable data heavily relies on simple features that are easy to learn. Clearly,
class-based features are only applicable to classification tasks and cross-entropy loss. Even those
unlearnable datasets that do not require class features are considered to necessitate the introduction
of shortcuts, but the results in Figure 6 suggest that there are conflicts between shortcuts for different
tasks. In the multi-task learning experiments we train a multi-task model based on ResNet as the
backbone on Taskonomy (Zamir et al., 2018) dataset (we use the tiny split to facilitate the search for
EM perturbations), which includes four tasks (Scene Cls., Keyp.2d, Depth Euc. and Segm.2D ). We
refer to the experimental setup of ModSquad (Chen et al., 2023) and train for 100 epochs.

The unlearnability of EM perturbations during multi-task training is not significant. We believe that
this is largely due to the inherent difficulty of multi-task learning, that is, conflicts between different
tasks naturally exist, and unlearnable perturbations are also limited to this. From the perspective of
loss, for samples in the same batch, whether it is adding perturbations that maximize loss (adversarial
samples) or perturbations that minimize loss (EM), this is more difficult in the multi-task scenario.
In addition, existing unlearnable methods often overlook the discussion of unlearnable perturbation
on complex tasks such as semantic segmentation and depth estimation.

To sum up, the proposed SAL provides a more in-depth analysis of why existing methods fail in
multi-task scenarios. That is, the impact of different task losses on the changes of the same param-
eter is heterogeneous, making it difficult for the parameter to exhibit learnability or unlearnability
simultaneously across different tasks. We provide heat maps of cosine similarity between vectors
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composed of SAL parameters at different layers during training for different tasks in Figure 4. It
can be observed that there is no significant difference in the parameter SAL similarity between tasks
in the vanilla training and EM training. Based on our theory that unlearnability is reflected through
the parameters, this confirms that existing unlearnable methods struggle to demonstrate extensive
unlearnability in multi-task scenarios (Yu et al., 2020).

Scene Cls. 2D Keyp. Depth Euc. 2D-Segm.

Sc
en

e 
Cl

s.
2D

 K
ey

p.
De

pt
h 

Eu
c.

2D
-S

eg
m

.

0.000 0.285 0.263 0.443

0.285 0.000 0.087 0.236

0.263 0.087 0.000 0.145

0.443 0.236 0.145 0.000

Scene Cls. 2D Keyp. Depth Euc. 2D-Segm.

0.000 0.335 0.344 0.484

0.335 0.000 0.128 0.265

0.344 0.128 0.000 0.173

0.484 0.265 0.173 0.000

0.0

0.2

0.4

0.6

0.8

1.0

(a)

Epoch
0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n 
of

 L
ea

rn
ab

le
 P

ar
am

et
er

s

Scene Cls.:1.50
2D Keyp.:1.00

Depth Euc.:1.00

2D-Segm.:0.95

Scene Cls.
2D Keyp.
Depth Euc.
2D-Segm.

(b)

Figure 4: (a) Heat maps of the cosine similarity between vectors composed of SAL parameters for
different tasks. A higher value implies that the unlearnability of the parameters between two tasks is
more consistent during training, while a lower value suggests that the two tasks are more difficult to
exhibit unlearnability simultaneously. Furthermore, we believe that the inherent conflicts present in
multi-task learning are the fundamental cause of the inconsistency in unlearnability. (b) The propor-
tions of learnable parameters for different tasks have significantly different trends in EM training,
and the inconsistency of unlearnability between tasks reveal the great challenge of constructing UEs
under multi-task scenarios. We label the unlearnable distance computed by Equation 5 at the end of
the smoothed line (it is time-consuming to perform SAL analysis for multi-task models).

4 DATA UNLEARNABILITY METRIC: UNLEARNABLE DISTANCE

In this section, we delve further into evaluating the unlearnability of data based on the SAL. Drawing
from the findings in Section 3.1 and Section 3.3, the SAL reflects the learning capacity of model
parameters, meaning that when the SAL is relatively large, the parameter has a significant impact on
the model’s performance. Furthermore, we discovered that an unlearnable dataset leads to training
failure by reducing the SAL of model parameters. In other words, the proportion of parameters with
high SAL can directly indicate the unlearnability of a dataset.

Based on this insight, we propose categorizing parameters into learnable and unlearnable groups
using a threshold according to the SAL. Moreover, we introduce a new metric called unlearnable
distance (UD) to evaluate the unlearnability of various unlearnable methods in specific training set-
tings. This approach allows us to assess the unlearnability of different unlearnable methods without
relying solely on a single test accuracy metric. We made our code publicly available on GitHub†.

Definition 2 (Learnable Threshold, LT). The goal of LT is to distinguish between learnable and
unlearnable parameters, which relies on the SAL of the model parameters during the training pro-
cess of the clean model θc. Considering the diverse density distributions of the SAL, we employ the
K-Means method (Arthur et al., 2007) to segregate the parameters into two categories and choose
the mean value of the cluster centers as the threshold. For the sake of convenience, we utilize β to
represent LT, and its value is determined as follows:

β(T ) =

∑T
t=1

∑2
i κi(SAL(θc, ϵ, t))

2× T
, (4)

where T denotes the number of epochs; κi represents the mean value of the i-th cluster center;
SAL(θc, ϵ, t) refers to the sharpness-aware learnability of the clean model θc at the t-th epoch.

Next, we evaluate the unlearnability of UEs by comparing the changes in the number of learnable
parameters during the training process of the same model architecture on clean samples and UEs.
Figure 5 shows the process used by our threshold to categorize learnable and unlearnable parameters.

† https://github.com/MLsecurityLab/HowFarAreFromTrueUnlearnability.git
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Furthermore, we quantify the proportion of learnable parameters for UEs during training, as depicted
in Figure 13 in Appendix A.7. As expected, we find that the number of learnable parameters for clean
training is significantly higher than for other UEs, which experience a rapid decrease in the number
of learnable parameters from the beginning of training. TAP is an exception, as it is inherently
adversarial examples. It can also be observed that while TAP has a similar number of learnable
parameters to clean training, it is merely continuously learning erroneous features from the data.
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Figure 5: Finding SAL threshold β(T ) to distinguish learnable and unlearnable parameters in model
trained on the vanilla dataset. The learnable parameters of poisoned models are only a small fraction
in the early stages of training and decrease rapidly (except for TAP, which is considered as adver-
sarial examples), which further corroborates our hypothesis regarding the inherent unlearnability of
UEs, suggesting that the learning of part of the model parameters is compromised.

Definition 3 (Unlearnable Distance, UD). Assuming that the clean model and the poisoned model
have the same network architecture, they also possess an equal number of parameters. We measure
the unlearnability of the poisoned model by the ratio of the average learnable parameter quantities
in the poisoned model and the clean model. If the ratio is small, it implies that the UEs contribute
less to model convergence, thereby being closer to the genuine UEs. Conversely, if the ratio is large,
it means that the model converges more normally, without achieving the genuine UEs. Thus, this
distance can be calculated as follows.

UD(θp) =
1
Tp

∑Tp

t λ(SAL(θp, ϵ, t), β(T c))
1
T c

∑T c

t λ(SAL(θc, ϵ, t), β(T c))
, (5)

where T c and T p represent the number of epochs for the training of the clean model and the poisoned
model, respectively. λ(SAL(θ, ϵ, t), β(T c)) denotes the number of learnable parameters in the
model θ at the t-th epoch, i.e., the corresponding SAL is greater than the threshold β(T c).

Algorithm. Here, we provide a complete summary of the process to evaluate the unlearnability of a
UE dataset Dp, as shown in Algorithm 1.

5 BENCHMARKING DATA UNLEARNABILITY

5.1 EXPERIMENTAL SETTING

The basic experimental setup in this section is almost identical to Section 3.3. To demonstrate
the universality of the proposed metrics, we have included the larger-scale dataset CIFAR-100 and
ImageNet (Russakovsky et al., 2015) subset (the first 100 classes, and we center-crop all the images
to 224 ×224) in addition to CIFAR-10. Moreover, we have explored various base model architectures
such as ResNet-50, SENet-18 (Cheng et al., 2016), and ViT, apart from ResNet-18.

In terms of unlearnable methods, we have selected EM (Huang et al., 2021), REM (Fu et al., 2022),
DC (Feng et al., 2019), TAP (Fowl et al., 2021), LSP (Yu et al., 2022), and OPS (Wu et al., 2022)
as exploration models, all of which are representative. We refer to the experimental setup in (Qin
et al., 2023a) to get UEs and implement training and defense setups.
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Algorithm 1 Unlearnable Distance

Input: Poisoned training dataset Dp
tr , Clean training dataset Dc

tr , Poisoned model θp, Clean model θc,
Training epochs T c on clean data, Weight perturbation scaling factor ϵ, Training epochs T p on UEs.
Output: UD(θp)

1: θp ← θ0, θc ← θ0 ▷ Initialization
2: for t in 1, ..., T c do
3: θc(t+ 1)← θc(t)
4: for the l-th layer parameters θc

l in θc do
5: Freeze(θc

i ) ∀i ̸= l
6: SALc(θc

l , ϵ, t)← max∆θl∈Cθ R(θ
c
l +∆θl)−R(θc

l ) ▷ Follow Equation 3
7: end for
8: end for
9: β(T c)← 1

2×Tc

∑Tc

t=1

∑2
i κi(SAL(θc, ϵ, t)) ▷ Calculate Learnable Threshold

10: for t in 1, ..., T c do
11: θp(t+ 1)← θp(t)
12: for the l-th layer parameters θp

l in θp do
13: Freeze(θp

i ) ∀i ̸= l
14: SALp(θp

l , ϵ, t)← max∆θl∈Cθ R(θ
p
l +∆θl)−R(θp

l ) ▷ Follow Equation 3
15: end for
16: end for
17: UD(θp)←

1
Tp

∑Tp

t λ(SAL(θp,ϵ,t),β(Tc))
1

Tc
∑Tc

t λ(SAL(θc,ϵ,t),β(Tc))
▷ Follow Equation 5

5.2 BENCHMARK RESULTS

We consider three factors that influence the unlearnability of UEs, including unlearnable methods,
attack methods on UEs, and model architectures. Additionally, we provide the average number of
learnable parameters per layer as a reference metric, abbreviated as ”#LP.”

Table 1: UD of ResNet-18 trained on UEs constructed on CIFAR-10, CIFAR-100 and ImageNet
subset. Bolded numbers indicate the smallest unlearnable distance, i.e., the best unlearnability.

UNLEARNABLE METHOD
CIFAR-10 CIFAR-100 IMAGENET-100

TEST ACC #LP UD TEST ACC #LP UD TEST ACC #LP UD
VANILLA 94.11 3.32 \ 75.23 2.25 \ 69.13 1.86 \

EM 26.52 0.62 0.187 12.34 0.25 0.111 1.20 0.02 0.011
REM 30.26 1.54 0.464 20.32 2.25 1.000 4.90 2.38 1.280
DC 18.51 1.00 0.301 54.66 2.24 0.996 5.00 3.40 1.828
TAP 29.85 5.44 1.639 33.75 2.73 1.213 1.20 4.22 2.269
LSP 10.23 1.14 0.343 2.15 0.84 0.373 4.40 3.34 1.796
OPS 11.98 0.52 0.157 10.09 0.02 0.009 3.30 2.66 1.430

The impact of different unlearnable methods on UD is shown in Table 1. We find that the ma-
jority of unlearnable methods yield UE samples with relatively low UD, which is consistent with
test accuracy. However, the UD of TAP is significantly greater than 1, implying that the model has
ample learnable parameters. This is consistent with the aforementioned visualization of the SAL
and learnable parameters for TAP, implying that TAP, as an adversarial example, although an effec-
tive availability attack method, are not true UEs. This is because adversarial examples guide the
model away from the correct optimization direction during training. Hence, parameters continue to
update but the model does not converge. This is inconsistent with the rapid reduction and cessation
of learning in the number of learnable parameters observed in models trained on UEs. Addition-
ally, we observe that OPS has a significantly lower UD, even though its test accuracy is not the
lowest. We speculate that this is because the perturbations in OPS contain strong simple features
(more pronounced class-related features), providing a shortcut for model training, leading to a faster
reduction in learnable parameters. Except for EM, all methods have relatively large UD (> 1).
Although the ranking among different methods does not vary significantly from the previous trend
(TAP still has the lowest test accuracy and the largest UD). This implies that the unlearnability of
the same method behaves differently in different datasets, which further corroborates our proposed
opinion that unlearnability cannot be directly linked to test accuracy. Instead, the training environ-
ment and the selected model should be taken into account. This might be because the ImageNet-100
dataset has more abundant features, making it more difficult for the model to learn useful features
from perturbed samples. Nevertheless, we do not believe that shortcut learning can fully explain
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unlearnability, as the shortcut is just one of the factors contributing to the unlearnability of UEs, and
it happens to be the most effective method for classification tasks.

Table 2: UD of ResNet-18 trained on defended UEs. Note that ±values in red or blue indicate
changes in UD relative to predefense.

UNLEARNABLE METHOD
JPEG Adversarial Training UEraser-max MixUp CutOut

#LP UD #LP UD #LP UD #LP UD #LP UD
VANILLA 2.48 0.747 7.14 2.151 4.32 1.301 3.64 1.097 3.72 1.120

EM 1.24 0.373+0.186 0.40 0.120−0.067 0.42 0.127−0.06 1.28 0.386+0.199 1.56 0.470+0.283

TAP 1.66 0.500−1.139 2.92 0.880−0.759 0.81 0.243−1.396 1.92 0.579−1.06 2.01 0.605−1.034

OPS 2.16 0.651+0.494 0.56 0.169+0.012 1.18 0.355+0.198 1.60 0.482+0.325 1.54 0.464+0.307

Benchmark on defended UEs. We calculate UD against 3 state-of-the-art defenses (JPEG com-
pression (Liu et al., 2023), UEraser (Qin et al., 2023b) and adversarial training) and 2 commonly
used data augmentation strategies (MixUP (Zhang, 2017) and CutOut (DeVries, 2017)). The result
is shown in Table 2. With the exception of TAP, most defense methods can increase UD, thereby
disrupting the unlearnability of UEs. Among these defense techniques, JPEG compression performs
the best. As for TAP, since we consider them adversarial examples and not belonging to UEs, these
additional defense perturbations disrupt the adversarial characteristics within the data. Overall, the
effectiveness of the defense further demonstrates the validity of our proposed UD metric.

Table 3: UD of models with different architectures.

MODEL
VANILLA EM TAP OPS

#LP UD #LP UD #LP UD #LP UD
RESNET-18 3.32 \ 0.62 0.187 5.44 1.639 0.52 0.157
RESNET-50 0.69 \ 0.25 0.364 4.17 1.256 1.13 0.340
SENET-18 3.21 \ 0.97 0.302 5.36 1.614 0.82 0.248

VIT 1.15 \ 1.81 1.573 1.94 0.584 2.71 0.818

Benchmark on different model architectures. The impact of different model architectures on
UD is shown in Table 3. We select ResNet series, SENet, and ViT as backbone networks. On
the one hand, we find that different model architectures exhibit considerable differences in UD,
ranging from a minimum of 0.157 to a maximum of 1.639. This suggests that data unlearnability
is model-dependent, rather than solely dependent on the data itself. Furthermore, we find that ViT
has a notably higher UD than other methods. Compared to ResNet and SENet, ViT is generally
regarded as a stronger model architecture. Thus, we can conclude that the larger the number of
model parameters and the stronger the model, the more difficult it is to maintain unlearnability when
training on UEs. For TAP, similar to the discussion above, it exhibits an opposite trend compared to
other UEs, meaning that as the model becomes more complex, the UD value actually decreases.

6 CONCLUSION

In this work, we reveal that existing unlearnable examples do not exhibit the anticipated multi-task
unlearnability, implying that they can still contribute to enhancing the performance of multi-task
models. This finding prompts us to reevaluate the true unlearnability of data. Tackling this issue
from the perspective of model optimization, we propose an explanation method based on the loss
landscape to shed light on the functioning of unlearnable examples. Consequently, we introduce
a metric called Sharpness-Aware Learnability (SAL) to quantify the unlearnability of parameters.
Furthermore, we employ SAL to distinguish between learnable and unlearnable model parameters
and propose the Unlearnable Distance (UD) as a means to quantify data unlearnability. By creating a
benchmark using various unlearnable methods based on the UD metric, we aim to foster community
awareness regarding the effectiveness of existing unlearnable methods.
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A APPENDIX

A.1 VISUALIZATION OF UES UNDER MULTI-TASK SCENARIOS

Please refer to Figure 7 for more details.
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Figure 6: Current UEs fail in multi-task model training with ResNet backbone and Taskonomy
dataset (the task metrics do not show a significant decrease compared to the vanilla training, and
the fluctuation range is even close to random noise). The perturbations of the 4 selected UEs are
considered to have obvious linear separability in classification; yet in multi-task practice, they do
not even succeed in the classification tasks. The results demonstrate that existing UEs struggle to
perform effectively in multi-task scenarios.

Object Class. Scene Class. 2D Keypoints 2D Segm.XX X XXXX ReshadingDepth Euc. X XXX

Task Similarity Tree

Metric Diff
(Error-Min)

-0.00052 0.00030
-0.00424 -0.00041

0.00167-0.00009
0.367960.00083

Figure 7: The visualization of the performance of EM (Error-Minizing) noise under multi-task learn-
ing. The task similarity tree in the figure is derived from Zamir et al. (2018), where X represents
other tasks. The task metric values and connections in the figure represent the impact of perturba-
tions of UEs found through EM training (with the loss function being the sum of the tasks at both
ends of the connection) on vanilla training across tasks of different similarity. It can be observed
from the figure that perturbations found using the EM are difficult to succeed, whether for tasks with
high similarity (Object Class. and Scene Class.) or for tasks with low similarity (Scene Class. and
Reshading). The experimental results imply that the failure of UEs on multi-task learning is not only
due to conflicts between different tasks but may also be because the perturbations are more fragile
than the samples, with fewer distinct features.

A.2 VISUALIZATION OF UES UNDER CROSS-TASK SCENARIOS

Please refer to Figure 8 for more details.

A.3 VISUALIZATION OF THE CUMULATIVE DISTRIBUTION OF MODEL PARAMETERS

Please refer to Figure 9 for more details.
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Figure 8: Difference in model performance between poisoned models (trained on UEs) and clean
models (trained on the vanilla dataset) under cross-task scenarios with ResNet backbone and Taskon-
omy dataset. EM (∗) denotes the Error-Minimizing (Huang et al. (2021)) perturbation using the loss
function of a specific task, whereas All signifies the use of the sum of loss functions from all tasks.
The ↓ following the metric indicates that a lower value corresponds to better model performance.
The results demonstrate that existing UEs struggle to perform effectively in cross-task scenarios.
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Figure 9: Visualization of the CDF of model parameters between clean training and poison training.
It can be clearly seen that the distribution of the parameter values of the model trained on UEs is
smaller than vanilla training.

A.4 DETAILS OF PCA IN VISUALIZING OPTIMIZATION TRAJECTORY

Visualization of loss landscape can help us feel the way of the learning campaign of models ( Li et al.
(2018)). In the high dimensional parameter space, the most straightforward way is to find two direc-
tions to cut through the high dimensional space and visualize loss values over that plane. The path’s
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projection onto the plane spanned by 2 random vectors in high dimensional space will look like a ran-
dom walk because they have a high probability of being orthogonal, and can hardly capture any vari-
ation for the optimization path. Therefore, there are two approaches to better visualize the trajectory
of model optimization. The first approach involves employing PCA along the optimization path to
identify the two most relevant orthogonal directions. The second approach aims to reduce the num-
ber of model parameters as much as possible to compress the dimensionality space. We utilize the
PCA method from the sklearn library, setting n components = min(optim path matrix.shape).
Our findings reveal that whether it is the LeNet-5 trained on the MNIST dataset or a simple classifier
with parameter dimensions of (12,10) trained on a Toy Classification task, the first two parameters
account for over 90% in the PCA analysis. This implies that the relevance of subsequent parameters
is significantly lower, making it challenging to effectively visualize the optimization trajectory.

A.5 VISUALIZATION OF LOSS LANDSCAPE

This is the visualization of the loss landscape of the training process on the naive classification
dataset and MNIST dataset.

(a) Vanilla (MNIST) - Top 2 parameters (b) OPS (MNIST) - Top 2 parameters

(c) Vanilla (Naive Class.) - 3rd&4th parameters (d) OPS (Naive Class.) - 3rd&4th parameters

Figure 10: Optimization in loss landscape of training process on naive classification dataset and
MNIST dataset. We use PCA for dimensionality reduction and the x-axis and y-axis are selected
3rd&4th parameter values.

A.6 VISUALIZATION OF SAL

This is an additional visualization of the results for Figure 3.
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Figure 11: Heat map of SAL variation of model parameters with training epochs.
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Figure 12: Finding SAL threshold β to distinguish learnable and unlearnable parameters on the
vanilla dataset by K-means. The poisoned models have only a small number of learnable parameters
in the early training stage, which quickly diminish as the training proceeds.
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A.7 VISUALIZATION OF LEARNABLE PARAMETERS

This is a visualization of the proportion of learnable parameters under different UEs with SAL
threshold β obtained from Equation 4.

Figure 13: Proportion of learnable parameters under different UEs with SAL threshold β obtained
from Equation 4.
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