
Adaptive Oracle-Efficient Online Learning

Guanghui Wang†, Zihao Hu†, Vidya Muthukumar‡,⋆, Jacob Abernethy†
College of Computing†

School of Electrical and Computer Engineering‡

School of Industrial and Systems Engineering⋆

Georgia Institute of Technology
Atlanta, GA 30339

{gwang369,zihaohu,vmuthukumar8,prof}@gatech.edu

Abstract

The classical algorithms for online learning and decision-making have the ben-
efit of achieving the optimal performance guarantees, but suffer from computa-
tional complexity limitations when implemented at scale. More recent sophisti-
cated techniques, which we refer to as oracle-efficient methods, address this prob-
lem by dispatching to an offline optimization oracle that can search through an
exponentially-large (or even infinite) space of decisions and select that which per-
formed the best on any dataset. But despite the benefits of computational feasi-
bility, oracle-efficient algorithms exhibit one major limitation: while performing
well in worst-case settings, they do not adapt well to friendly environments. In this
paper we consider two such friendly scenarios, (a) “small-loss” problems and (b)
IID data. We provide a new framework for designing follow-the-perturbed-leader
algorithms that are oracle-efficient and adapt well to the small-loss environment,
under a particular condition which we call approximability (which is spiritually re-
lated to sufficient conditions provided in (Dudík et al., 2020)). We identify a series
of real-world settings, including online auctions and transductive online classifica-
tion, for which approximability holds. We also extend the algorithm to an IID data
setting and establish a “best-of-both-worlds” bound in the oracle-efficient setting.

1 Introduction

Online learning is a fundamental paradigm for modeling sequential decision making problems (Cesa-
Bianchi & Lugosi, 2006; Shalev-Shwartz, 2011; Hazan, 2016). Online learning is usually formulated
as a zero-sum game between a learner and an adversary. In each round t = 1, . . . , T , the learner
first picks an action xt from a (finite) set X = {x(1), . . . , x(K)} with cardinality equal to K. In
the meantime, an adversary reveals its action yt ∈ Y . As a consequence, the learner observes
yt, and suffers a loss f(xt, yt), where f : X × Y 7→ [0, 1]. The goal is to minimize the regret,
which is defined as the difference between the cumulative loss of the learner

∑T
t=1 f(xt, yt), and

the cumulative loss of the best action in hindsight L∗
T = minx∈X

∑T
t=1 f(x, yt).

A wide variety of algorithms have been proposed for the goal of minimizing worst-case regret
(without any consideration of computational complexity per iteration); see (Cesa-Bianchi & Lu-
gosi, 2006; Shalev-Shwartz, 2011; Hazan, 2016) for representative surveys of this literature. These
algorithms all obtain a worst-case regret bound of the order O(

√
T logK), which is known to be

minimax-optimal (Cesa-Bianchi & Lugosi, 2006). Over the last two decades, sophisticated adaptive
algorithms have been designed that additionally enjoy problem-dependent performance guarantees,
which can automatically lead to better results in friendly environments. One of the most important
example for this kind of guarantees is the so-called “small-loss” bound (Hutter & Poland, 2005;

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Cesa-Bianchi & Lugosi, 2006; Van Erven et al., 2014). Such a bound depends on the best cumula-
tive loss in hindsight (i.e. L∗

T) instead of the total number of rounds (T). Thus, this bound is much
tighter than the worst-case bound, especially when the best decision performs well in the sense of
incurring a very small loss. Another example is the “best-of-both-worlds” bound (Van Erven et al.,
2014), which results in an even tighter regret bound for independent and identically distributed (IID)
loss functions.

However, all of these algorithms applied out-of-the-box suffer a linear dependence on the number of
decisions K. This is prohibitively expensive, especially in problems such as network routing (Awer-
buch & Kleinberg, 2008) and combinatorial market design (Cesa-Bianchi et al., 2014), where the
cardinality of the decision set grows exponentially with the natural expression of the problem. Sev-
eral efficient algorithms do exist, even for uncountably infinite decision sets, when the loss functions
have certain special structure (such as linearity (Kalai & Vempala, 2005) or convexity (Zinkevich,
2003)). However, such structure is often absent in the above applications of interests.

Notice that the efficiency of the above specialized methods is usually made possible by assuming
that the corresponding offline optimization problem (i.e., minimizing the (averaged) loss) can be
solved efficiently. This observation motivates the oracle-efficient online learning problem (Hazan
& Koren, 2016). In this setting, the learner has access to a black-box offline oracle, which, given
a real-weighted dataset S = {(w(j), y(j))}nj=1, can efficiently return the solution to the following
problem:

argmin
x∈X

n∑
j=1

w(j)f(x, y(j)). (1)

The goal is to design oracle-efficient algorithms which can query the offline-oracle O(1) times each
round. Concrete examples of such an oracle include algorithms for empirical risk minimization
(Bishop, 2007), data-driven market design (Nisan & Ronen, 2007), and dynamic programming (Bert-
sekas, 2019).

As pointed out by Hazan & Koren (2016), the design of oracle-efficient algorithms is extremely
challenging and such an algorithm does not exist in the worst case. Nevertheless, recent work
(Daskalakis & Syrgkanis, 2016; Syrgkanis et al., 2016; Dudík et al., 2020) has introduced a series of
algorithms which are oracle-efficient when certain sufficient conditions are met. Among them, the
state-of-the-art method is the generalized-follow-the-perturbed-leader algorithm (GFTPL, Dudík
et al., 2020), which is a variant of the classical follow-the-perturbed-leader (FTPL) algorithm (Kalai
& Vempala, 2005). Similar to FTPL, GFTPL perturbs the cumulative loss of each decision by
adding a random variable, and chooses the decision with the smallest perturbed loss as xt. However,
the vanilla FTPL perturbs each decision independently, which requires to generate K independent
random variables in total. Moreover, the oracle in (1) can not be applied here since as it cannot
handle the perturbation term. To address these limitations, GFTPL only generates a noise vector
of low dimension (in particular, much smaller dimension than the size of the decision set) in the
beginning, and constructs K dependent perturbations based on the multiplication between the noise
vector and a perturbation translation matrix (PTM). Therefore, the PTM critically ensures that the
computational complexity for the noise generation itself is largely reduced. Furthermore, oracle-
efficiency can be achieved by setting the elements in the PTM as carefully designed synthetic losses.
Dudík et al. (2020) show that a worst-case optimal regret bound can be obtained when the PTM is
admissible, i.e., every two rows are substantially distinct. This serves as a sufficient condition for
achieving oracle-efficiency.

While these results form a solid foundation for general worst-case oracle-efficient online learning, it
remains unclear whether problem-dependent, or data-adaptive bounds are achievable in conjunction
with oracle-efficiency. In other words, the design of a generally applicable oracle-efficient and
adaptive online learning algorithm has remained open. In this paper, we provide an affirmative
answer to this problem, and make the following contributions.

• We propose a variant of the GFTPL algorithm (Dudík et al., 2020), and derive a new suf-
ficient condition for ensuring oracle-efficiency while achieving the small-loss bound. Our
key observation is that while the admissibility condition of the PTM in GFTPL success-
fully stabilizes the algorithm (by ensuring that P[xt 6= xt+1] is small), it does not always
enable adaptation. We address this challenge via a new condition for PTM, called approx-
imability. This condition ensures a stronger stability measure, i.e., the ratio of P[xt = x(i)]

2

and P[xt+1 = x(i)] is upper-bounded by a universal constant for any i ∈ [K], which is
critical for proving the small-loss bound. In summary, we obtain the small-loss bound
by equipping GFTPL with an approximable PTM, a data-dependent step-size and Laplace
distribution for the perturbation noise. As a result of these changes, our analysis path dif-
fers significantly from that of Dudík et al. (2020). Our new condition of approximability is
simple and interpretable, and can be easily verified for an arbitrary PTM. It shares both sim-
ilarities and differences from the admissibility condition proposed in Dudík et al. (2020).
We demonstrate this through several examples where one of the sufficient conditions holds,
but not the other.

• We identify a series of real-world applications for which we can construct approximable
PTMs: (a) a series of online auctions problems (Dudík et al., 2020); (b) problems with
a small adversary action space |Y| (Daskalakis & Syrgkanis, 2016); and (c) transductive
online classification (Syrgkanis et al., 2016; Dudík et al., 2020). This is the first-time that
the small-loss bound is obtained in all of these applications. To achieve this, we introduce
novel PTMs and analysis for showing the approximability condition on these PTMs.

• We achieve the “best-of-both-worlds” bound, which enjoys even tighter results when the
data is IID or the number of leader changes is small. The main idea is to combine our pro-
posed algorithm with vanilla FTL leveraging ideas from a meta-algorithm called FlipFlop
introduced in Van Erven et al. (2014).

2 Related Work

Our work contributes to two bodies of work: oracle-efficient online learning and adaptive online
learning. In this section, we briefly review the related work in these areas.

2.1 Oracle-efficient online learning

For oracle-efficient online learning, the pioneering work of Hazan & Koren (2016) points out that
oracle-efficient methods do not exist when dealing with general hostile adversaries, which implies
that additional assumptions on the problem structure have to be made. Daskalakis & Syrgkanis
(2016) consider the setting in which the cardinality of the adversary’s action set Y is finite and small,
and propose to add a series of “fake” losses to the learning history based on random samples from Y .
They prove that for this setting an O(|Y|

√
T) regret bound can be obtained. Syrgkanis et al. (2016)

study the contextual combinatorial online learning problem, where each action is associated with
a binary vector. They make the assumption that the loss function set contains all linear functions
as a sub-class. The approach in Syrgkanis et al. (2016) constructs a set of synthetic losses for
perturbation based on randomly-selected contexts, and achieves worst-case optimal bounds when all
the contextual information can be obtained beforehand, or when there exists a small set of contexts
that can tell each decision apart. Dudík et al. (2020) is the first work to focus on the general non-
contextual setting, and propose the generalized FTPL algorithm. This algorithm generates a small
number of random variables at the beginning, and then perturbs the learning history via the innter
product between the PTM matrix and the random variables. The algorithm can be implemented
efficiently by setting the entries of the PTM as carefully designed loss values. Niazadeh et al.
(2021) consider a more complicated combinatorial setting where the offline problem is NP-hard,
but a robust approximation oracle exists. For this case, they propose an online algorithm based
on a multiplicative approximation oracle, and prove that it has low approximate regret, which is a
measure weaker than regret, since it only compares with a fraction of the cumulative loss of the best
decision in hindsight. Note that none of the aforementioned methods can be easily shown to adapt
to friendly structure in data. Recently, several concurrent works (Block et al., 2022; Haghtalab et al.,
2022a) investigate how to obtain tighter bounds oracle-efficiently in the smoothed-analysis setting
where the distribution of data is close to the uniform distribution (Rakhlin et al., 2011; Haghtalab
et al., 2022b). The main focus is to adapt to the VC dimension of the hypothesis class, rather than
improve the dependence on the number of rounds T .

In this paper, we mainly focus on the so-called the learning with expert advice setting (Cesa-Bianchi
& Lugosi, 2006), where the action set is discrete, and the loss can be highly non-convex. On the other
hand, efficient algorithms can be obtained even for continuous action sets when the loss functions
have certain properties, such as linearity (Kalai & Vempala, 2005; Hutter & Poland, 2005; Awerbuch

3

& Kleinberg, 2008), convexity (Zinkevich, 2003; Hazan et al., 2007) or submodularity (Hazan &
Kale, 2012). Finally, we note that, in this paper we mainly focus on the full-information setting,
where the learner can observe the whole loss function after the action is submitted. Oracle-efficient
online learning has also been widely studied in the contextual bandit setting (Langford & Zhang,
2008; Dudik et al., 2011; Agarwal et al., 2014; Foster et al., 2018; Foster & Rakhlin, 2020). The
nature of the oracle-efficient guarantees for the contextual bandit problem is much weaker compared
to full-information online learning: positive results either assume a stochastic probability model on
the responses given covariates (e.g. Foster et al. (2018); Foster & Rakhlin (2020)) or significantly
stronger oracles than Eq. (1) (e.g. Agarwal et al. (2014)).

2.2 Adaptive online learning

In this paper, we focus on designing oracle-efficient algorithms with problem-dependent regret guar-
antees. Note that this kind of bound can be achieved by many inefficient algorithms in general, such
as Hedge and its variants (Cesa-Bianchi & Lugosi, 2006; De Rooij et al., 2014; Luo & Schapire,
2015), follow-the-perturbed-leader (Kalai & Vempala, 2005; Van Erven et al., 2014) or follow-the-
regularized-leader (Orabona, 2019). Small-loss bounds can also be obtained efficiently when the
loss functions are simply linear (Hutter & Poland, 2005; Syrgkanis et al., 2016). On the other hand,
in online convex optimization, small-loss bounds can be obtained when the loss functions are ad-
ditionally smooth (Srebro et al., 2010; Orabona et al., 2012; Wang et al., 2020). However, these
algorithms heavily rely on the special structure of the loss functions. In this paper, we take the
first step to extend these methods to support the more complicated (generally non-convex) problems
which appear in real-world applications.

Apart from the small-loss, there exist other types of problem-dependent bounds, such as second-
order bound (Cesa-Bianchi et al., 2005; Gaillard et al., 2014), quantile bound (Chaudhuri et al., 2009;
Koolen & Erven, 2015), or parameter-free bound (Luo & Schapire, 2015; Cutkosky & Orabona,
2018). Moreover, advanced adaptive results can also be obtained by minimizing more advanced
performances measures other than regret, such as adaptive regret (Hazan & Seshadhri, 2007; Zhang
et al., 2019), or dynamic regret (Zhang et al., 2018; Zhao et al., 2020). How to obtain these more
refined theoretical guarantees in the oracle-efficient setting remains an interesting open problem.

3 GFTPL with Small-Loss Bound

In this section, we ignore computational complexity for the moment and we provide a new FTPL-
type algorithm that enjoys the small-loss bound. We then show that the proposed algorithm can be
implemented efficiently by the offline oracle in Section 4. Before diving into the details, we first
briefly recall the definition of online learning and regret.

Preliminaries. The online decision problem we consider can be described as follows. In each
round t, a learner picks an action xt ∈ X = [x(1), . . . , x(K)]. After observing the adversary’s
decision yt ∈ Y , the learner suffers a loss f(xt, yt) where the loss function f : X × Y 7→ [0, 1] is
known to the learner and adversary. The regret of an online learning algorithm A is defined as

RA
T := E

[∑T
t=1 f(xt, yt)− L∗

T

]
,

where L∗
T = min

k∈[K]

∑T
j=1 f(x

(k), yj) is the cumulative loss of the best action in hindsight, and the

expectation is taken only with respect to the potentially randomized strategy of the learner.

Our proposed algorithm follows the framework of GFTPL (Dudík et al., 2020). We first briefly
introduce to the intuition behind this method. Specifically, in each round t, GFTPL picks xt by
solving the following optimization problem:

xt = argmin
k∈[K]

∑t−1
j=1 f(x

(k), yj) +
〈
Γ(k), α

〉
,

where α is a N -dimensional noise vector (N � K) generated from a uniform distribution, and Γ(k)

is the k-th row of a matrix Γ ∈ [0, 1]K×N , which is referred to as the perturbation translation matrix
(PTM). Compared to vanilla FTPL, which generates K random variables (one for each expert),

4

GFTPL only generates N random variables, where N is much smaller than K. Each expert is
perturbed by a different linear combination of these random variables based on the PTM Γ. The
results of Dudík et al. (2020) rely on the following assumption on Γ.

Definition 1. (δ-admissibility (Dudík et al., 2020)) Let Γ ∈ [0, 1]K×N be a matrix, and denote Γ(k)

as the k-th row of Γ, and Γ(k,i) the i-th element of Γ(k). Then, Γ is δ-admissible if (a) ∀k, k′ ∈ [K],
∃i ∈ [N], such that Γ(k,i) 6= Γ(k′,i); and (b) ∀i ∈ [N], k, k′ ∈ [K], such that Γ(k,i) 6= Γ(k′,i), then
|Γ(k,i) − Γ(k′,i)| ≥ δ.

The δ-admissibility guarantees that every two rows in Γ are significantly distinct. As pointed out
by Dudík et al. (2020), this is the essential property required by GFTPL, and is used to stabilize the
algorithm in the analysis, i.e., ensuring that P[xt 6= xt+1] is small. However, the adaptive analysis
of inefficient FTPL (Hutter & Poland, 2005) (i.e. using a noise vector of dimension equal to the size
of the decision set) reveals that this type of stability is insufficient. Instead, one needs to control the
following ∀t and ∀i ∈ [K],

P[xt = x(i)]

P[xt+1 = x(i)]
, (2)

the ratio of the probability of picking the i-th decision in two consecutive rounds. We note that
δ-admissibility is not sufficient to ensure this quantity is bounded, as we establish in the following
counter-example lemma. (See Appendix A.1 for proof).
Lemma 1. There is an instance of a δ-admissible Γ, and a sequence {yt : t = 1, 2, . . .}, such that

if we run GFTPL we can have P[xt=x(i)]
P[xt+1=x(i)]

=∞ for some i ∈ [K] and some t > 0.

To address this problem, we propose a new property for Γ. Define B1
γ := {s ∈ RN : ‖s‖1 ≤ γ} as

the ℓ1-ball of size γ.
Definition 2. (γ-approximability) Let Γ ∈ [0, 1]K×N . We say that Γ is γ-approximable if

∀k ∈ [K], y ∈ Y ∃s ∈ B1
γ ∀j ∈ [K] :

〈
Γ(k) − Γ(j), s

〉
≥ f(x(k), y)− f(x(j), y).

It may not be immediately obvious how we arrived at this condition, so let us provide some intuition.
The goal of perturbation methods in sequential decision problems, going back to the early work of
Hannan (1957), is to ensure that the algorithm is “hedging” across all available alternative decisions.
A newly observed data point y may make expert j suddenly look more attractive than expert k, as
we have now introduced a new gap f(x(k), y)−f(x(j), y) in their measured loss values. With this in
mind, we say that Γ is a “good” (i.e. approximable) choice for the PTM, if this gap can be overcome
(hedged) by some small (i.e. likely) perturbation s, so that

〈
Γ(k) − Γ(j), s

〉
makes up the difference.

The inequality makes this property flexible and much easier to satisfy in real-world applications: we
only need the gap approximation from above. Later, we will show that γ-approximability guarantees
the required stability measure in (2), and thus is critical for the small-loss bound.

We want to emphasize two final points. First, the γ-approximability condition is purely for analysis
purposes and we don’t need compute the quantity s in response to y and k. Second, much of
the computational and decision-theoretic challenges rest heavily on the careful design of Γ. The
PTM allows the algorithm to perform the appropriate hedging across an exponentially-sized set of
K experts with only N � K dimensions of perturbation. As we demonstrate in the following
example, we can always construct a γ-approximable Γ, with N = O(logK), but at the expense of
computational efficiency. The proposed Γ will not generally be compatible with the given oracle, in
the sense that the optimization problem underlying GFTPL cannot be written in the form of Eq. (1).
In the next section, we will show how to address this problem via another condition on Γ called
implementablity.

Simple Example For any online learning problem we may construct Γ as follows. Let N :=
dlog2 Ke, and define the kth row Γ(k) to be the binary representation of the index k, with +1/− 1
values instead of 0/1. We claim that this Γ is γ-approximable, for γ = dlog2 Ke. We can satisfy
the condition of Definition 2, by setting s = Γ(k). It is easy to see that for any j 6= k we have〈
Γ(k) − Γ(j), s

〉
=
〈
Γ(k) − Γ(j),Γ(k)

〉
≥ 2 ≥ f(x(k), y) − f(x(j), y), where the last inequality

holds because |f(x(i), y)| ≤ 1 for any i ∈ [K].

5

Algorithm 1 Generalized follow-the-perturbed-leader with small-loss bound
1: Init: Γ ∈ [0, 1]K×N

2: Draw IID vector α = [α(1), . . . , α(N)] ∼ Lap(1)N ; that is, p(α(i)) = 1
2 exp(−|α

(i)|)
3: for t = 1, . . . , T do
4: Set αt ← α

ηt
, where ηt > 0 a parameter computed online

5: Choose xt ← argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +
〈
Γ(k), αt

〉
6: Observe yt
7: end for

Comparison beteeen γ-approximabilty (this paper) and δ-admissibility (Dudík et al., 2020)
We note that, although γ-approximability leads to a much tighter bound, it is not stronger than
δ-admissibility. Instead, they are incomparable conditions. Specifically:

• In Section 4.1 we demonstrate that when Γ is binary, admissibility directly leads to approx-
imability. As shown by Dudík et al. (2020), a binary and admissible Γ exists in various
online auctions problems, including VCG with bidder-specific reserves (Roughgarden &
Wang, 2019), envy-free item pricing (Guruswami et al., 2005), online welfare maximiza-
tion in multi-unit auction (Dobzinski & Nisan, 2010), and simultaneous second-price auc-
tions (Daskalakis & Syrgkanis, 2016). We can directly obtain an approximable Γ in such
cases.

• On the other hand, in problems such as level auction (Dudík et al., 2020), one can construct
both admissible and approximable Γ, although in completely different ways; we discuss
the construction in depth in Section 4.1.

• In section 4.2, we show that, when the adversary’s action space is small, we can always
construct a γ-approximable Γ, while a δ-admissible Γdoes not exist in general.

• In Appendix A.2, we show that in some cases a δ-admissible Γ can be obtained while
γ-approximability cannot be achieved.

Equipped with the γ-approximable PTM, we develop a generalized follow-the-perturbed-leader al-
gorithm with the Laplace distribution for the noise α1 and a time-varying step size, which is summa-
rized in Algorithm 1. This choice of Laplace distribution is significantly different from the choice of
uniform distribution originally used by GTFPL: it turns out that a continuous distribution is required
to satisfy Eq. (2) and thereby the small-loss bound. Note that here we ignored the time complex-
ity and only focus on the regret. We will specify how to construct Γ in the next section. For the
proposed algorithm, we successfully obtain the following stronger stability property.

Lemma 2. Assume Γ is γ-approximable. Let x′
t = argmink∈[K]

∑t
j=1 f(x

(k), yj) +
〈
Γ(k), αt

〉
.

Then in each round t, we have ∀i ∈ [K],

P[xt = x(i)] ≤ exp (γηt)P[x′
t = x(i)].

Note that we replace the term xt+1 in (2) with x′
t, as a time-varying step-size is used. Based on

Lemma 2, we obtain the regret bound of Algorithm 1 as follows.

Theorem 1. Assume Γ is γ-approximable, and let L∗
T = mink∈[K]

∑T
j=1 f(x

(k), yj). Algorithm 1,

with ηt = min

{
1
γ ,

c√
L∗

t−1+1

}
for any c > 0, achieves the following regret bound:

RT ≤

(
4
√
2max{2 lnK,

√
N lnK}

c
+ 2γ

(
c+

1

c

))√
L∗
T + 1

+ 8γ ln

(
1

c

√
L∗
T + 1 + γ

)
+ 2γ2 + 4

√
2max{2 lnK,

√
N lnK}γ.

(3)

1Note that the Laplace distribution is not the unique choice to get the small-loss bound. In Appendix A.5,

we prove that the ℓp perturbation p(α) ∝ exp

{
−
(∑

i |α
(i)|p

) 1
p

}
indeed works for any p ≥ 1.

6

Algorithm 2 Oracle-based GFTPL for the reward feedback
1: Input: Data set Sj , j ∈ [N], that implement a matrix Γ ∈ [0, 1]K×N , η1 = min{ 1γ , 1}.
2: Draw IID vector α = [α(1), . . . , α(N)] ∼ Lap(1)N
3: for t = 1, . . . , T do

4: Choose xt ← argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +
N∑
i=1

α(i)

ηt

 ∑
(w,y)∈Si

w · r(x(k), y)


5: Observe yt
6: Compute L̂∗

t = min
k∈[K]

∑t
j=1 f(x

(k), yj) by using the oracle

7: Set ηt+1 ← min

{
1
γ ,

1√
L̂∗

t+1

}
8: end for

The proof of Lemma 2 and Theorem 1 can be found in Appendix A.3. By setting c = Θ(1), Theorem
1 implies that our proposed algorithm achieves O(max{γ, lnK,

√
N lnK}

√
L∗
T) regret bound.

Comparison to GFTPL (Dudík et al., 2020) The original GFTPL algorithm has an O(Nδ
√
T)

regret bound. For the dependence on T , our O(
√

L∗
T) bound reduces to O(

√
T) in the worst-case,

and automatically becomes tighter when L∗
T is small. On the other hand, for the dependence on other

terms, we note that both N
δ and max{γ, lnK,

√
N lnK} are lower bounded by Ω(lnK), and their

exact relationship depends on the specific problem. In Section 4, we show that for many auction
applications, the two terms are on the same order. Moreover, in cases such as when |Y| is small,

Algorithm 1 with an appropriate c leads to O

(√
L∗
T max{lnK,

√
|Y| lnK}

)
regret bound, while

the regret bound of GFTPL in Dudík et al. (2020) can blow up since δ can be infinitely small.

4 Oracle-efficiency and Applications

In this section, we discuss how to run Algorithm 1 in an oracle-efficient way. Following Dudík et al.
(2020), we introduce the following definition.
Definition 3 (Implementability). A matrix Γ is implementable with complexity M if for each j ∈ [N]
there exists a dataset Sj , with |Sj | ≤M , such that ∀k, k′ ∈ [K],

Γ(k,j) − Γ(k′,j) =
∑

(w,y)∈Sj

w
(
f(x(k), y)− f(x(k′), y)

)
.

Based on Definition 3, it is easy to get the following theorem, which is similar to Theorem 2.10 of
Dudík et al. (2020).
Theorem 2. If Γ is implementable, then Algorithm 1 is oracle-efficient and has a per-round com-
plexity O(T +NM).

In the following sub-sections, we discuss how to construct approximable and implementable Γ ma-
trices in different applications.

4.1 Applications in online auctions

In this part, we apply Algorithm 1 to online auction problems, which is the main focus of Dudík
et al. (2020). To deal with this sort of problems, we first transform Algorithm 1 to online learning
with rewards setting, i.e., in each round t, after choosing xt, instead of suffering a loss, the learner
obtains a reward r(xt, yt) ∈ [0, 1]. For this case, it is straightforward to see that running Algorithm
1 on a surrogate loss f(x, y) = 1 − r(x, y) directly leads to the small-loss bound. To proceed, we
slightly change this procedure and obtain Algorithm 2. The main difference is that, we implement Γ
with the reward function r(x, y), instead of the surrogate loss f(x, y). This makes the construction
of Γ much easier. We have the following regret bound for Algorithm 2.

7

Corollary 1. Let f(x, y) = 1 − r(x, y). Assume Γ is γ-approximable w.r.t. f(x, y) and imple-
mentable with function r(x, y). Then Algorithm 2 is oracle-efficient and achieves the following
regret bound:

RT = E

[
G∗

T −
T∑

t=1

r(xt, yt)

]
= O

(
max

{
γ, lnK,

√
N lnK

}√
T −G∗

T

)
,

where G∗
T = maxi∈[K]

∑T
t=1 r(x

(i), yt) is the cumulative reward of the best expert.

Next, we discuss how to construct the PTM in several auction problems.

Auctions with binary and admissible Γ. As shown by Dudík et al. (2020), in many online auc-
tion problems, such as the Vickrey-Clarkes-Groves (VCG) mechanism with bidder-specific reserves
(Roughgarden & Wang, 2019), envy-free item pricing (Guruswami et al., 2005), online welfare max-
imization in multi-unit auction (Dobzinski & Nisan, 2010) and simultaneous second-price auctions
(Daskalakis & Syrgkanis, 2016), there exists a binary PTM which is 1-admissible and implementable
with N rows where N � K. For these cases, we have the following lemma. The proof is deferred
to Appendix B.1.

Lemma 3. Let Γ ∈ [0, 1]K×N be a binary matrix and 1-admissible, then Γ is N -approximable.

Note that, Γ is binary and 1-admissible, so every two rows of Gamma differ by at least one element.
This means that Γ must, at the very least, include Ω(lnK) columns to encode each row. Combining
this fact with Lemma 3 and Corollary 1, we can obtain an O(N

√
T − L∗

T) bound for all of the above
problems. Compared to the original GFTPL algorithm, our condition leads to a similar dependence
on N and a tighter dependence on T due to the improved small-loss bound. More details about the
aforementioned auction problems and corresponding regret bounds can be found in Appendix B.2.

Level auction The class of level auctions was first introduced by Morgenstern & Roughgarden
(2015), and optimizing over this class enables a (1 − ϵ) multiplicative approximation with respect
to Myerson’s optimal auction when the distribution of each bidder’s valuation is independent from
others. For this problem, the PTM in Dudík et al. (2020) is not easily to be shown approximable. To
address this problem, we propose a novel way of constructing an approximable and implementable
PTM. The key idea is to utilize a coordinate-wise threhold function to implement Γ. Note that this
kind of function can not be directly obtained. Instead, we create an augmented problem with a
surrogate loss to deal with this issue. For level auction with single-item, n-bidders, s-level and m-
discretization level, our method enjoys an O(nsm

√
T − L∗

T) regret bound, which is tighter than
the O(nm2

√
T) (note that s ≤ m) of the original GFTPL both on its dependence on the number of

rounds T and auction parameters n, s,m. Due to page limitations, we postpone the detailed problem
description and proof to Appendix B.3.

4.2 Other applications

Oracle learning and finite parameter space In many real-world applications, such as security
game (Balcan et al., 2015) and online bidding with finite threshold vectors (Daskalakis & Syrgkanis,
2016), the decision set X is extremely large, while the adversary’s action set |Y| is finite and small.
For these problems, we can construct an implementable PTM based the following lemma, whose
proof can be found in Appendix B.4.

Lemma 4. Consider the setting with |Y| = d (d � K), then there exists a 1-approximable and
implementable Γ with d columns and complexity 1.

Combining Lemma 4 and Theorem 1, and configuring c =
√

max{lnK,
√
d lnK}, we observe that

our algorithm achieves a small-loss bound on the order of O(
√
max{lnK,

√
d lnK}

√
L∗
T). On the

other hand, because of the continuity of the loss functions in this setting, a δ-admissible PTM in
general does not exist (as δ may approach 0). Therefore, our proposed condition not only leads to
a tighter bound, but can also solve problems that the original GFTPL (Dudík et al., 2020) can not
handle.

8

Transductive online classification Finally, we consider the transductive online classification prob-
lem (Syrgkanis et al., 2016; Dudík et al., 2020). In this setting, the decision set X consists of K
binary classifiers. In each round t, firstly the adversary picks a feature vector wt ∈ W , where
|W| = m. Then, the learner chooses a classifier xt(·) from X . After that, the adversary reveals the
label yt ∈ {0, 1}, and the learner suffers a loss f(xt, (wt, yt)) = I[xt(wt) 6= yt]. We assume the
problem is transductive, i.e., the learner has access to the adversary’s set of vectors at the beginning.
For this setting, we achieve the following results (the proof is in Appendix B.5).

Lemma 5. Consider transductive online classification with |W| = m. Then there exists a 1-
approximable and implementable PTM with m columns and complexity 1. Moreover, Algorithm 1

with such a PTM and appropriately chosen parameters achieves O(
√

max{lnK,
√
m lnK}

√
L∗
T)

regret.

Negative implementability In the this paper we assume that the offline oracle can solve the min-
imization problem in (1) given any real-weights. In some cases, the oracle can only accept positive
weights. This problem can be solved by constructing negative implementable PTM (Dudík et al.,
2020). In most of the cases discussed above, negative implementable and approximable PTM exist.
This is formally shown in Appendix B.6.

5 Best-of-Both-Worlds Bound: Adapting to IID data

In this section, we switch our focus to adapting between adversarial and stochastic data. While the
GFTPL algorithm enjoys an O(

√
L∗
T)-type regret bound on adversarial data, it is possible to obtain

much better rates on stochastic data. For example, by setting all step sizes ηt as ∞, Algorithm
1 reduces to the classical FTL algorithm, which suffers linear regret in the adversarial setting but
enjoys much tighter bounds when the data is IID or number of leader changes is small. To be more
specific, we introduce the following regret bound for FTL.

Lemma 6 (Lemma 9, De Rooij et al. (2014)). Let xFTL
t = argmini∈[K]

∑t−1
s=1 f(x

(i), ys) be the
output of the FTL algorithm at round t, CT the set of rounds where the leader changes, and δt =
f(xFTL

t , yt)− (L∗
t −L∗

t−1) the “mixability gap”2 at round t. Then for any T ≥ 1, the regret of FTL
is bounded by RFTL

T ≤
∑

t∈CT
δt ≤ |CT |.

Note that since f ∈ [0, 1] and L∗
t − L∗

t−1 ∈ [0, f(xFTL
t , yt)], we know δt ∈ [0, 1]. For the i.i.d case,

if the mean loss of the best expert is smaller than that of other experts by a constant, then due to
the law of large numbers, the number of leader changes would be small, which results in a constant
regret bound (De Rooij et al., 2014).

Our goal is to obtain a "best-of-both-worlds" bound, which can ensure the small-loss bound in
general, while automatically leading to tighter bounds for IID data like FTL. We will now design an
algorithm that achieves such a bound by adaptively choosing between GFTPL and FTL depending on
which algorithm appears to be achieving a lower regret. The essence of this idea was first introduced
in the FlipFlop algorithm (De Rooij et al., 2014), who showed best-of-both-worlds bounds in the
inefficient case. Our contribution in this section is to adapt this idea to the oracle-efficient setting.
Denote UGFTPL

T as the attainable regret bound (as in Theorem 1) for running Algorithm 1 alone and
UFTL
T =

∑
t∈CT

δt to be that of FTL. In the following, we develop a new algorithm and prove that it
is optimal in both worlds, that is, its regret is on the order of O(min{UFTL

T , UGFTPL
T }).

The proposed algorithm, named as oracle-efficient flipflop (OFF) algorithm, is summarized in Algo-
rithm 3. The core idea is to switch between FTL and GFTPL (Algorthm 1) based on the compar-
ison of the estimated regret. We optimistically start from FTL. In each round t, we firstly pick xt

based on the current algorithm Algt, and then obtain the adversary’s action yt (line 2). Next, we
compute the estimated bounds of regret of both algorithms until round t (line 3). Specifically, let
IFTL
t = {i|i ∈ [t],Algi = FTL} and IGFTPL

t = {i|i ∈ [t],Algi = GFTPL} be the set of rounds
up to t in which we run FTL and GFTPL. Then, the estimated regret of FTL in IFTL

t is given by

2Here, we use the special definition of the mixability gap for the FTL algorithm. The details can be found
in the second paragraph, page 1286 of De Rooij et al. (2014).

9

Algorithm 3 Oracle-efficient Flipflop (OFF)
Initialization: Alg1 = FTL

1: for t = 1, . . . , T do
2: Get xt by Algt, observe yt
3: Compute ÛFTL

t and ÛGFTPL
t

4: if Algt == FTL and ÛFTL
t > αÛGFTPL

t then
5: Algt+1 = GFTPL
6: else if Algt == GFTPL and ÛGFTPL

t > βÛFTL
t then

7: Algt+1 =FTL
8: end if
9: Feed yt to Algt+1

10: end for

ÛFTL
t =

∑
i∈IFTL

t
δi, and the estimated regret of GFTPL in IGFTPL

t can be bounded via Theorem 1:

ÛGFTPL
t =

(
4
√
2max{2 lnK,

√
N lnK}+ 4γ

)√
L̂∗
t + 1

+ 8γ ln

(√
L̂∗
t + 1 + γ

)
+ 2γ2 + 4

√
2max{2 lnK,

√
N lnK}γ.

(4)

where L̂∗
t = minx∈X

∑
i∈IGFTPL

t
f(x, yi) and we set c = 1. Note that, the two quantities defined

above are the exact regret upper bounds of the two algorithms on their sub-time intervals up to
round t, due to the fact that the regret bounds provided in Lemma 6 and Theorem 1 are timeless.
Moreover, note that the two values can be computed by the oracle. We compare the estimated regret
of both algorithms, and use the algorithm which performs better for the next round (lines 4-8).

For the proposed algorithm, we have the following theoretical guarantee (the proof can be found in
Appendix C).
Theorem 3. Assume we have a γ-approximable Γ, then Algorithm 3 is able to achieve the following
bound:

ROFF
T ≤ min

{
3UGFTPL

T + 1, 3UFTL
T + τ

}
,

where τ = 4
√
2max{2 lnK,

√
N lnK}+ 12γ and α = β = 1.

The Theorem above shows that the regret of Algorithm 3 is the minimum of the regret upper bounds
of GFTPL and FTL. Thus, it ensures the O(

√
T)-type bound in the worst case, while automatically

achieves the much better constant regret bound of FTL under iid data without knowing the presence
of stochasticity in data beforehand.

6 Conclusion

In this paper, we establish a sufficient condition for the first-order bound in the oracle-efficient
setting by investigating a variant of the generalized follow-the-perturbed-leader algorithm. We also
show the condition is satisfied in various applications. Finally, we extend the algorithm to adapt to
IID losses and achieve a “best-of-both-worlds” bound. In the future, we would like to investigate
how to achieve tighter results for oracle-efficient setting, such as the second-order bound (De Rooij
et al., 2014) and the quantile bound (Koolen & Erven, 2015).

Acknowledgments. We gratefully thank the AI4OPT Institute for funding, as part of NSF Award
2112533. We gratefully acknowledge the NSF for their support through Award IIS-2212182 and
Adobe Research for their support through a Data Science Research Award. Part of this work was
conducted while the authors were visiting the Simons Institute for the Theory of Computing.

References
Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and Schapire, R. Taming the monster: A fast

and simple algorithm for contextual bandits. In Proceedings of the 27th International Conference
on Machine Learning, pp. 1638–1646, 2014.

10

Awerbuch, B. and Kleinberg, R. Online linear optimization and adaptive routing. Journal of Com-
puter and System Sciences, 74(1):97–114, 2008.

Balcan, M.-F., Blum, A., Haghtalab, N., and Procaccia, A. D. Commitment without regrets: Online
learning in stackelberg security games. In Proceedings of the 16th ACM conference on economics
and computation, pp. 61–78, 2015.

Bertsekas, D. Reinforcement learning and optimal control. Athena Scientific, 2019.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2007.

Block, A., Dagan, Y., Golowich, N., and Rakhlin, A. Smoothed online learning is as easy as statisti-
cal learning. arXiv preprint arXiv:2202.04690, 2022.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games. Cambridge University Press,
2006.

Cesa-Bianchi, N., Mansour, Y., and Stoltz, G. Improved second-order bounds for prediction with
expert advice. In Proceedings of the 18th Annual Conference on Learning Theory, pp. 217–232,
2005.

Cesa-Bianchi, N., Gentile, C., and Mansour, Y. Regret minimization for reserve prices in second-
price auctions. IEEE Transactions on Information Theory, 61(1):549–564, 2014.

Chaudhuri, K., Freund, Y., and Hsu, D. J. A parameter-free hedging algorithm. 22, 2009.

Cutkosky, A. and Orabona, F. Black-box reductions for parameter-free online learning in banach
spaces. In Proceedings of the 31st Conference On Learning Theory, pp. 1493–1529, 2018.

Daskalakis, C. and Syrgkanis, V. Learning in auctions: Regret is hard, envy is easy. In The 57th
Annual Symposium on Foundations of Computer Science, pp. 219–228, 2016.

De Rooij, S., Van Erven, T., Grünwald, P. D., and Koolen, W. M. Follow the leader if you can, hedge
if you must. The Journal of Machine Learning Research, 15(1):1281–1316, 2014.

Dobzinski, S. and Nisan, N. Mechanisms for multi-unit auctions. Journal of Artificial Intelligence
Research, 37:85–98, 2010.

Dudik, M., Hsu, D., Kale, S., Karampatziakis, N., Langford, J., Reyzin, L., and Zhang, T. Efficient
optimal learning for contextual bandits. In Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence, pp. 169178, 2011.

Dudík, M., Haghtalab, N., Luo, H., Schapire, R. E., Syrgkanis, V., and Vaughan, J. W. Oracle-
efficient online learning and auction design. Journal of the ACM, 67(5):1–57, 2020.

Foster, D. and Rakhlin, A. Beyond ucb: Optimal and efficient contextual bandits with regression
oracles. In Proceedings of the 37th International Conference on Machine Learning, pp. 3199–
3210. PMLR, 2020.

Foster, D., Agarwal, A., Dudik, M., Luo, H., and Schapire, R. Practical contextual bandits with
regression oracles. In Proceedings of the 35th International Conference on Machine Learning,
pp. 1539–1548, 2018.

Gaillard, P., Stoltz, G., and Van Erven, T. A second-order bound with excess losses. In Proceedings
of the 27th Annual Conference on Learning Theory, pp. 176–196, 2014.

Guruswami, V., Hartline, J. D., Karlin, A. R., Kempe, D., Kenyon, C., and McSherry, F. On profit-
maximizing envy-free pricing. In 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1164–1173, 2005.

Haghtalab, N., Han, Y., Shetty, A., and Yang, K. Oracle-efficient online learning for beyond worst-
case adversaries. arXiv preprint arXiv:2202.08549, 2022a.

Haghtalab, N., Roughgarden, T., and Shetty, A. Smoothed analysis with adaptive adversaries. In
IEEE 62nd Annual Symposium on Foundations of Computer Science, pp. 942–953, 2022b.

11

Hannan, J. Approximation to bayes risk in repeated play. Contributions to the Theory of Games, 3
(2):97–139, 1957.

Hazan, E. Introduction to online convex optimization. Foundations and Trends in Optimization, 2
(3-4):157–325, 2016.

Hazan, E. and Kale, S. Online submodular minimization. In Journal of Machine Learning Research,
volume 13, pp. 2903–2922, 2012.

Hazan, E. and Koren, T. The computational power of optimization in online learning. In Proceedings
of the 48th annual ACM symposium on Theory of Computing, pp. 128–141, 2016.

Hazan, E. and Seshadhri, C. Adaptive algorithms for online decision problems. Electronic Collo-
quium on Computational Complexity, 88, 2007.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2-3):169–192, 2007.

Hutter, M. and Poland, J. Adaptive online prediction by following the perturbed leader. Journal of
Machine Learning Research, 6(22):639–660, 2005.

Kalai, A. and Vempala, S. Efficient algorithms for online decision problems. Journal of Computer
and System Sciences, 71(3):291–307, 2005.

Koolen, W. M. and Erven, T. V. Second-order quantile methods for experts and combinatorial games.
In Proceedings of the 28th Conference on Learning Theory, pp. 1155–1175, 2015.

Langford, J. and Zhang, T. The epoch-greedy algorithm for multi-armed bandits with side informa-
tion. In Advances in Neural Information Processing Systems 20, pp. 817–824, 2008.

Luo, H. and Schapire, R. E. Achieving all with no parameters: Adanormalhedge. In Proceedings of
the 28th Conference on Learning Theory, pp. 1286–1304, 2015.

Morgenstern, J. H. and Roughgarden, T. On the pseudo-dimension of nearly optimal auctions. Ad-
vances in Neural Information Processing Systems 28, 2015.

Niazadeh, R., Golrezaei, N., Wang, J. R., Susan, F., and Badanidiyuru, A. Online learning via offline
greedy algorithms: Applications in market design and optimization. In Proceedings of the 22nd
ACM Conference on Economics and Computation, pp. 737–738, 2021.

Nisan, N. and Ronen, A. Computationally feasible vcg mechanisms. Journal of Artificial Intelli-
gence Research, 29:19–47, 2007.

Orabona, F. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2019.

Orabona, F., Cesa-Bianchi, N., and Gentile, C. Beyond logarithmic bounds in online learning. In
Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, pp. 823–
831, 2012.

Rakhlin, A., Sridharan, K., and Tewari, A. Online learning: Stochastic, constrained, and smoothed
adversaries. 24, 2011.

Roughgarden, T. and Wang, J. R. Minimizing regret with multiple reserves. ACM Transactions on
Economics and Computation, 7(3):1–18, 2019.

Shalev-Shwartz, S. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2011.

Srebro, N., Sridharan, K., and Tewari, A. Smoothness, low-noise and fast rates. In Advances in
Neural Information Processing Systems 23, pp. 2199–2207, 2010.

Syrgkanis, V., Krishnamurthy, A., and Schapire, R. Efficient algorithms for adversarial contextual
learning. In Proceedings of the 33rd International Conference on Machine Learning, pp. 2159–
2168, 2016.

12

Van Erven, T., Kotlowski, W., and Warmuth, M. K. Follow the leader with dropout perturbations. In
Proceedings of The 27th Conference on Learning Theory, pp. 949–974, 2014.

Wang, G., Lu, S., Hu, Y., and Zhang, L. Adapting to smoothness: A more universal algorithm for
online convex optimization. In Proceedings of the 34th AAAI Conference on Artificial Intelligence,
2020.

Zhang, L., Lu, S., and Zhou, Z.-H. Adaptive online learning in dynamic environments. In Advances
in Neural Information Processing Systems 31, pp. 1323–1333, 2018.

Zhang, L., Liu, T.-Y., and Zhou, Z.-H. Adaptive regret of convex and smooth functions. In Proceed-
ings of the 36th International Conference on Machine Learning, pp. 7414–7423, 2019.

Zhao, P., Zhang, Y.-J., Zhang, L., and Zhou, Z.-H. Dynamic regret of convex and smooth functions.
In Advances in Neural Information Processing Systems 33, pp. 12510–12520, 2020.

Zinkevich, M. Online convex programming and generalized infinitesimal gradient ascent. In Pro-
ceedings of the 20th International Conference on Machine Learning, pp. 928–936, 2003.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [N/A]
(b) Did you describe the limitations of your work? [Yes] The proposed algorithm can noly

be applied when the γ-approximability condition is met.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Omitted Proofs from Section 3

In this section, we provide the omitted proofs from Section 3.

A.1 Proof of Lemma 1

Recall that in GFTPL (Dudík et al., 2020), xt is picked by solving the following optimization prob-
lem:

xt = argmink∈[K]

∑t−1
s=1 f(x

(k), ys) +
〈
Γ(k), α

〉
,

where the entries of the random vector α are sampled from a uniform distribution U [0, β]N for
some hyperparameter β > 0. Recall that to prove Lemma 1, we wish to find a counterexample of
a δ-admissible PTM Γ and a sequence {yt : t = 1, 2, . . . , } such that the probability distribution

induced by GFTPL yields P[xt=x(i)]
P[xt+1=x(i)]

= ∞ for some i ∈ [K] and some t > 0. This precludes
the possibility of obtaining a stronger small-loss bound on instances that only satisfy δ-admissibility
and no other special properties.

In the following, we show that such a counterexample can be found in this case by exploiting the
property of the bounded support of the distribution. We then demonstrate that a similar counterex-
ample exists even if the uniform distribution is replaced by distributions with unbounded support.

A.1.1 Case 1: Uniform noise distribution (or, more generally, distributions with bounded
support)

Fix K = 2 experts and round t > 0. Suppose that we can obtain an implementable Γ = [0, 1]⊤

which is 1-admissible with N = 1 column. In this case, α is a scalar random variable, and we have

P[xt = x(1)] = P

[
t−1∑
s=1

f(x(1), ys) ≤
t−1∑
s=1

f(x(2), ys) + α

]

= P

[
α ≥

t−1∑
s=1

f(x(1), ys)−
t−1∑
s=1

f(x(2), ys)

]
.

Similarly, at round t+ 1 we have

P[xt+1 = x(1)] = P

[
α ≥

t∑
s=1

f(x(1), ys)−
t∑

s=1

f(x(2), ys)

]
.

Since the probability density function of α has bounded support, it is straightforward to pick appro-
priate loss functions such that

∑t
s=1 f(x

(1), ys) −
∑t

s=1 f(x
(2), ys) lies outside the support of the

density function while
∑t−1

s=1 f(x
(1), ys) −

∑t−1
s=1 f(x

(2), ys) lies inside the support of the density
function. As a consequence, we get P[xt+1 = x(1)] = 0 while P[xt = x(1)] > 0.

A.1.2 Case 2: Noise distributions with unbounded support

One may argue that the above bad case happens mainly because the noise density has bounded
support. We now show that such counterexamples can also be constructed when the noise α is
generated from distributions with unbounded support, such as the Laplace distribution — with a
slightly larger number of experts. Specifically, we consider K = 3 experts and the PTM Γ =
[0, 0.5, 1]⊤, which is 0.5-admissible with N = 1 column. Then, we have

P
[
xt = x(2)

]
= P

[
t−1∑
s=1

f(x(2), ys) + 0.5α ≤
t−1∑
s=1

f(x(1), ys) and
t−1∑
s=1

f(x(2), ys) + 0.5α ≤
t−1∑
s=1

f(x(3), ys) + α

]

= P

[
2

(
t−1∑
s=1

f(x(2), ys)−
t−1∑
s=1

f(x(3), ys)

)
≤ α ≤ 2

(
t−1∑
s=1

f(x(1), ys)−
t−1∑
s=1

f(x(2), ys)

)]
= P [2∆23 ≤ α ≤ 2∆12] ,

15

where we have defined ∆23 =
∑t−1

s=1 f(x
(2), ys) −

∑t−1
s=1 f(x

(3), ys), and ∆12 =∑t−1
s=1 f(x

(1), ys) −
∑t−1

s=1 f(x
(2), ys) as shorthand. Now, we pick loss functions such that ∆12 >

∆23 and ∆12−∆23 = ϵ < 1. Because ∆12 > ∆23 and the distribution of α has infinite support, we
have P[xt = x(2)] > 0. On the other hand, for round t+ 1 a similar argument yields

P[xt+1 = x(2)]

= P
[
2∆23 + 2

(
f(x(2), yt)− f(x(3), yt)

)
≤ α ≤ 2∆12 + 2

(
f(x(1), yt)− f(x(2), yt)

)]
.

Now, we pick f(x(2), yt) = 0.5, and f(x(1), yt) = f(x(3), yt) = 0. For this choice, we get
2∆23 + 2

(
f(x(2), yt)− f(x(3), yt)

)
≥ 2∆12 + 2

(
f(x(1), yt)− f(x(2), yt)

)
which implies that

P[xt+1 = x(2)] = 0. This in turn implies that P[xt=x(2)]
P[xt+1=x(2)]

= ∞, completing the proof of the
counterexample.

These counterexamples imply that the condition of δ-admissibility alone on the PTM Γ is not suffi-
cient to control the stronger stability measure required for a small-loss bound. Consequently, new
assumptions on Γ need to be introduced.

A.2 Counterexamples showing that δ-admissiblity does not necessarily lead to
γ-approximability

In this paper, we introduced a new sufficient condition of γ-approximability that implies not only
worst-case regret bounds but also regret bounds that adapt to the size of the best loss in hindsight.
It is natural to ask about the relationship of this sufficient condition with δ-admissibility. In this
section, we show that exist δ-admissible PTMs that do not satisfy γ-approximability. (Note that the
reverse statement is also true: Lemma 4 constructs γ-approximable PTMs that are not in general
δ-admissible.)

The counterexample is precisely the one used in Section A.1.2. That is, there are K = 3 experts, and
the PTM is given by Γ = [0, 0.5, 1]⊤. Note that Γ is 0.5-admissible with one column. Further, we
consider an output y such that f(x(1), y) = f(x(3), y) = 0 and f(x(2), y) = 1. We proceed to show
that this PTM Γ is not approximable. To prove this, note that for some scalar s to satisfy the requisite
approximability condition, we need (Γ(2) − Γ(1))s = 0.5s ≥ 1 and (Γ(2) − Γ(3))s = −0.5s ≥ 1.
This is clearly unsatisfiable by any scalar s.

A.3 Proof of Theorem 1

We now provide the detailed proof of Theorem 1. We begin by introducing some notation specific
to this proof. We denote by Γ(xt) the row of Γ related to expert xt, and by Γ∗ the row related to
the best-expert-in-hindsight x∗. Further, Γ(k) denotes the row of Γ related to expert x(k) and Γ(k,i)

denotes the i-th component of the row Γ(k). We also denote the PDF of the noise vector at round t,
αt, as p(αt). Finally, the learner’s action set is denoted by X = {x(1), . . . , x(k), . . . , x(K)}.
Our proof begins with the framework used by typical FTPL analyses (Hutter & Poland, 2005;
Syrgkanis et al., 2016; Dudík et al., 2020). We first divide the regret into two terms:

RT = E

[
T∑

t=1

f(xt, yt)− f(x∗, yt)

]

= E

[
T∑

t=1

f(xt, yt)−
T∑

t=1

f(x′
t, yt)

]
︸ ︷︷ ︸

TERM 1

+E

[
T∑

t=1

f(x′
t, yt)−

T∑
t=1

f(x∗, yt)

]
︸ ︷︷ ︸

TERM 2

.
(5)

Above, the expectation E[·] is only with respect to the internal randomness of the learner and x∗ =

argmini∈[K]

∑T
t=1 f(x

(i), yt) is the best decision in hindsight. Further, the expert

x′
t = argmink∈[K]

∑t
j=1 f(x

(k), yj) +
〈
Γ(k), αt

〉
is usually referred to as the infeasible leader (Hutter & Poland, 2005) at round t, since yt can only
be obtained after xt is chosen.

16

Next, we bound the two terms of (5) respectively. TERM 1 measures the stability of GFTPL by track-
ing how close its performance is to that of the idealized infeasible leader. We obtain the following
upper bound on TERM 1 which heavily leverages the key technical Lemma 2.
Lemma 7. Assume that the PTM Γ is γ-approximable, and Algorithm 1 is applied with ηt =

min

{
1
γ ,

c√
L∗

t−1+1

}
, where L∗

t−1 = mink∈[K]

∑t−1
j=1 f(x

(k), yj) and c > 0 is some universal con-

stant. Then for all T ≥ 1 we have:

TERM 1 ≤

(
2
√
2max{2 lnK,

√
N lnK}

c
+ 2γ

(
c+

1

c

))√
L∗
T + 1

+ 8γ ln

(
1

c

√
L∗
T + 1 + γ

)
+ 2γ2 + 2

√
2γmax{2 lnK,

√
N lnK}.

Next, TERM 2 measures the approximation error between the infeasible leader and the true best
expert in hindsight. The following lemma, which is a simple extension of the classical be-the-leader
lemma (Cesa-Bianchi & Lugosi, 2006), bounds TERM 2.
Lemma 8. Assume that the PTM Γ is γ-approximable. Then, for all T ≥ 1, we have

TERM 2 ≤ 2
√
2max{2 lnK,

√
N lnK}

(
γ + 1

c

√
L∗
T

)
We prove Lemmas 2, 7, and 8 in Appendix A.3.1, A.3.2 and A.3.3 respectively. The proof of
Theorem 1 follows by directly combining (5), Lemma 7 and Lemma 8.

A.3.1 Proof of Lemma 2

Note that we can write
E[f(xt, yt)] =

∑K
i=1 f(x

(i), yt)P[xt = x(i)].

Our approach will relate P[xt = x(i)] and P[x′
t = x(i)] for every i ∈ [K]: at a high level, a similar

approach is also used in the analysis of contextual online learning for linear functions by Syrgkanis
et al. (2016) (although several other aspects of our analysis are different). Then, for any fixed choice
of s(i) ∈ RN we have

P[xt = x(i)]

=

∫
αt

I

argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +
〈
Γ(k), αt

〉 = x(i)

 p(αt)dαt

=

∫
αt

I

argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +
〈
Γ(k), αt

〉 = x(i)

 p
(
αt − s(i)

) p(αt)

p
(
αt − s(i)

)dαt

(1)

≤ sup
β∈RN

p(β)

p
(
β − s(i)

) ∫
αt

I

[{
argmin
k∈[K]

t−1∑
k=1

f(x(k), yj) +
〈
Γ(k), αt

〉}
= x(i)

]
p
(
αt − s(i)

)
dαt

(2)

≤ exp
(
ηt‖s(i)‖1

)∫
αt

I

argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +
〈
Γ(k), αt

〉 = x(i)

 p
(
αt − s(i)

)
dαt

= exp
(
ηt‖s(i)‖1

)∫
αt

I

argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +
〈
Γ(k), αt + s(i)

〉 = x(i)

 p (αt) dαt,

(6)

Above, I[·] denotes the indicator function and inequality (2) is based on the fact that for any β ∈ RN ,

p(β)

p
(
β − s(i)

) = exp
(
ηt

(∥∥∥β − s(i)
∥∥∥
1
− ‖β‖1

))
≤ exp

(
ηt‖s(i)‖1

)
, (7)

and the final equality is because the support of αt is unbounded. To proceed, we introduce and prove
the following lemma.

17

Lemma 9. Suppose Γ is γ-approximable. Then, ∀i ∈ [N] there exists a vector s(i) ∈ RN such that

I

argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +
〈
Γ(k), αt

〉
+
〈
Γ(k), s(i)

〉 = x(i)


≤ I

argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +
〈
Γ(k), αt

〉
+ f(x(k), yt)

 = x(i)

 (8)

holds for all αt.

Proof. For any fixed αt, if

I

[{
argmin
k∈[K]

∑t−1
j=1 f(x

(k), yj) +
〈
Γ(k), αt

〉
+ f(x(k), yt)

}
= x(i)

]
= 1,

then the required inequality always holds since the indicator function is upper bounded by 1. For
the case when

I

[{
argmin
k∈[K]

∑t−1
j=1 f(x

(k), yj) +
〈
Γ(k), αt

〉
+ f(x(k), yt)

}
= x(i)

]
= 0,

assume that x(ℓ) = argmin
k∈[K]

∑t−1
j=1 f(x

(k), yj) +
〈
Γ(k), αt

〉
+ f(x(k), yt) for some ℓ 6= i. Then

t−1∑
j=1

f(x(ℓ), yj) +
〈
Γ(ℓ), αt

〉
+ f(x(ℓ), yt) ≤

t−1∑
j=1

f(x(i), yj) +
〈
Γ(i), αt

〉
+ f(x(i), yt), (9)

which implies

t−1∑
j=1

f(x(ℓ), yj) +
〈
Γ(ℓ), αt

〉
+
〈
Γ(ℓ), s(i)

〉
−

t−1∑
j=1

f(x(i), yj) +
〈
Γ(i), αt

〉
+
〈
Γ(i), s(i)

〉
(1)

≤ (f(x(i), yt)− f(x(ℓ), yt)) +
(〈

Γ(ℓ), s(i)
〉
−
〈
Γ(i), s(i)

〉) (2)

≤ 0.

(10)

Above, the first inequality comes from (9) and the second inequality is based on Definition 2. This
completes the proof of Lemma 9.

Combining (6) and Lemma 9, we get

P[xt = x(i)]

≤ exp
(
ηt‖s(i)‖1

)∫
αt

I

argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +
〈
Γ(k), αt + s(i)

〉 = x(i)

 p (αt) dαt

≤ exp
(
ηt‖s(i)‖1

)∫
αt

I

argmin
k∈[K]

t∑
j=1

f(x(k), yj) +
〈
Γ(k), αt

〉 = x(i)

 p (αt) dαt

=exp
(
ηt‖s(i)‖1

)
P[x′

t = x(i)] ≤ exp(γηt)P[x′
t = x(i)].

This completes the proof.

18

A.3.2 Proof of Lemma 7

We now use Lemma 2 to prove Lemma 7. Lemma 2 gives us

E[f(xt, yt)] ≤ exp (γηt)E[f(x′
t, yt)] ≤ E[f(x′

t, yt)] + 2γηtE[f(x′
t, yt)], (11)

Above, the second inequality uses the fact that γηt ≤ 1 and exp(x) ≤ 1 + 2x for any x ∈ [0, 1].
Next, we focus on bounding the second term in the R.H.S. of (11). We have

2γ

T∑
t=1

ηtE[f(x′
t, yt)]

(1)

≤ 2γ

T∑
t=1

ηtE

f(x′
t, yt) +

t−1∑
j=1

f(x′
t, yj) +

〈
Γ(x′

t), αt

〉−
t−1∑

j=1

f(xt, yj) +
〈
Γ(xt), αt

〉
= 2γ

T∑
t=1

ηtE

 t∑
j=1

f(x′
t, yj) +

〈
Γ(x′

t), αt

〉−
t−1∑

j=1

f(xt, yj) +
〈
Γ(xt), αt

〉
(2)

≤ 2γ

T∑
t=1

ηtE

 t∑
j=1

f(xt+1, yj) +
〈
Γ(xt+1), αt

〉−
t−1∑

j=1

f(xt, yj) +
〈
Γ(xt), αt

〉
= 2γ

T∑
t=1

ηtE

 t∑
j=1

f(xt+1, yj) +
〈
Γ(xt+1), αt+1

〉−
t−1∑

j=1

f(xt, yj) +
〈
Γ(xt), αt

〉
+ 2γ

T∑
t=1

ηt

(
1

ηt
− 1

ηt+1

)
E
[
Γ(xt+1)α

]
(3)

≤ 2γ

T∑
t=1

ηtE

 t∑
j=1

f(xt+1, yj) +
〈
Γ(xt+1), αt+1

〉−
t−1∑

j=1

f(xt, yj) +
〈
Γ(xt), αt

〉
+ 2γ

T∑
t=1

ηt

(
1

ηt
− 1

ηt+1

)
E
[
min
i∈[K]

Γ(i)α

]

= 2γηT · E

 T∑
j=1

f(xT+1, yj) +
〈
Γ(xT+1), αT+1

〉+ 2γ

T∑
t=1

ηt

(
1

ηt
− 1

ηt+1

)
· E
[
min
i∈[K]

Γ(i)α

]

+ 2γ

T−1∑
t=1

(ηt−1 − ηt) · E

t−1∑
j=1

f(xt, yj) +
〈
Γ(xt), αt

〉− 2γη1 · E
[
min
i∈[K]

Γ(i)α

]
(4)

≤ 2γηT · E

 T∑
j=1

f(x∗, yj) +
〈
Γ(x∗), αT+1

〉+ 2γ

T∑
t=1

ηt

(
1

ηt
− 1

ηt+1

)
· E
[
min
i∈[K]

Γ(i)α

]

+ 2γ

T−1∑
t=1

(ηt−1 − ηt) · E

t−1∑
j=1

f(x∗, yj) +
〈
Γ(x∗), αt

〉− 2γη1 · E
[
min
i∈[K]

Γ(i)α

]
(5)

≤ 2γηTL
∗
T + 2γ

T−1∑
t=1

(ηt−1 − ηt)L
∗
t−1 + 2γ

T∑
t=1

ηt

(
1

ηt
− 1

ηt+1

)
· E
[
min
i∈[K]

Γ(i)α

]
− 2γη1 · E

[
min
i∈[K]

Γ(i)α

]
.

(12)

Above, inequality (1) is based on the optimality of xt, inequality (2) is due to the optimality of x′
t,

inequality (3) is because 1
ηt
− 1

ηt+1
≤ 0 and E[Γ(xt+1)α] ≥ E[mini∈[K] Γ

(i)α], inequality (4) is

19

based on the optimality of xt, and the final inequality (5) is due to the fact that x∗ is independent of
α and α is zero-mean. Next, we bound each term in the R.H.S. of the above equation respectively.

For the second term, denote zt = max{γ, 1
c

√
L∗
t−1 + 1} = 1

ηt
. WLOG, we assume the upper bound

in Lemma 2 holds for a large enough γ such that γ ≥ 1. Then, we have

2γ

T−1∑
t=1

(ηt−1 − ηt)L
∗
t−1

(1)

≤ 2γ

T−1∑
t=1

(
1

zt−1
− 1

zt

)
z2t

= 2γ

T−1∑
t=1

(zt − zt−1)z
2
t

ztzt−1

= 2γ

T−1∑
t=1

(z2t − z2t−1)zt

zt−1(zt + zt−1)

= 2γ

T−1∑
t=1

(z2t − z2t−1) ((zt − zt−1) + zt−1)

zt−1(zt + zt−1)

= 2γ

T−1∑
t=1

(
(z2t − z2t−1)

2

zt−1(zt + zt−1)2
+ zt − zt−1

)
(2)

≤ 2γ

T−1∑
t=1

(
(z2t − z2t−1)

z2t−1

+ zt − zt−1

)
(3)

≤ 2γ

T−1∑
t=1

(4(ln(zt)− ln(zt−1)) + (zt − zt−1))

= 8γ · ln
(
zT−1

z0

)
+ 2γ(zT−1 − z0)

(4)

≤ 8γ · ln
(
1

c

√
L∗
T + 1 + γ

)
+ 2γ

(
1

c

√
L∗
T + 1 + γ

)
.

(13)

Above, inequality (2) is due to the fact that zt + zt−1 ≥ 1, 0 ≤ z2t − z2t−1 ≤ 1 and zt ≥ zt−1,
inequality (3) is based on the identity x ≤ 2 ln(1 + x) for x ≤ 1, and the last inequality (4) follows
from the definition of zt.

We now control the last two terms of (12). Since the distribution of α is symmetric, the distributions
of α and −α are the same. Thus, we have

E
[
min
i∈[K]

Γ(i)α

]
= E

[
min
i∈[K]

−Γ(i)α

]
= −E

[
max
i∈[K]

Γ(i)α

]
,

which gives us

2γ

T∑
t=1

ηt

(
1

ηt
− 1

ηt+1

)
· E
[
min
i∈[K]

Γ(i)α

]
− 2γη1E

[
min
i∈[K]

Γ(i)α

]
≤ 2γmax

{
E
[
max
i∈[K]

Γ(i)α

]
, 0

}(
η1

ηT+1
− 1 + 1

)
≤ 2

ηT+1
max

{
E
[
max
i∈[K]

Γ(i)α

]
, 0

}
.

(14)

Finally, we leverage the following lemma to complete the proof.
Lemma 10. We have

E
[
max
i∈[K]

Γ(i)α

]
≤
√
2max{2 lnK,

√
N lnK}.

A direct substitution of Lemma 10 obtains the desired control on the last two terms of (12) and
completes the proof. It only remains to prove Lemma 10 which we do below.

20

Proof. Let β(k) =
∑N

i=1 Γ
(k,i)α(i), and we have for λ < 1,

E
[
max
k∈[K]

Γ(k)α

]
= E

[
max
k∈[K]

β(k)

]
=

1

λ
ln

(
exp

(
λE
[
max
k∈[K]

β(k)

]))
(1)

≤ 1

λ
ln

(
E
[
exp

(
λ max

k∈[K]
β(k)

)])
(2)

≤ 1

λ
ln

 ∑
k∈[K]

E
[
exp

(
λβ(k)

)]
=

1

λ
ln

 ∑
k∈[K]

E

[
exp

(
N∑
i=1

λΓ(k,i)α(i)

)]
(3)

≤ 1

λ
ln

(
K

(
1

1− λ2

)N
)

=
lnK

λ
+

N

λ
ln

(
1

1− λ2

)
(4)

≤ min
λ∈

(
0,

√
2

2

]
[
lnK

λ
+ 2λN

]
≤
√
2max{2 lnK,

√
N lnK}.

(15)

Above, inequality (1) is based on Jensen’s inequality, inequality (3) follows from the expression of
the moment-generating function of a Laplace distribution, and the final inequality (4) follows from
the identity ln(1/(1− x)) ≤ 2x for x ∈

(
0, 1

2

]
. This completes the proof.

A.3.3 Proof of Lemma 8

Recall that the infeasible leader is given by

x′
t = argmin

k∈[K]

t∑
j=1

f(x(k), yj) +
〈
Γ(k), αt

〉

= argmin
k∈[K]

t∑
j=1

(
f(x(k), yj) +

〈
Γ(k), αj

〉
−
〈
Γ(k), αj−1

〉)
.

(16)

Recall that we set α0 = 0. Then, we have

T∑
t=1

f(x′
t, yt) + Γ(x′

t)αt − Γ(x′
t)αt−1

(1)

≤ min
k∈[K]

T∑
t=1

(
f(x(k), yt) + Γ(k)αt − Γ(k)αt−1

)
= min

k∈[K]

(
T∑

t=1

f(x(k), yt) + Γ(k)αT

)
(2)

≤
T∑

t=1

f(x∗, yt) + Γ∗αT

(3)

≤
T∑

t=1

f(x∗, yt) + max
k∈[K]

Γ(k)αT ,

(17)

where inequaliy (1) is based on Lemma 3.1 of (Cesa-Bianchi & Lugosi, 2006). Because the learning
rate sequence {ηt}t≥1 is non-increasing, we have αt−1 − αt ≥ 0. Thus, we get

T∑
t=1

f(x′
t, yt)− f(x∗, yt) ≤ max

k∈[K]
Γ(k)αT +

T∑
t=1

max
k∈[K]

Γ(k)α ·
(

1

ηt−1
− 1

ηt

)
. (18)

21

Taking an expectation on both sides with respect to the randomness in the algorithm yields

E

[
T∑

t=1

f(x′
t, yt)− f(x∗, yt)

]
≤ E

[
max
k∈[K]

Γ(k)αT

]
+ E

[
T∑

t=1

max
k∈[K]

Γ(k)α ·
(

1

ηt−1
− 1

ηt

)]

= E
[
max
k∈[K]

Γ(k)αT

]
+

T∑
t=1

(
1

ηt
− 1

ηt−1

)
· E
[
max
k∈[K]

Γ(k)α

]

≤ 2
max{E[maxi∈[K] Γ

(i)α], 0}
ηT

,

(19)

where the first equality follows because the distribution of the Laplace noise is symmetric. The proof
is finished by combining the above inequality with Lemma 10.

A.4 Lower Bound for GFTPL

In this part, we introduce the lower bound for GFTPL. We first prove the following lemma.
Lemma 11. Denote

x∗
t = argmin

k∈[K]

t∑
s=1

f(x(k), ys), (20)

then we have
Γ(xt+1)α ≤ Γ(x∗

t)α. (21)

Proof. Considering the definitions of xt+1 and x∗
t , we have:

t∑
s=1

f(xt+1, ys) ≥
t∑

s=1

f(x∗
t , ys), (22)

and
t∑

s=1

f(x∗
t , ys) + Γ(x∗

t)
α

ηt+1
≥

t∑
s=1

f(xt+1, ys) + Γ(xt+1)
α

ηt+1
. (23)

The required inequality can be shown by adding up the above two inequalities.

We prove the lower bound result as follows.

Theorem 4. Assume Γ is γ-approximable, then Algorithm 1 with ηt = min

{
1
γ ,

c√
L∗

t−1+1

}
, where

L∗
t−1 = mink∈[K]

∑t−1
j=1 f(x

(k), yj) has the following regret lower bound:

RT = E

[
T∑

t=1

f(xt, yt)−
T∑

t=1

f(x∗, yt)

]
≥ −2

√
2max{2 lnK,

√
N lnK}

(
γ +

1

c

√
L∗
T + 1

)
.

Proof. We first show an intermediate conclusion via induction:

T∑
t=1

f(xt, yt) + Γ(xt)α

(
1

ηt+1
− 1

ηt

)
≥

T∑
t=1

f(xT+1, yt) + Γ(xT+1)
α

ηT+1
− Γ(x1)

α

η1
, (24)

which obviously holds for T = 1. Assume this holds for T − 1:

T−1∑
t=1

f(xt, yt) + Γ(xt)α

(
1

ηt+1
− 1

ηt

)
≥

T−1∑
t=1

f(xT , yt) + Γ(xT) α

ηT
− Γ(x1)

α

η1
. (25)

Noticing
T∑

t=1

f(xT , yt) + Γ(xT) α

ηT+1
≥

T∑
t=1

f(xT+1, yt) + Γ(xT+1)
α

ηT+1
, (26)

22

by rearranging we can show

f(xT , yT) + Γ(xT)α

(
1

ηT+1
− 1

ηT

)
≥

T∑
t=1

f(xT+1, yt) + Γ(xT+1)
α

ηT+1

−

(
T−1∑
t=1

f(xT , yt) + Γ(xT) α

ηT

) (27)

Adding up (25) and (27) we can prove the required conclusion for round T .

Combining (24) and
T∑

t=1

f(xT+1, yt) ≥
T∑

t=1

f(x∗
T , yt), (28)

we have
T∑

t=1

(f(xt, yt)− f(x∗
T , yt))

≥
T∑

t=1

(f(xt, yt)− f(xT+1, yt))

≥Γ(xT+1)
α

ηT+1
− Γ(x1)

α

η1
−

T∑
t=1

Γ(xt)α

(
1

ηt+1
− 1

ηt

)

≥Γ(xT+1)
α

ηT+1
− Γ(x1)

α

η1
−

T∑
t=1

Γ(x∗
t−1)α

(
1

ηt+1
− 1

ηt

)

≥− 2

max
i∈[K]

Γ(i)α

ηT+1
−

T∑
t=1

Γ(x∗
t−1)α

(
1

ηt+1
− 1

ηt

)
,

(29)

where for the third inequality, Lemma 11 is adopted while for the fourth, we use the symmetry of α
and the non-increasing property of ηt. Now we can take the expectation and get

E

[
T∑

t=1

(f(xt, yt)− f(x∗
T , yt))

]
≥− 2E

max
i∈[K]

Γ(i)α

ηT+1


≥− 2

√
2max{2 lnK,

√
N lnK}

(
γ +

1

c

√
L∗
T + 1

)
,

(30)

where we use Lemma 10, E[α] = 0 and ηt = min

{
1
γ ,

c√
L∗

t−1+1

}
.

Remark Combining Theorems 1 and 4 while setting c = 1, we have

−O

max
{
lnK,

√
N lnK

}
√
L∗
T

 ≤ E
[∑T

t=1 f(xt, yt)
]

L∗
T

− 1 ≤ O

max
{
γ, lnK,

√
N lnK

}
√

L∗
T

 .

(31)

As L∗
T goes to∞, both sides go to 0, which means our strategy competes the best expert in hindsight.

A.5 Extension to ℓp Perturbation

In this section, we extend our techniques to perturbation distributions that are exponential with
respect to an ℓp-norm for any p ≥ 1 (note that p = 1 corresponds to the case of the Laplace

23

distribution). Specifically, we consider the probability density function

p(α) ∝ exp

−
(∑

i

|α(i)|p
) 1

p

 . (32)

Recall that we have the following decomposition of regret:

RT = E

[
T∑

t=1

f(xt, yt)− f(x∗, yt)

]

= E

[
T∑

t=1

f(xt, yt)−
T∑

t=1

f(x′
t, yt)

]
︸ ︷︷ ︸

TERM 1

+E

[
T∑

t=1

f(x′
t, yt)−

T∑
t=1

f(x∗, yt)

]
︸ ︷︷ ︸

TERM 2

,
(33)

A critical observation is that the proof of Lemma 2 relies on the triangle inequality
p(β)

p
(
β − s(i)

) = exp
(
ηt

(∥∥∥β − s(i)
∥∥∥
1
− ‖β‖1

))
≤ exp

(
ηt‖s(i)‖1

)
,

which is easily generalized to the ℓp-norm:

p(β)

p
(
β − s(i)

) = exp

(
ηt

(∥∥∥β − s(i)
∥∥∥
p
− ‖β‖p

))
≤ exp

(
ηt‖s(i)‖p

)
.

Following the proof of Lemma 2, we then get

E[f(xt, yt)] ≤ exp (γpηt)E[f(x′
t, yt)], (34)

where γp is now an upper bound on ‖s(i)‖p. As before, noting that γpηt ≤ 1 and exp(x) ≤ 1 + 2x
for any x ∈ [0, 1] gives us

E[f(xt, yt)] ≤ exp (γpηt)E[f(x′
t, yt)] ≤ (1 + 2γpηt)E[f(x′

t, yt)]. (35)

It remains to upper bound E
[
max
i∈[K]

Γ(i)α

]
under the ℓp perturbation (as was previously done for the

Laplace case). This is done in the following lemma.
Lemma 12. Under the ℓp perturbation, we have

E
[
max
i∈[K]

Γ(i)α

]
≤ 2N1− 1

p (lnK +N ln 2). (36)

Proof. Similar to the proof of Lemma 10, we have

E
[
max
i∈[K]

Γ(i)α

]
≤ 1

λ
ln

(
K · E

[
exp

(
N∑
i=1

λ|α(i)|

)])
, (37)

where we use the fact that Γ ∈ [0, 1]K×N . Now we calculate

E

[
exp

(
N∑
i=1

λ|α(i)|

)]
=

∫
exp(λ‖α‖1) · exp(−‖α‖p)dα∫

exp(−‖α‖p)
dα

≤
∫
exp(−(1− λN1− 1

p)‖α‖p)dα∫
exp(−‖α‖p)dα

,

(38)

where the norm inequality ‖α‖1 ≤ N1− 1
p ‖α‖p is used. Setting λ = 1

2N
1− 1

p
gives us

E

[
exp

(
N∑
i=1

λ|α(i)|

)]
≤ 2N , (39)

and thus

E
[
max
i∈[K]

Γ(i)α

]
≤ 2N1− 1

p (lnK +N ln 2). (40)

24

We now complete the proof extension. According to the proof of Lemma 5, for TERM 1 we have

E

[
T∑

t=1

f(xt, yt)−
T∑

t=1

f(x′
t, yt)

]
≤ 2γp

T∑
t=1

ηtE[f(x′
t, yt)]

≤2γp

(
ηTL

∗
T +

T−1∑
t=1

(ηt−1 − ηt)L
∗
t−1 +

T∑
t=1

ηt

(
1

ηt
− 1

ηt+1

)
E
[
min
i∈[K]

Γ(i)α

]
− η1E

[
min
i∈[K]

Γ(i)α

])

≤2γp
(
cN1− 1

p

√
L∗
T + 1 +

(
1

cN1− 1
p

√
L∗
T + 1 + γp

)
+ 4 ln

(
1

cN1− 1
p

√
L∗
T + 1 + γp

))
+2ϕ

(
γp +

√
L∗
T + 1

cN1− 1
p

)
,

(41)

where ϕ denotes an upper bound on E
[
max
i∈[K]

Γ(i)α

]
that will be specified shortly. Above, we plug in

ηt = min

{
1
γp
, cN

1− 1
p√

L∗
t−1+1

}
to get the third inequality. For TERM 2, a similar argument to the proof

of Lemma 8 gives

E

[
T∑

t=1

f(x′
t, yt)−

T∑
t=1

f(x∗, yt)

]
≤ 2ϕ

(
γp +

√
L∗
T + 1

cN1− 1
p

)
. (42)

Thus, the total regret is upper bounded by

RT ≤2γp
(
cN1− 1

p

√
L∗
T + 1 +

(
1

cN1− 1
p

√
L∗
T + 1 + γp

)
+ 4 ln

(
1

cN1− 1
p

√
L∗
T + 1 + γp

))
+4ϕ

(
γp +

√
L∗
T + 1

cN1− 1
p

)
= O

(
2γp

(
cN1− 1

p +
1

cN1− 1
p

)√
L∗
T + 1 + 4ϕ

√
L∗
T + 1

cN1− 1
p

)
.

(43)

If we use a ℓp perturbation, by Lemma 12, we have ϕ = 2N1− 1
p (lnK +N ln 2) and

RT =O

(
2γp

(
cN1− 1

p +
1

cN1− 1
p

)√
L∗
T + 1 + 8N1− 1

p (lnK +N ln 2)

√
L∗
T + 1

cN1− 1
p

)
=O

(
max

{
γpN

1− 1
p , lnK,N

}√
L∗
T

)
.

(44)

which completes the proof.

We do a brief comparison between the ℓp-perturbation and Laplace perturbation for the case when
Γ ∈ {0, 1}K×N is a binary matrix. By Lemma 3 γp = N

1
p because s(i) ∈ {−1, 1}N . Then we get

that the regret under the ℓp perturbation is

RT = O
(
max {N, lnK}

√
L∗
T

)
,

while by Theorem 1 the regret bound under the Laplace distribution is

RT = O
(
max

{
N, lnK,

√
N lnK

}√
L∗
T

)
.

We can see the regret bounds are the same. Since ℓp perturbation does not lead to an improvement
on the regret bound and the Laplace distribution is easier to sample, we only consider the Laplace
distribution in the main paper.

B Omitted Proof for Section 4

In this section, we provide the omitted proofs for Section 4.

25

B.1 Proof of Lemma 3

We begin by proving Lemma 3, which shows that any {0, 1}-valued PTM with distinct rows satisfies
γ-approximability. We first state the following lemma which introduces a slightly stronger condition
for γ-approximability.

Lemma 13. Let Γ ∈ [0, 1]K×N be a matrix, and denote Γ(k) as the k-th row of Γ. If ∀k ∈ [K], ∃s ∈
RN , ‖s‖1 ≤ γ, such that

〈
Γ(k), s

〉
−
〈
Γ(j), s

〉
≥ 1 for all rows j 6= k, then Γ is γ-approximable.

Proof. Since ∀y ∈ Y , k, j ∈ [K], 1 ≥ f(x(k), y) − f(x(j), y), it is straightforward to see that the
condition in Lemma 13 is a sufficient condition of Definition 2.

Next, we construct a γ-approximable Γ based on Lemma 13. Denote Γ(k,i) as the i-th element of
Γ(k). ∀t > 0, k ∈ [K], we set s(k) = 2Γ(k) − 1. Since ∀k ∈ [N], s(k) ∈ {−1, 1}N , we have
‖s(k)‖1 ≤ N . On the other hand, ∀j 6= k,〈

Γ(k), s(k)
〉
−
〈
Γ(j), s(k)

〉
=

N∑
i=1

(Γ(k,i) − Γ(j,i)) · (2Γ(k,i) − 1). (45)

For each term i in the R.H.S. of the equality, we have

(Γ(k,i) − Γ(j,i)) · (2Γ(k,i) − 1) =

{
0, Γ(k,i) = Γ(j,i),

1, Γ(k,i) 6= Γ(j,i).

Note that since every two rows of Γ differ by at least one element, there must exist one i ∈ [N] such
that (Γ(k,i) − Γ(j,i)) · (2Γ(k,i) − 1) = 1. This completes the proof of the lemma.

Lemma 3 is simple but powerful, and can be applied to a broad variety of combinatorial auction
problems. This is detailed next.

B.2 Auction Problems with a Binary Γ

Imagine that a seller wants to sell k items (that are either homogeneous or heterogeneous) to n
bidders. Each bidder has a combinatorial utility function b(i) : {0, 1}k → [0, 1] and we use b to
denote the bidding profile vector of all bidders. In this work we consider truthful auctions, i.e. each
bidder is incentivized to report his true valuation b(i) in the unique Bayes-Nash equilibrium of the
auction. The i-th bidder gets an allocation q(i)(b) ∈ {0, 1}k and pays the seller p(i)(b). Therefore,
the utility of the bidder is given by b(i)(q(i)(b))− p(i)(b).

An auction a receives the bidding profiles of all bidders and determines how to allocate the items
and how much to charge each bidder. We use r(a, b) :=

∑n
i=1 p

(i)(b) to denote the revenue yielded
by applying auction a to the bidder profile b. We consider a repeated auction setting in which the
auctioneer faces different bidders on each round. The bidders may be of very heterogeneous types,
so we do not make any assumptions on the bidder profile and assume that it can arbitrarily change
from round to round. More formally: for each round t = 1, . . . , T , the learner chooses an auction
at while the adversary chooses a bidder profile bt. Then, the learner gets to know bt and receives
the revenue r(at, bt). The goal of the learner is to compete the revenue earned by the best auction in
hindsight. Following Dudík et al. (2020), if the revenue r(a, b) ∈ [0, R] where R > 1, then we can
scale all rewards by 1

R to ensure all rewards are in [0, 1]. After applying Algorithm 2, we scale the
reward back to get the O(R

√
T − L∗

T) regret.

Now we briefly introduce auction problems that admit a binary-valued TPM Γ. By Lemma 1 these
are γ-approximable and by Theorem 1 these admit small-loss bounds.

VCG with bidder-specific reserves For the standard VCG auction, multiple bidders can be si-
multaneously served if the allocation q∗ maximizes the total social welfare

∑n
i=1 b

(i)q
(i)
∗ . Then the

bidder who wins a set of items would pay the externality he imposes on others

p(i)(b) = max
q

∑
j ̸=i

b(j)q(j)

−∑
j ̸=i

b(j)q
(j)
∗ .

26

The setting we discuss is slightly modified in the sense that we have a vector a with i-th component
being the reserve value of the i-th bidder. Any bidder whose valuation b(i) is smaller than a(i) will
be eliminated. Then, we run the VCG auction for the remaining bidders.

Following Dudík et al. (2020), we discretize reserve prices and use the same Γ therein to get the
following small-loss bound:

Theorem 5. We consider VCG auction with reserves for the single-item s-unit setting, and the
set of all feasible auctions is denoted by I. Denote R = maxa,b r(a, b). Let Γ be an |Im| ×
ndlogme binary matrix, where Im contains auctions in which each reservation price comes from{

1
m , . . . , m

m

}
, and consecutive dlogme columns correspond to binary encodings of each bidder, then

Γ is implementable. Running Algorithm 2 with such a Γ yields

E

[
max
a∈I

T∑
t=1

r(a, bt)−
T∑

t=1

r(at, bt)

]
= O

(
nR
√
T − L∗

T log(Ts)
)
. (46)

Proof. The implementability of Γ follows from Lemma 3.3 of Dudík et al. (2020). Since Γ is binary
and every two rows are distinct, by Lemma 3 we know it is N -approximable. Using Corollary 1 we
have

E

[
max
a∈Im

T∑
t=1

r(a, bt)−
T∑

t=1

r(at, bt)

]
=O

(
R ·max{γ, lnK,

√
N lnK}

√
T − L∗

T

)
=O

(
R ·max{N, lnK,

√
N lnK}

√
T − L∗

T

)
=O

(
R ·N

√
T − L∗

T

)
=O

(
R · n logm

√
T − L∗

T

)
,

(47)

where we use the facts that N = ndlogme, K = |Im|, and N = Ω(logK) since Γ is binary.
According to Dudík et al. (2020), the optimal revenue in I is upper bounded by that of Im:

E

[
max
a∈I

T∑
t=1

r(a, bt)− max
a∈Im

T∑
t=1

r(a, bt)

]
≤ Ts

m
. (48)

Combining (47) and (48) while setting m = O(Ts) yield the proposed Theorem.

Envy-free item pricing Assume there are k different items and we use a to denote the vector of
each item’s price. Bidders come one by one. The i-th bidder greedily chooses a bundle q(i) ∈ {0, 1}k
which maximizes his utility b(i)(q(i)) − a · q(i) and pays a · q(i). Similar as the VCG with bidder-
specific reserves, we also assume each price is discretized in the set a(i) ∈ { 1

m , . . . , m
m}.

Theorem 6. We consider envy-free auction for n single-minded bidders and k heterogeneous items
with infinite supply. Denote P to be the set of all possible auctions and R = maxa,b r(a, b). Let
Γ be an |Pm| × (kdlogme binary matrix, where Pm contains envy-free item auctions in which all
prices come from

{
1
m , . . . , m

m

}
and consecutive dlogme columns correspond to binary encodings

of each item’s price. Then, Γ is implementable and running Algorithm 2 with this value of Γ yields

E

[
max
a∈P

T∑
t=1

r(a, bt)−
T∑

t=1

r(at, bt)

]
= O

(
kR
√
T − L∗

T log(kT)
)
. (49)

Proof. As noticed in Dudík et al. (2020), we can consider a bidder who has valuation b(i) for the
bundle of the i-th item and valuations 0 for any other bundles. The revenue of auction a on such a
bidder profile is a(i)I[b(i) ≥ a(i)]. Similarly, for the VCG auction with reserves a, the revenue of
a bidder who has a non-zero valuation b(i) would be a(i)I[b(i) ≥ a(i)]. Based on the equivalence
between envy-free auction and VCG auction with reserves, we can apply Theorem 5 with n = k to
get the following bound.

27

E

[
max
a∈Pm

T∑
t=1

r(a, bt)−
T∑

t=1

r(at, bt)

]
= O

(
R · k logm

√
T − L∗

T

)
, (50)

As also pointed out by Dudík et al. (2020), the optimal revenue of P would not be much larger than
that of Pm upto a small discretization-related error:

E

[
max
a∈P

T∑
t=1

r(a, bt)− max
a∈Pm

T∑
t=1

r(a, bt)

]
≤ nk2T

m
. (51)

Combining Equations 50 and 51 while setting m = O(k2T) yields the theorem.

Online welfare maximization for multi-unit items In this setting, we wish to allocate h � n
homogeneous items to n bidders such that

∑n
i=1 a

(i) = h. Each bidder has a valuation function
b(i) : N → [0, 1] that maps the number of items he obtains to the utility. We assume b(i) is non-
decreasing and b(i)(0) = 0. The objective is to maximize the total social welfare

∑n
i=1 b

(i)(a(i)).

We denote the set of allocations which satisfy
∑n

i=1 a
(i) = s as X . For the offline version of this

problem, Dobzinski & Nisan (2010) propose a 1
2 -approximation maximal in range (MIR) algorithm,

which means maximizing the total social welfare on a set X ′ ⊆ X yields at least 1
2 of the maximal

social welfare on the whole X . We now explain the composition of the set of allocations X ′. We
divide h items into n2 bundles of the same size A =

⌊
h
n2

⌋
and a possible distinct bundle with size

A′ which contains all the remaining items. X ′ contains all allocations about these O(n2) bundles
in the sense that all items in a bundle can only be simultaneously allocated. Finally the problem
is converted to a knapsack problem and there exists an 1

2 -approximation algorithm that runs in
O(poly(n)) time.

For the construction of Γ, we make some modifications to the original construction of Dudík et al.
(2020) to get a binary-valued PTM. We first define A = {mA + nA′ : m ∈ {0, 1, . . . , n2}, n ∈
{0, 1}}; note that |A| ≤ 2n2 +2. We denote g1, . . . , g|A| to be the elements ofA in non-decreasing
order. Then, we select Γ to be a |X ′| × n|A| matrix. For any allocation a(k) = [gτ1 , . . . , gτn],
k ∈ [|X ′|], j ∈ [n] and ℓ ∈ [|A|], we define Γ(k,i) = I[τj > ℓ] where i = (j−1)|A|+ ℓ. Note that Γ
is 1-implementable because each column corresponds to a valid valuation function. In addition, we
have the following result that bounds the regret with respect to the 1/2-approximation of the best
revenue in hindsight.
Theorem 7. With the aforementioned Γ in hand, we can combine Algorithm 2 with the 1

2 -
approximate MIR algorithm in Dobzinski & Nisan (2010) and get the following regret bound:

E

[
1

2

(
max
a∈X

T∑
t=1

n∑
i=1

b
(i)
t (a(i))

)
−

T∑
t=1

n∑
i=1

b
(i)
t (a

(i)
t)

]
= O(n3

√
T − L∗

T) (52)

Proof. We first show that Γ is N -approximable. Since Γ is a binary matrix, by Lemma 3 it suffices
to show that Γ does not possess two identical rows. This can be verified by noticing that Γ(k) and
Γ(k′) are binary encodings of a(k) and a(k

′) by applying indicator functions.

Thus, the PTM Γ is indeed N -approximable. By Corollary 1 we have

E

[
max
a∈X ′

(
T∑

t=1

n∑
i=1

b
(i)
t (a(i))

)
−

T∑
t=1

n∑
i=1

b
(i)
t (a

(i)
t)

]
= O

(
max{γ, lnK,

√
N lnK}

√
T − L∗

T

)
= O

(
max{N, lnK,

√
N lnK}

√
T − L∗

T

)
= O

(
N
√
T − L∗

T

)
= O

(
n|A|

√
T − L∗

T

)
= O(n3

√
T − L∗

T).
(53)

28

Above, we use the fact that Γ is binary-valued to get N = Ω(logK), N = n|A| and |A| = O(n2).
Combining (53) with the fact that the best allocation inX ′ is a 1

2 -approximation to the best allocation
in X yields the stated regret bound.

Simultaneous second-price auctions We now consider the utility optimization problem from the
point of view of a bidder repeatedly participating in a simultaneous second-price auction (with
different bidders each time). In this problem, n bidders want to bid for h items. Each bidder has
a combinatorial valuation function v to describe valuations for different bundles and submits a bid
vector b for all h items. If he gets an allocation q, his payment profile is given p, where p is the vector
of the second highest bids. In particular, his utility is given by u(b, p) = v(q) − p · q. Each round
the bidder chooses a bidder vector and the adversary chooses the second largest bidder’s vector. The
goal is to find bidding vectors which compete with the best bidding vector in hindsight.

Following Dudík et al. (2020), we assume that both bids and the valuation function only take values
in the discretized set

{
0, 1

m , . . . , m
m

}
. We also make the no-overbiddding assumption that v(q) ≥ p·q

and denote the set of feasible bidding vectors to be B. Let Γ be a B × hm matrix. For any j ∈ [h],
ℓ ∈ [m], denote i = (j − 1)m + ℓ. For a bidding vector b(k) = [b(k,1), . . . , b(k,h)] and a vector of

the second largest bids p(i) = ℓ
mej +

∑
j′ ̸=j ej′ , we set Γ(k,i) = I

[
b(k,j) ≥ ℓ

m

]
= u(b(k),p(i))

v(ej)− ℓ
m

. Note
that this directly implies that Γ is 1-implementable.

Theorem 8. The aforementioned Γ is N -approximable. Thus, running Algorithm 2 for the simulta-
neous second-price auction on the discretized set B yields

E

[
max
b∈B

T∑
t=1

u(b, pt)−
T∑

t=1

u(bt, pt)

]
= O(hm

√
T − L∗

T) (54)

Proof. Notice that Γ is binary and the rows of Γ come from component-wise threshold functions
of the bidding vector. Therefore, for two different bidding vectors the corresponding two rows in Γ
would also be different. Thus, we can apply Corollary 1 to get

E

[
max
b∈B

T∑
t=1

u(b, pt)−
T∑

t=1

u(bt, pt)

]
=O

(
max{γ, lnK,

√
N lnK}

√
T − L∗

T

)
=O

(
max{N, lnK,

√
N lnK}

√
T − L∗

T

)
=O

(
N
√
T − L∗

T

)
=O(hm

√
T − L∗

T).

(55)

This completes the proof.

B.3 Level auction

We consider the online level auction problem with single-item, n-bidders, s-level and m-
discretization level. We give only a brief review of this problem setting, and we refer the reader
to Dudík et al. (2020) for a complete description. In each round t of this problem, firstly an auc-
tioneer picks s non-decreasing thresholds from a discretized set { 1

m , . . . , m
m} for each bidder. Let

at = [a
(1,1)
t , . . . , a

(1,s)
t , . . . , a

(n,1)
t , . . . , a

(n,s)
t] be the collection of the auctioneer’s choices, where

a(i,j) is j-th the threshold for the i-th bidder. Let A ∈ { 1
m , . . . m

m}
ns be all possible auctions. We

further make the following assumption on A, which corresponds to Ss,m as considered in (Dudík
et al., 2020, Section 3.3).

Assumption 1. Assume: (a) ∀a, a′ ∈ A, there exists at least one pair (i, j) ∈ [n] × [s], such that
a(i,j) 6= a′

(i,j); and (b) ∀a ∈ A, ∀i ∈ [n], a(i,1) < · · · < a(i,s).

After at is chosen, the bidders reveal their valuations. We denote the collection of the bidders’
valuations as bt = [b

(1)
t , . . . , b

(n)
t] ∈ B = [0, 1]n. As a consequence, the auctioneer obtains a reward

r(at, bt), which is calculated based on the following rule.

29

Definition 4 (The rule for level auction). For each bidder i ∈ [n], define the level index ℓ
(i)
t be the

maximum j such that a(i,j)t ≤ b
(i)
t , with ℓ

(i)
t = 0 when a

(i,1)
t > b

(i)
t . For each round t, all bidders

whose level indexes are 0 would be eliminated. If no bidder left, r(at, bt) = 0. Otherwise, the bidder
with the highest level index wins the item, and pays the price (i.e., r(at, bt)) equal to the minimum
bid that he could have submitted and still won the auction. On the same level, the tie-break rule is
in favor of the bidder with the smallest bidding index.

In this framework the set of “experts” is the set A of threshold configurations over all bidders. The
regret of the auctioneer over T iterations is the gap between the revenue generated by the online
choice of threshold configurations and the revenue of the best set of thresholds in hindsight, i.e.

RT := E

[
max
a∈A

T∑
t=1

r(a, bt)−
T∑

t=1

r(at, bt)

]
.

B.3.1 Algorithm and regret

We first discuss how to construct an approximable (see Definition 2) and implementable Γ with small
γ. Directly constructing Γ is rather difficult. Thus, we first consider an augmented auction problem
with n+ 1 bidders. Let A′ ∈ { 1

m , . . . , m
m}

(n+1)s be the set of possible auctions, and B′ ∈ [0, 1]n+1

be the set of bidder profiles. We construct A′ as follows:
Definition 5. (a) Distinct auctions (first n bidders): ∀a, a′ ∈ A′, there exists at least one pair
(i, j) ∈ [n] × [s], such that a(i,j) 6= a′

(i,j); (b) distinct thresholds (first n bidders): ∀a ∈ A′,
∀i ∈ [n], a(i,1) < · · · < a(i,s); and (c) fixed thresholds for the (n + 1)-th bidder: ∀a ∈ A′,
a(n+1,1) = 1

m , a(n+1,j) = j−1
m for j ∈ {2, . . . , s}.

Comparing Assumption 1 and Definition 5, it can be seen that the elements in A′ and A have an
one-to-one correspondence: ∀a ∈ A, there only exists one a′ ∈ A′, such that ∀(i, j) ∈ [n] × [s],
a(i,j) = a′(i,j), and vice versa.

In the augmented problem, at each round t, firstly the auctioneer chooses a′t from A′. At the same
time, we let the bidders reveal b′t = [bt; 0], where bt is the bidder vector of the original problem,
and b′t is a (n + 1)-dimensional vector. Then, the auctioneer obtain a reward r′(a′t, b

′
t), where

r′ : A′ × B′ 7→ [0, 1] follows the auction rule in Definition 4. For a′t, denote the related auction in
A as at, and we have the following lemma.
Lemma 14. We have r(at, bt) = r′(a′t, b

′
t), and

E

[
max
a∈A

T∑
t=1

r(a, bt)−
T∑

t=1

r(at, bt)

]
= E

[
max
a′∈A′

T∑
t=1

r′(a′, b′t)−
T∑

t=1

r′(a′t, b
′
t)

]
.

Proof. Since the last element of b′t is 0, so the (n + 1)-th bidder will always be at the 0-th level
when computing r′(a′t, b

′
t), it will not change the reward at round t. We note that, it does not mean

the augmentation is not useful: designing a PTM for r′(a′, b′) is much easier than for the original
problem.

This lemma reveals a duality between the two problems: A low-regret and oracle-efficient algorithm
for the augmented problem directly induces a low-regret and oracle-efficient algorithm for the orig-
inal problem by replacing a′ ∈ A′ with its corresponding auction at in A. To help understanding,
we illustrate the relationship between the original problem and the augmented problem in Figure 1.

Next, we propose to construct an approximable Γ matrix for the augmented problem by using
ns(m− s+ 1) bid profiles in B′. For i ∈ {1, . . . , n}, j ∈ {1, . . . , s}, and k ∈ {1, . . . ,m− s+ 1},
let a bidder vector b′(i,j,k) ∈ B′ be

b′(i,j,k) =
k + j − 1

m
ei +

j − 1

m
en+1, (56)

where ei is a (n+1)-dimension unit vector whose i-th element is 1. Note that the construction here
is to ensure that only the i-th and the (n + 1)-th bidders are likely to win, which greatly simplifies
our construction of the PTM. The following lemma illustrates how to construct the PTM and the
corresponding vector s which satisfy the γ-approximability condition.

30

pick 𝑎!" ∈ 𝒜′

observe 𝑏! obtain 𝑏!" = [𝑏!; 0]

obtain 𝑎! ∈ 𝒜

𝑡 = 𝑡 + 1

augmentation

one-to-one
correspondence

run Algorithm 2

The original
problem

The augmented
problem

Figure 1: The relationship between the original problem and our proposed augmented problem.

Lemma 15. Let V = {b′(i,j,k)}i,j,k be the set containing all b′ defined in (56). Let ΓV ∈
[0, 1]K×ns(m−s+1) be the matrix implemented from V by assigning each r′(·, b′(i,j,k)) to the columns
of ΓV one-by-one. Then ΓV is nsm-approximable.

Proof. We first prove r′(a′, b′(i,j,k)) = a′(i,j)I[a′(i,j) ≤ k+j−1
m]+ j−1

m I[a′(i,j) > k+j−1
m], then argue

that it leads to nsm-approximability.

For j = 1, b′(i,1,k) = k
mei. According to Definition 4, when a′(i,1) > k

m , all bidders are at the 0-th
level, so no bidder wins the item, and r(a′, b′(i,j,k)) = 0. Otherwise, bidder i wins the item, and
pays a′(i,1). Thus, r′(a′, b′(i,1,k)) = a′(i,1)I[a′(i,1) ≤ k

m]. For j > 1, b′(i,j,k) = k+j−1
m ei+

j−1
m en+1.

Based on the third part of Definition 5, bidder n+1 is at the j-th level. If a′(i,j) > k−j+1
m , then bidder

n + 1 wins the item, and pays r′(a′, b′(i,j,k)) = j−1
m . Otherwise, bidder i wins the item, and pays

r′(a′, b′(i,j,k)) = a′(i,j). In sum, we have r′(a′, b′(i,j,k)) = a′(i,j)I[a′(i,j) ≤ k+j−1
m]+ j−1

m I[a′(i,j) >
k+j−1

m] holds for any j ∈ [s].

Next, we prove the approximability based on Lemma 13. WLOG, consider one auction a′ ∈ A′, and
let ΓV,a′

be the row related to a′, which is a ns(m− s+1)-dimensional vector based on Lemma 15.
Our goal is to show that, there exists a vector s, such that

∀â′ ∈ A′, â′ 6= a′,
〈
ΓV,a′

− ΓV,a, s
〉
≥ 1.

Denote s(i,j,k) as the element of s which is related to b′(i,j,k) (see Lemma 15), and we discuss how
to set s(i,j,k) as follows.

First, based on the second part of Definition 5, we have j
m ≤ a′(i,j) ≤ m−s+j

m . Thus, combining
(56), we know ∀i ∈ [n], j ∈ [s], ∃k′ ∈ [m−s+1], such that b′(i,j,k

′) = a′(i,j)ei+
j−1
m en+1, which is

in turn equivalent to k′+j−1
m = a′(i,j). In the column corresponding to b′(i,j,k

′), ∀â′ ∈ A′, â′(i,j) 6=
a′(i,j), we have r′(a′, b′(i,j,k

′)) − r′(â′, b′(i,j,k
′)) ≥ 1

m . Intuitively, it means that, in this column,
only auctions whose j-th threshold for the i-th bidder equals to a′(i,j) yield the highest revenue, and
these auctions outperform other auctions by least 1

m . Choosing the corresponding s(i,j,k
′) as m, and

setting s(i,j,k) = 0 for k 6= k′, makes
∑m−s+1

k=1 r′(a′, b′(i,j,k))s(i,j,k) − r′(â′, b(i,j,k))s(i,j,k) ≥ 1.
Since we need to ensure that the loss gap between a′ and any other auctions by at least 1, we need
to set s(i,j,k

′) = m for any i ∈ [n], j ∈ [s]. It is obvious that ‖s‖1 = nsm and ΓV is nsm-
approximable according to Lemma 13.

To illustrate the construction of ΓV , we provide an example for the case where m = 5 and s = 3
and inspect encodings with respect to a single bidder in Table 1.

Combining Lemma 15, Corollary 1, we get the following results.

31

Table 1: Illustration of ΓV when m = 5 and s = 3. Each a′(i,j) is encoded by m − s + 1 = 3
columns. Here g = j−1

m = 2−1
5 = 1

5 , and h = j−1
m = 3−1

5 = 2
5 . Consider the auctions whose

a′(i,2) = 3
5 = k′+j−1

m = k′+1
5 . Then, at the second column that is related to a′(i,2) (corresponds to

k′ = 2), only such auctions can yield the highest revenue 3
5 , and the revenue is at least 1

5 higher than
auctions with a′(i,2) 6= 3

5 .

Auction a′ Coding
. . . (a′(i,1), a′(i,2), a′(i,3)) a′(i,1) a′(i,2) a′(i,3) . . .
. . . (1/5, 2/5, 3/5) 1/5 1/5 1/5 2/5 2/5 2/5 3/5 3/5 3/5 . . .
. . . (1/5, 2/5, 4/5) 1/5 1/5 1/5 2/5 2/5 2/5 h 4/5 4/5 . . .
. . . (1/5, 2/5, 5/5) 1/5 1/5 1/5 2/5 2/5 2/5 h h 5/5 . . .
. . . (1/5, 3/5, 4/5) 1/5 1/5 1/5 g 3/5 3/5 h 4/5 4/5 . . .
. . . (1/5, 3/5, 5/5) 1/5 1/5 1/5 g 3/5 3/5 h h 5/5 . . .
. . . (1/5, 4/5, 5/5) 1/5 1/5 1/5 g g 4/5 h h 5/5 . . .
. . . (2/5, 3/5, 4/5) 0 2/5 2/5 g 3/5 3/5 h 4/5 4/5 . . .
. . . (2/5, 3/5, 5/5) 0 2/5 2/5 g 3/5 3/5 h h 5/5 . . .
. . . (2/5, 4/5, 5/5) 0 2/5 2/5 g g 4/5 h h 5/5 . . .
. . . (3/5, 4/5, 5/5) 0 0 3/5 g g 4/5 h h 5/5 . . .
. .

Corollary 2. Consider running Algorithm 2 with ΓV on the augmented problem. Let {a′t}t ∈ A′T

be the output of the algorithm, and {at}t ∈ AT be the corresponding auctions in the original
problem. Then Algorithm 2 is oracle-efficient, and

E

[
T∑

t=1

r(a∗, bt)−
T∑

t=1

r(at, bt)

]
= O

(
max

{
nsm, ns lnm,

√
nms · ns lnm

}√
T − L∗

T

)
= O

(
nsm

√
T − L∗

T

)
.

(57)

B.4 Proof of Lemma 4

In this section, we prove Lemma 4, which yields oracle-efficient online learning with a very small
output space. Recall that X = {x(1), . . . , x(K)} and we denote the adversary’s output space as
Y = {y(1), . . . , y(d)}. We construct Γ as ∀k ∈ [K], j ∈ [d],

Γ(k,j) = f(x(k), y(j)).

It is straightforward to see that in this way Γ is implementable with complexity 1. On the other hand,
for each yt, we can find jt ∈ [d], such that y(jt) = yt. Thus, we can meet 1-approximability by
choosing s = ejt for action k ∈ [K] in round t, where et is a unit vector whose jt-th dimension is 1
and all other elements are 0. This completes the proof.

B.5 Proof of Lemma 5

In this section, we prove Lemma 5, which yields oracle-efficient online learning for the transductive
online classification problem. For this problem, we create a PTM Γ with |W| columns, which is
configured as Γ(k,j) = f(x(k), (w(j), 1)), ∀k ∈ [K], j ∈ [|W|].
It is clear that Γ is implementable with complexity 1. Next, we prove that Γ approximable. Let wt

be the feature vector observed in round t. Then there exists jt ∈ [|W|] such that w(jt) = wt. If
yt = 1, then the equation of Definition 2 holds by setting s = ejt . If yt = 0, then the equation can
be met by picking s = −ejt . This completes the proof of the lemma. It is worth noting that this
choice of Γ need not be δ-admissible for any δ > 0.

B.6 Negative Implementability

When the oracle only accepts non-negative weights for minimizing the loss (or non-positive weights
for maximizing the reward), Algorithms 1 and 2 cannot make use of the oracle directly, since the

32

Algorithm 4 Oracle-based GFTPL with negative exponential distribution
1: Input: Data set Sj , j ∈ [N], that implement a matrix Γ ∈ [0, 1]K×N , η1 = min{ 1γ , 1}.
2: Draw IID vector α̂ ∼ Exp(1)N , and let α = [α(1), . . . , α(N)] = −α̂
3: for t = 1, . . . , T do

4: Choose xt ← argmin
k∈[K]

t−1∑
j=1

f(x(k), yj) +

N∑
i=1

α(i)

ηt

 ∑
(w,y)∈Si

w · r(x(k), y)


5: Observe yt

6: Compute L̂∗
t = min

k∈[K]

∑t
j=1 f(x

(k), yj) by using the oracle, set ηt+1 ← min

{
1
γ ,

1√
L̂∗

t+1

}
7: end for

noise α can be negative for Algorithm 1, and positive for Algorithm 2. To handle this issue, we
consider two solutions: (a) constructing negative-implementable PTMs (first defined by Dudík et al.
(2020)); (b) replacing the distribution of α from the Laplace distribution with the (negative) exponen-
tial distribution. The former solution can be used in VCG with bidder-specific reserves, envy-free
item pricing, problems with small Y and transductive online classification, while the latter is suitable
for the level auction problem and multi-unit online welfare maximization.

B.6.1 Negative implementable PTM

To deal with negative weights, Dudík et al. (2020) introduce the concept of negative implementabil-
ity:

Definition 6. A matrix Γ is negatively implementable with complexity M if for each j ∈ [N] there
exist a (non-negatively) weighted dataset S−

j , with |S−
j | ≤M , such that ∀i, i′ ∈ [K],

−(Γ(i,j) − Γ(i′,j)) =
∑

(w,y)∈R+×Y

w(f(x(i), y)− f(x(i′), y)).

Similar to Theorem 5.11 of Dudík et al. (2020), we have the following theorem.

Theorem 9. Suppose the oracle can only accept non-negative weights (for minimizing the loss). If
Γ is implementable and negative implementable with complexity M , then Algorithm 1 can achieve
oracle-efficiency with per-round complexity O(T +NM).

For VCG with bidder-specific reserves and envy-free item pricing, (Dudík et al., 2020) show that
there exist binary and admissible PTMs that are implementable and negative implementable. Then,
based on Lemma 3, this kind of PTMs directly leads to approximable, implementable and negative
implementable PTMs, so the oracle-efficiency and the small-loss bound can be achieved for these
settings according to the theorem above.

Moreover, we can also find approximable, implementable and negative-implementable PTMs in
the other mentioned applications of a) problems with a small output space Y and b) transductive
online classification. For application a) recall that we constructed Γ as Γ(i,j) = f(x(i), y(j)). Then,
it is straightforward to verify that this matrix can be negatively implemented by setting Γ(i,j) =
1 − f(x(i), y(j)). For application b), recall that we set Γ(k,j) = f(x(k), (w(j), 1)), ∀k ∈ [K], j ∈
[|W|]. This PTM can be negatively implemented by simply setting Γ(k,j) = f(x(k), (w(j), 0)),
∀k ∈ [K], j ∈ [|W|], which flips all elements of the binary matrix (for 0 to 1 and 1 to 0).

B.6.2 Negative exponential distribution

For the other auctions problems that we consider in this paper (i.e. multi-unit mechanisms and level
auctions), the PTMs that we constructed are not negative implementable. However, we show that
for these cases, Algorithm 2 with a negative exponential distribution is good enough to achieve the
small-loss bound. This adjusted algorithm is summarized in Algorithm 4. Note that Algorithm 4
can directly use the oracle because α is non-positive.

33

For Algorithm 4, we introduce the following theorem. Our key observation is that, in these settings,
the approximable vector (i.e., the vector s in Definition 2) is always element-wise non-negative,
which makes the proof go through when using the negative exponential distribution.

Theorem 10. Let f(x, y) = 1 − r(x, y). Assume Γ is γ-approximable w.r.t. f(x, y) and imple-
mentable with function r(x, y). Moreover, suppose ∀y ∈ [Y], k ∈ [K], the approximable vector s
is element-wise non-negative. Then Algorithm 4 is oracle-efficient and achieves the following regret
bound:

RT = E

[
L∗
T −

T∑
t=1

r(xt, yt)

]
= O

(
max {γ, lnK,N}

√
T − L∗

T

)
.

Proof. The proof is similar to that of Theorem 1, and here we only provide the sketch of the proof.
For the relation between P[xt = x(i)] and P[x′

t = x(i)], similar to (6), we still have P[xt = x(i)] ≤
exp(ηtγ)P[x′

t = x(i)]. The difference lies in (7): β (corresponds to α in Algorithm 4) therein has
support on the non-positive orthant, since s is non-negative, p(β)

p(β−s) is always well-defined. Thus,
the negative exponential distribution is enough to make the proof go through. Next, for the upper
bound of TERM 1, let α̂ = −α be the exponential distribution. Similar to the proof of Lemma 7, we
have

2γ

T∑
t=1

ηtE[f(x′
t, yt)]

(1)

≤ 2γ

T∑
t=1

ηtE

 t∑
j=1

f(xt+1, yj) +
〈
Γ(xt+1), αt+1

〉−
t−1∑

j=1

f(xt, yj) +
〈
Γ(xt), αt

〉
+ 2γ

T∑
t=1

ηt

(
1

ηt
− 1

ηt+1

)
E
[
Γ(xt+1)α

]
(2)

≤ 2γ

T∑
t=1

ηtE

 t∑
j=1

f(xt+1, yj) +
〈
Γ(xt+1), αt+1

〉−
t−1∑

j=1

f(xt, yj) +
〈
Γ(xt), αt

〉
+ 2γ

T∑
t=1

ηt

(
1

ηt+1
− 1

ηt

)
E
[
max
i∈[K]

Γiα̂

]
(3)

≤ 2γηT · E

 T∑
j=1

f(x∗, yj) +
〈
Γ(x∗), αT+1

〉+ 2γ

T∑
t=1

ηt

(
1

ηt+1
− 1

ηt

)
E
[
max
i∈[K]

Γiα̂

]

+ 2γ

T−1∑
t=1

(ηt−1 − ηt) · E

t−1∑
j=1

f(x∗, yj) +
〈
Γ(x∗), αt

〉+ 2γη1 · E
[
max
i∈[K]

Γ(i)α̂

]
(4)

≤ 2γηTL
∗
T + 2γ

T−1∑
t=1

(ηt−1 − ηt)L
∗
t−1 + 2γ

T−1∑
t=1

(ηt−1 − ηt)E
[
max
i∈[K]

Γiα̂

]

+ 2γ

T∑
t=1

ηt

(
1

ηt+1
− 1

ηt

)
E
[
max
i∈[K]

Γiα̂

]
+ 4γη1E

[
max
i∈[K]

Γiα̂

]
,

where inequality (1) follows from (12), inequality (2) is because α̂ = −α and α̂ is non-negative,
inequaliry (3) is due the the optimality of xt, and the final inequality (4) is based on the non-
negativity of α̂. Note that there are some extra terms since the distribution is no longer zero-mean.
To proceed, the second term can be upper bounded by (13). For the third term, similar to (15), we
have ∀λ ≤ 1/2,

E
[
max
i∈[K]

Γiα̂

]
≤ 1

λ
ln

(
K

(
1

1− λ

)N
)

=
lnK

λ
+

N

λ
ln

(
1

1− λ

)
≤ 4max{lnK,N}, (58)

34

where in the first inequality we make use of the moment generating function of the exponential
distribution. Thus, we have

2γ

T−1∑
t=1

(ηt−1 − ηt)E
[
max
i∈[K]

Γiα̂

]
≤ 8max{lnK,N},

and

2γ

T∑
t=1

ηt

(
1

ηt+1
− 1

ηt

)
E
[
max
i∈[K]

Γiα̂

]
≤ 8max{lnK,N}

ηT+1
.

The proof can be finished by applying (58) and similar techniques as in the proof of Lemma 10 to
bound TERM 2.

Finally, we note that, as shown in the proof of Lemma 15, the approximable vector for the level
auction problem is element-wise non-negative (0-1 vector), so Theorem 10 can be directly applied.
In the following, we show that this conclusion can also be applied to the online welfare maximization
for multi-unit items.

Lemma 16. For multi-unit online welfare maximization, there exists an approximable vector s with
non-negative entries ∀a(k) ∈ X ′, k ∈ [K].

Proof. By Lemma 13, it suffices to prove that for any k ∈ [K] there exists non-negative s such that〈
Γ(k) − Γ(j), s

〉
≥ 1. For multi-unit online welfare maximization (as illustrated in Appendix B.2),

all h items need to be allocated. There do not exist two rows Γ(k) and Γ(k′) such that Γ(k) � Γ(k′)

because the corresponding allocations a(k) and a(k
′) also preserve this partial order relation, which

means for allocation a(k) there are unassigned items. We can simply take s = Γ(k). Based on
the aforementioned observation, there exists at least one index ℓ ∈ [N] such that Γ(k,ℓ) = 1 and
Γ(j,ℓ) = 0, and thus

〈
Γ(k) − Γ(j), s

〉
≥ 1.

C Proof of Theorem 3

In this section we prove Theorem 3, which is our oracle-efficient “best-of-both-worlds" bound, as-
suming that the adversary is oblivious. Then, based on the definitions, we know ÛFTL

T and ÛGFTPL
T

only depend on the adversary (i.e., the past losses), and is independent of the randomness of the
algorithm. This also applies to IFTL

T and IGFTPL
T .

The regret can be decomposed into two parts:

ROFF
T = E

[
T∑

t=1

f(xt, yt)−
T∑

t=1

f(x∗, yt)

]

≤ E

 ∑
t∈IFTL

T

f(xt, yt)− f(xFTL,∗
T)

+ E

 ∑
t∈IGFTPL

T

f(xt, yt)− f(xGFTPL,∗
T)


≤ ÛFTL

T + ÛGFTPL
T ,

(59)

where
xFTL,∗
T = argmin

i∈[K]

∑
t∈IFTL

T

f(x(i), yt),

and
xGFTPL,∗
T = argmin

i∈[K]

∑
t∈IGFTPL

T

f(x(i), yt).

In round T , there are four possible cases:

35

• Case 1: AlgT = FTL, and AlgT+1 = FTL.
Since after round T , the algorithm does not switch, we have ÛFTL

T ≤ αÛGFTPL
T based on

lines 4-8. On the other hand, let t′ be the last round where the algorithm performs GFTPL,
that is, Algt′+1 = FTL. Then, in round t′ − 1, if we do the switch FTL→ GFTPL, then

αÛGFTPL
t′−1 ≤ ÛFTL

t′−1.

Moreover, note that ÛFTL
t and ÛGFTPL

t are non-decreasing, and also ÛGFTPL
t′−1 ≥ ÛGFTPL

t′ − τ .
Combining with the fact that ÛGFTPL

t′ = ÛGFTPL
T (since we do not feed losses to GFTPL

from round t′ to T), we have

α(ÛGFTPL
T − τ) = α(ÛGFTPL

t′ − τ) ≤ αÛGFTPL
t′−1 ≤ ÛFTL

t′−1 ≤ ÛFTL
T ,

so
ÛGFTPL
T ≤ 1

α
ÛFTL
T + τ.

If in round t′ − 1 we use GFTPL and do not switch, then we have
1

β
ÛGFTPL
t′−1 ≤ ÛFTL

t′−1,

thus
1

β
(ÛGFTPL

T − τ) =
1

β
(ÛGFTPL

t′ − τ) ≤ 1

β
ÛGFTPL
t′−1 ≤ ÛFTL

t′−1 ≤ ÛFTL
T ,

which implies that
ÛGFTPL
T ≤ βÛFTL

T + τ.

• Case 2: AlgT = FTL, and AlgT+1 = GFTPL.
Since after round T , we have FTL → GFTPL, we get ÛFTL

T > αÛGFTPL
T based on lines

4-8. On the other hand, We know that AlgT = FTL, so after round T − 1, there are 2
possibilities: 1) the algorithm remains to be FTL. For this case, we have

ÛFTL
T − 1 ≤ ÛFTL

T−1 ≤ αÛGFTPL
T−1 ≤ αÛGFTPL

T ,

where we use the fact that the mixability gap δt ≤ 1. It yields

ÛFTL
T ≤ αÛGFTPL

T + 1.

2) The algorithm switches from GFTPL→ FTL. For this case, we have

ÛFTL
T − 1 ≤ ÛFTL

T−1 ≤
1

β
ÛGFTPL
T−1 ≤ 1

β
ÛGFTPL
T ,

so
ÛFTL
T ≤ 1

β
ÛGFTPL
T + 1.

• Case 3: AlgT = GFTPL, and AlgT+1 = FTL.
Since after round T , we switch from GFTPL→ FTL, we have ÛFTL

T ≤ 1
β Û

GFTPL
T . On the

other hand, in round T−1, there are 2 cases: 1) After round T−1, we switch the algorithm:
FTL→ GFTPL. Thus,

ÛFTL
T ≥ ÛFTL

T−1 ≥ αÛGFTPL
T−1 ≥ α(ÛGFTPL

T − τ),

implying that

ÛGFTPL
T ≤ 1

α
ÛFTL
T + τ.

2) After round T − 1, the algorithm does not switch: GFTPL→ GFTPL. Thus,
1

β
(ÛGFTPL

T − τ) ≤ 1

β
ÛGFTPL
T−1 ≤ ÛFTL

T−1 ≤ ÛFTL
T ,

so ÛGFTPL
T ≤ βÛFTL

T + τ .

36

• Case 4: AlgT = GFTPL, AlgT+1 = GFTPL.
For this case, after round T , we have

ÛGFTPL
T ≤ βÛFTL

T .

On the other hand, let t′ be the last round of the algorithm that plays FTL. So in round
t′ − 1, there are 2 possible cases: 1) After t′ − 1, we switch from GFTPL→ FTL. In this
case, we have:

β(ÛFTL
T − 1) = β(ÛFTL

t′ − 1) ≤ βÛFTL
t′−1 ≤ ÛGFTPL

t′−1 ≤ ÛGFTPL
T ,

so
ÛFTL
T ≤ 1

β
ÛGFTPL
T + 1.

2) After round t′ − 1, we still play FTL. Then, we have

ÛFTL
T − 1 = ÛFTL

t′ − 1 ≤ ÛFTL
t′−1 ≤ αÛGFTPL

t′−1 ≤ αÛGFTPL
T ,

so
ÛFTL
T ≤ αÛGFTPL

T + 1.

Combining all of the pieces, we always have

ÛFTL
T ≤ (α+

1

β
)ÛGFTPL

T + 1,

and
ÛGFTPL
T ≤ (

1

α
+ β)ÛFTL

T + τ.

Finally, note that based on the definition, it is straightforward to get ÛGFTPL
T ≤ UGFTPL

T and ÛFTL
T ≤

UFTL
T . Therefore, we have

ROFF
T ≤ min

{(
1 + α+

1

β

)
UGFTPL
T + 1,

(
1 +

1

α
+ β

)
UFTL
T + τ

}
.

Setting α = β = 1 yields the required theorem.

37

	Introduction
	Related Work
	Oracle-efficient online learning
	Adaptive online learning

	GFTPL with Small-Loss Bound
	Oracle-efficiency and Applications
	Applications in online auctions
	Other applications

	Best-of-Both-Worlds Bound: Adapting to IID data
	Conclusion
	Omitted Proofs from Section 3
	Proof of Lemma 1
	Case 1: Uniform noise distribution (or, more generally, distributions with bounded support)
	Case 2: Noise distributions with unbounded support

	Counterexamples showing that -admissiblity does not necessarily lead to gamma-approximability
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 7
	Proof of Lemma 8

	Lower Bound for GFTPL
	Extension to lp Perturbation

	Omitted Proof for Section 4
	Proof of Lemma 3
	Auction Problems with a Binary ga
	Level auction
	Algorithm and regret

	Proof of Lemma 4
	Proof of Lemma 5
	Negative Implementability
	Negative implementable PTM
	Negative exponential distribution

	Proof of Theorem 3

