
Published as a conference paper at ICLR 2025

CONCRETIZER: MODEL INVERSION ATTACK
VIA OCCUPANCY CLASSIFICATION AND DISPERSION
CONTROL FOR 3D POINT CLOUD RESTORATION

ABSTRACT

This is a supplementary material which provides additional details for the paper.

A VOXELIZATION EFFECT

To address the challenging issue of restoring voxel-based 3D features to a 3D point scene, we utilize
the Voxel Single-Point (VSP) hypothesis. This hypothesis asserts that a single point within a voxel
is sufficient to restore the 3D point scene. We validate the VSP hypothesis by analyzing 3D scenes
from the KITTI dataset using representative voxelization-based extractors (Zhou & Tuzel, 2018; Yan
et al., 2018) commonly used in autonomous vehicle applications.

As shown in Figure 1 (left), 99.988% of the total voxels contain either no points or only a single point.
Figure 1 (right) illustrates that voxels with multiple points, which are extremely rare, are mostly
located near LiDAR sensors, contrasting with the broader distribution of single-point voxels. This
is due to the inherent characteristic of LiDAR sensors, where the density of points decreases as the
distance from the sensor increases. Figure 2 visualizes regions in the KITTI dataset where multi-point
voxels exist, comparing the original point cloud with its voxelized result. This comparison highlights
that even in areas close to the LiDAR sensor, there are negligible differences between the original
and voxelized point clouds. This demonstrates that a single point per voxel is sufficient to preserve
the integrity of the scene.

B DISPERSION OF VOI

The Voxels-of-Interest (VoI) experiences dispersion during feature extraction and restoration. In
Figure 3 of main paper, ‘Data stattistics’ show the grid density at each layer throughout the feature
extraction and restoration process. It is evident that the density increases as the data passes through
the downsampling (3rd, 6th, 9th, and 12th) and upsampling (13th, 16th, 19th, and 22th) layers.
This phenomenon is attributed to the characteristics of convolution and transposed convolution
layer, which inherently spread values to the surrounding regions. Conversely, the density remains
unchanged in other layers owing to the characteristics of submanifold convolution (Graham & Van der
Maaten, 2017). Submanifold convolution effectively tackles memory consumption and computational
overhead by preserving the spatial shape of the data during feature extraction, thereby maintaining
unchanged density. Given the inherent characteristics of operations, ConcreTizer maximizes benefits
of additional supervision by partitioning based on the downsampling layer where VoI dispersion
manifests.

C METRICS

The mathematical expressions of the metrics used in evaluation part are as follows. In the following
equations, Let P and Q denote the two point cloud sets and ||x||2 denote the Euclidean norm of
vector x. (Implementations are based on Density-aware Chamfer distance code (Wu et al., 2021).)

1

Published as a conference paper at ICLR 2025

• Chamfer distance (CD): The CD metric is computed by performing minimum-distance
matching between two point cloud sets and then averaging the distances.

CD(P,Q)

=
1

2

 1

|P |
∑
p∈P

min
q∈Q

||p− q||2 +
1

|Q|
∑
q∈Q

min
p∈P

||p− q||2

 .

• Hausdorff distance (HD): The HD metric is calculated by performing minimum-distance
matching between two point cloud sets and then taking the maximum distance among the
matched pairs.

HD(P,Q)

= max

(
max
p∈P

min
q∈Q

||p− q||2,max
q∈Q

min
p∈P

||p− q||2
)
.

• F1 score: The F1 score can be obtained as a harmonic mean of precision and recall. The
correctness of restored point is judged by whether it falls within a specified threshold radius
from a GT point. During the evaluation on the KITTI and Waymo datasets, we set the
threshold of F1 score as 15 cm and 30 cm, respectively.

F1score = 2× recall × precision

recall + precision
.

Each of the aforementioned metrics has its own strengths and limitations in fully evaluating restoration
performance. Therefore, in the main paper, we introduce a variety of metrics and use visual aids to
provide a more insightful understanding.

D IMPLEMENTATION DETAILS

Training. The training process employs an RTX 3090 GPU with 24GB of memory. Initially, feature
extractors are pre-trained separately on the KITTI (Geiger et al., 2012) and Waymo (Sun et al., 2020)
datasets, and then frozen during the training of inversion attack models. The KITTI dataset consists
of 3,712 training and 3,769 evaluation data, while the Waymo dataset comprises 15,809 training and
3,999 evaluation data (1/10 sampling ratio).

The point cloud range and voxel size for the 3D feature extractor are configured according to the
3D object detection benchmarks of each dataset. For KITTI, with a range of x: [0, 70.4] m, y: [-40,
40] m, and z: [-3, 1] m of range, the voxel size is set to (5 cm, 5 cm, 10 cm), resulting in a grid size of
(1408, 1600, 40). For Waymo, with a range of x: [-75.2, 75.2] m, y: [-75.2, 75.2] m, and z: [-2, 4] m
of range, the voxel size is set to (10 cm, 10 cm, 15 cm), resulting in a grid size of (1504, 1504, 40).
Notably, during the training of our inversion attack models, we crop these regions to approximately
1/16 of the total range to accommodate GPU memory constraints. (For KITTI, x: [0, 17.6] m, y: [-10,
10] m, and z: [-3, 1] m, resulting in (352, 400, 40) grid. For Waymo, x: [0, 40] m, y: [-20, 20] m,
and z: [-2, 4] m, resulting in (400, 400, 40) grid.) The region near the origin of the LiDAR sensor is
selected because severe distortion is more likely to occur there due to the feature extractor. During
evaluation, the range is extended back to the full object detection range. (For visualization, captured
images from the close range are used.)

The training process uses the Adam optimizer with a learning rate of 0.0001. For the KITTI dataset,
models are trained for 150 epochs with a batch size of 4, while 30 epochs with a batch size of 2
for the Waymo dataset. When employing SF loss (VOC and ConcreTizer), the γ value is set to 2.
Tables 1, 2 present the α values used in the experiments. For ConcreTizer , the number of blocks
increases alongside the number of downsampling layers; consequently, the α value for each block is
denoted as an ordered pair.

2

Published as a conference paper at ICLR 2025

The training process uses the Adam optimizer with a learning rate of 0.0001. For the KITTI dataset,
models are trained for 150 epochs with a batch size of 4, while for the Waymo dataset, 30 epochs
are used with a batch size of 2. When employing SF loss (for VOC and ConcreTizer), the gamma
value is set to 2. Tables 1 and 2 present the α values used in the experiments. For ConcreTizer, the
number of blocks increases with the number of downsampling layers; thus, the α value for each block
is represented as an ordered pair.

License. The licenses of the datasets we used in the experiment are the custom (non-commercial) for
KITTI dataset and the CC BY-NC-SA 3.0 for Waymo dataset, respectively. In the case of the 3D
feature extractor, it was created based on the OpenPCDet (Team, 2020) project corresponding to the
license of the Apache License 2.0.

E MODEL ARCHITECTURE

3D feature extractor. Our training process employs two feature extractors: VoxelBackBone and
VoxelResBackBone. Their structures are provided in Tables 3, 4, respectively. Both extractors consist
of four downsampling layers, each preceded by submanifold convolution layers. VoxelResBackBone
incorporates two submanifold convolutional layers and a skip connection, forming a residual block,
rather than a single submanifold convolutional layer. Our inversion attack model employs an identical
structure for both feature extractors (i.e., symmetric with VoxelBackBone), considering the absence
of spatial dispersion in submanifold convolutions.

Inversion attack model. Table 5 shows the structure of the point regression (PR) model. Basically, it
is symmetrical to the VoxelBackBone feature extractor but output with three-dimensional channel
because it predicts the x, y, and z coordinates excluding the intensity value. Conversely, the voxel
occupancy classification (VOC), as shown in Table 6, outputs a one-dimensional channel because the
occupancy of the voxel unit is classified in the final layer. Regarding ConcreTizer in Table 7, since it
undergoes block-wise training through dispersion-controlled supervision (DCS), a classification layer
is appended to each block. In this case, both classification and regression are performed together
except for last block, as the intermediate layer’s feature necessitates not only occupancy but also
channel values.

F SUPPLEMENTARY EVALUATION

In this section, while the main paper already effectively conveys our message through its results, we
aim to provide more detailed experimental outcomes and settings. This additional information offers
deeper insights and a more comprehensive understanding of our research methodology and findings.

F.1 FURTHER DETAILS OF RESTORATION PERFORMANCE

To understand where the performance of ConcreTizer manifests, we delve into a detailed examination
of the impact of VOC and DCS, the key components of ConcreTizer . Figures 3 and 4 illustrates the
comparative performance of Point Regression, VOC, and ConcreTizer (VOC+DCS) across different
depths of the feature extractor’s layers. These results show that using only VOC significantly improves
performance in all cases compared to conventional Point Regression. Incorporating DCS ensures
sustained performance even with increased layer depth, particularly evident in metrics like CD and F1
score, where variance is reduced. This effectiveness stems from DCS’s ability to efficiently mitigate
the dispersion of VoI that arises with deeper layer configurations.

In an extension to the main paper, Table 8 provides a quantitative evaluation result for VoxelResBack-
Bone. Figures 5, 6, 7, and 8 serve as visual aids to demonstrate the performance for VoxelBackBone
and VoxelResBackBone on a wider array of example scenes from the KITTI and Waymo datasets,
respectively. Each figure displays the restoration results from the final (12th) layer. ConcreTizer
demonstrates superior performance in restoring the overall shape when compared to VOC’s restora-
tion, which tends to be excessively clustered.

3

Published as a conference paper at ICLR 2025

F.2 FURTHER DETAILS OF DCS INSTANCES

Section 5.5 covers an ablation study on the number of DCS instances. Figure 9 illustrates the
restoration results for different numbers of DCS instances. An increasing number of DCS instances
leads to a gradual accumulation of errors in partitions, resulting in a significant deterioration in
restoration quality for ten instances. In contrast, ConcreTizer’s downsampling-based partitioning
performs better by preventing VoI dispersion, which outweighs the cumulative error effect.

F.3 DCS OPTIMAL SPLIT POSITION

When employing DCS, a trade-off occurs at the split point: while DCS helps mitigate dispersion
effects with additional supervision, it also risks accumulating restoration errors in the next block. Sec-
tion 5.5 analyzes performance with respect to the number of DCS blocks, showing high performance
with 2, 3, or 4 blocks. Here, we explore performance with different split positions for the 2-block and
4-block configurations.

Figure 10 shows the performance with two DCS blocks. Notably, split option 0 exhibited a significant
performance drop compared to options 1 or 2. In less dispersed blocks (f12 ~f’9), the splitting
effect is minimal, while in highly dispersed blocks (f’9 ~f’2), restoration without splitting proved to
be challenging. The best performance was observed with split option 2, because supervision was
effectively placed where dispersion effects were similar in blocks (f12 ~f’5) and (f’5 ~f’2). Our
ConcreTizer (option 1) achieved balanced performance by evenly splitting based on downsampling
layers. Further, in Figure 11, with four DCS blocks, options 0 and 1 displayed inferior performance
due to uneven dispersion splitting. In contrast, our ConcreTizer (option 2) and options 3 and 4
achieved better results by appropriately distributing dispersion effects.

This suggests potential research avenues for finding optimal split positions. The randomization effects
in 3D voxel data can be divided into two types: value randomization due to convolution filters and
spatial randomization caused by downsampling layers. These effects may change depending on the
dimension and sparsity of the input data. Therefore, modeling the randomization effects for each
layer could enable future investigations into optimal split positions.

F.4 FURTHER DETAILS OF POINT CLOUD AUGMENTATION

In Section 5.6, we analyzed the trade-off between utility (3D object detection) and privacy (defense
against inversion attacks) by applying point cloud augmentation techniques (Wang et al., 2024b;
Li et al., 2021; Wang et al., 2024a). The results indicate that both rotation and scaling methods
caused a sharp decline in utility. This is attributed to the distinct characteristics of the labels used in
classification and object detection tasks.

For classification tasks, the label corresponds to the entire point cloud and represents the object’s cat-
egory. Transformations such as rotation or scaling do not alter the label, as they preserve the object’s
overall shape and category. Therefore, these augmentations can enhance the models’ robustness and
improve performance.

For object detection tasks, the labels not only include the object category but also precise location
details, such as position, size, and orientation within a complex scene. When transformations like
rotation or scaling are applied, the ground-truth location information in the labels must also be updated
to reflect these changes. During training, this adjustment is feasible since the labels are available,
enabling effective data augmentation. However, during test-time defenses against inversion attacks,
label information is unavailable, and data perturbations occur without corresponding label updates.
This mismatch between transformed data and unchanged labels leads to significant performance
degradation. This effect is particularly pronounced for distant objects, where small augmentations
like rotation and scaling can result in large distortions. In contrast, random sampling does not require
label adjustments, as it does not alter the location-based information in the labels. Consequently, its
impact on performance is relatively minor.

4

Published as a conference paper at ICLR 2025

F.5 FURTHER DETAILS OF NOISE EFFECT

Section 5.6 explores the impact of various types of noise on feature restoration using the SECOND
object detection model (Yan et al., 2018) and assesses object detection performance with these
noise-added features. Additionally, Figure 12 illustrates the restoration results as noise levels vary,
highlighting how the sparse nature of the 3D features leads to different impacts on restoration
performance depending on the noise’s location within the feature.

F.6 POTENTIAL DEFENSE STRATEGIES FOR INVERSION ATTACK

To counter inversion attacks, several defense mechanisms have been proposed, each with unique
strengths and limitations.

Differential privacy (DP) protects against privacy leakages by adding noise, such as Gaussian or
Laplacian, based on a mathematically defined privacy budget (Abadi et al., 2016; Zhao & Chen, 2022).
This approach provides robust protection against worst-case scenarios but excessively sacrifices utility.
Recent advancements have integrated DP with generative models (Chen et al., 2021; Xue et al., 2023),
achieving better privacy-utility trade-offs. However, these methods rely on separate generative models,
introducing latency that makes them unsuitable for real-time applications.

Adversarial training improves model robustness by training alongside an attack model. Early
methods (Raval et al., 2019; Wu et al., 2018) used generative models for obfuscation, but this
led to inference overhead, which is impractical for latency-sensitive environments. More recent
approaches (Liu et al., 2019) have proposed adversarial training without generative models, relying
solely on the utility model. While this reduces inference overhead, it still requires retraining the
feature extractor for a given attack model.

Feature obfuscation, among other approaches, reduces mutual information between raw data and
feature data through loss functions (Zhang et al., 2022), offering a good balance between privacy
and utility. However, this approach also requires managing both a utility model and an independent
model, adding complexity to system management and maintenance.

Future research should focus on developing defense techniques that offer optimal privacy-utility
trade-offs without sacrificing real-time performance, especially for latency-sensitive applications like
autonomous driving.

5

Published as a conference paper at ICLR 2025

Figure 1: (Left) Voxel distribution by point count: The voxel distribution based on the number
of points inside each voxel using a cumulative distribution function. (Right) Non-empty voxel
distribution: The distribution of multiple-points and single-point voxels within the range of x to x+1
meters.

KITTI eval # 340

KITTI eval # 340

points: 577

points: 535

points: 281

points: 284

Voxelization

Original data

Voxelization result

Figure 2: Effect of voxelization process on point cloud. The voxel size is 5 cm x 5 cm x 10 cm, and
the maximum number of points per voxel is set as 5. Then points in each voxel are averaged to get a
single representative value for each channel.

Table 1: α values of SF loss for VoxelBackBone with KITTI and Waymo dataset. ConcreTizer
employs multiple blocks, each with a distinct α value.

of Downsampling
(LayerDepth) 1 (3rd) 2 (6th) 3 (9th) 4 (12th)

KITTI VOC 0.7 0.75 0.8 0.825
ConcreTizer 0.7 (0.7, 0.75) (0.7, 0.75, 0.75) (0.7, 0.75, 0.75, 0.75)

Waymo VOC 0.6 0.6 0.72 0.75
ConcreTizer 0.6 (0.7, 0.7) (0.9, 0.7, 0.8) (0.9, 0.85, 0.95, 0.95)

Table 2: α values of SF loss for VoxelResBackBone with KITTI and Waymo dataset. ConcreTizer
employs multiple blocks, each with a distinct α value.

of Downsampling
(LayerDepth) 1 (3rd) 2 (6th) 3 (9th) 4 (12th)

KITTI VOC 0.7 0.75 0.8 0.8
ConcreTizer 0.7 (0.7, 0.8) (0.7, 0.8, 0.75) (0.7, 0.8, 0.75, 0.7)

Waymo VOC 0.6 0.5 0.68 0.75
ConcreTizer 0.6 (0.4, 0.4) (0.5, 0.5, 0.6) (0.65, 0.7, 0.8, 0.7)

6

Published as a conference paper at ICLR 2025

Table 3: Baseline 3D feature extractor (VoxelBackBone).

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Voxelization result 4×41×1600×1408 4×41×1504×1504

Down block 1
4×3×3×3, 16

16×3×3×3, 16
16×3×3×3, 32, stride 2,2,2, padding 1,1,1

32×21×800×704 32×21×752×752

Down block 2
32×3×3×3, 32
32×3×3×3, 32

32×3×3×3, 64, stride 2,2,2, padding 1,1,1
64×11×400×352 64×11×376×376

Down block 3
64×3×3×3, 64
64×3×3×3, 64

64×3×3×3, 64, stride 2,2,2, padding 0,1,1
64×5×200×176 64×5×188×188

Down block 4
64×3×3×3, 64
64×3×3×3, 64

64×3×1×1, 128, stride 2,1,1
128×2×200×176 128×2×188×188

Table 4: 3D feature extractor with residual blocks (VoxelResBackBone).

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Voxelization result 4×41×1600×1408 4×41×1504×1504

Down block 1

4×3×3×3, 16

[
16×3×3×3, 16
16×3×3×3, 16] ×2

16×3×3×3, 32, stride 2,2,2, padding 1,1,1

32×21×800×704 32×21×752×752

Down block 2 [
32×3×3×3, 32
32×3×3×3, 32] ×2

32×3×3×3, 64, stride 2,2,2, padding 1,1,1
64×11×400×352 64×11×376×376

Down block 3 [
64×3×3×3, 64
64×3×3×3, 64] ×2

64×3×3×3, 128, stride 2,2,2, padding 0,1,1
128×5×200×176 128×5×188×188

Down block 4 [
128×3×3×3, 128
128×3×3×3, 128] ×2

128×3×1×1, 128, stride 2,1,1
128×2×200×176 128×2×188×188

Table 5: Inversion attack model with point regression (PR).

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Down block 4 result 128×2×50×44 128×2×50×50

Up block 4
128×3×1×1, 64, stride 2,1,1

64×3×3×3, 64
64×3×3×3, 64

64×5×50×44 64×5×50×50

Up block 3
64×3×2×2, 64, stride 2,2,2

64×3×3×3, 64
64×3×3×3, 64

64×11×100×88 64×11×100×100

Up block 2
64×2×2×2, 32, stride 2,2,2

32×3×3×3, 32
32×3×3×3, 32

32×21×200×176 32×21×200×200

Up block 1 32×2×2×2, 16, stride 2,2,2 16×41×400×352 16×41×400×400
Regression 16×3×3×3, 3 3×41×400×352 3×41×400×400

Table 6: Inversion attack model with VOC.

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Down block 4 result 128×2×50×44 128×2×50×50

Up block 4
128×3×1×1, 64, stride 2,1,1

64×3×3×3, 64
64×3×3×3, 64

64×5×50×44 64×5×50×50

Up block 3
64×3×2×2, 64, stride 2,2,2

64×3×3×3, 64
64×3×3×3, 64

64×11×100×88 64×11×100×100

Up block 2
64×2×2×2, 32, stride 2,2,2

32×3×3×3, 32
32×3×3×3, 32

32×21×200×176 32×21×200×200

Up block 1 32×2×2×2, 16, stride 2,2,2 16×41×400×352 16×41×400×400
Classification 16×3×3×3, 1 1×41×400×352 1×41×400×400

Table 7: Inversion attack model with VOC and DCS (ConcreTizer).

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Down block 4 result 128×2×50×44 128×2×50×50

Up block 4
128×3×1×1, 64, stride 2,1,1

64×3×3×3, 64
64×3×3×3, 64

64×5×50×44 64×5×50×50

Classification 4 64×3×3×3, 1 1×6×50×44 1×6×50×50

Up block 3
64×3×2×2, 64, stride 2,2,2

64×3×3×3, 64
64×3×3×3, 64

64×11×100×88 64×11×100×100

Classification 3 64×3×3×3, 1 1×11×100×88 1×11×100×100

Up block 2
64×2×2×2, 32, stride 2,2,2

32×3×3×3, 32
32×3×3×3, 32

32×21×200×176 32×21×200×200

Classification 2 32×3×3×3, 1 1×21×200×176 1×21×200×200
Up block 1 32×2×2×2, 16, stride 2,2,2 16×41×400×352 16×41×400×400

Classification 1 16×3×3×3, 1 1×41×400×352 1×41×400×400

7

Published as a conference paper at ICLR 2025

Table 8: Inversion attack result for VoxelResBackBone with KITTI and Waymo dataset. Average
CD and HD values in centimeters, and F1 scores with 15 cm and 30 cm thresholds for KITTI and
Waymo datasets. Metrics evaluate over two datasets with 3769 and 3999 scenes, respectively.

#Downsampling 1 (3rd) 2 (6th) 3 (9th) 4 (12th)
(LayerDepth) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑)

K
IT

T
I

Point Regression 1.2115 21.7866 0.3752 1.1540 31.3538 0.4101 2.9976 52.9479 0.2421 3.7381 55.6439 0.1483
UltraLiDAR 0.0766 8.2591 0.9040 0.0773 8.0839 0.9054 0.0811 7.8901 0.8945 0.0977 7.8521 0.8329

VOC (BCE loss) 0.0318 7.5409 0.9918 0.0368 7.5395 0.9907 0.1217 8.4344 0.8122 0.6315 23.0653 0.6012
VOC 0.0319 7.5384 0.9918 0.0349 7.5336 0.9917 0.0490 7.5900 0.9645 0.1261 10.9786 0.8726

ConcreTizer 0.0319 7.5384 0.9918 0.0367 7.5336 0.9913 0.0478 7.7806 0.9801 0.0714 9.5625 0.9350

W
ay

m
o

Point Regression 1.4991 54.7718 0.7556 2.0036 60.7505 0.7194 3.8474 70.1183 0.5761 4.5276 71.9906 0.4951
UltraLiDAR 0.0840 11.0301 0.9735 0.0890 11.6088 0.9635 0.1009 11.6971 0.9503 0.1243 11.9076 0.9128

VOC (BCE loss) 0.0380 10.2578 0.9981 0.0445 10.2615 0.9981 0.1038 11.9206 0.9150 0.5445 25.7258 0.6273
VOC 0.0380 10.2366 0.9983 0.0445 10.2678 0.9980 0.0658 10.5032 0.9758 0.1384 14.6677 0.8946

ConcreTizer 0.0380 10.2366 0.9983 0.0466 10.2431 0.9981 0.0629 10.6323 0.9922 0.0946 11.6200 0.9479

6 9 12

10 1

100

101

C
D

(log)

6 9 12

100

101

H
D

(log)

KITTI

6 9 12
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Point Regression
VOC
ConcreTizer

Layer Depth

Figure 3: Component-wise comparison with KITTI dataset.

6 9 12

10 1

100

101

C
D

(log)

6 9 12

100

101

H
D

(log)

Waymo

6 9 12

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Point regression
VOC
ConcreTizer

Layer Depth

Figure 4: Component-wise comparison with Waymo dataset.

8

Published as a conference paper at ICLR 2025

VOCVOC (BCE loss)UltraLiDAR ConcreTizer
#

 2
6

1
#

 2
1

3

Restoration from ���� ���	

#
 2

6
3

#
 2

9
7

Original

KITTI data

<VoxelBackbone>

Point Regression

Figure 5: Additional qualitative results for VoxelBackBone with KITTI dataset. Each row
presents the restoration result and corresponding original data for a specific KITTI validation scene.
The input is the 12th (the final) layer.

Waymo data

<VoxelBackbone>

VOCVOC (BCE loss)UltraLiDAR ConcreTizer

#
 2

2
2

#
 4

0

Restoration from ���� ���	

#
 3

0
0

#
 2

9
2

4

OriginalPoint Regression

Figure 6: Additional qualitative results for VoxelBackBone with Waymo dataset. Each row
presents the restoration result and corresponding original data for a specific Waymo validation scene.
The input is the 12th (the final) layer.

9

Published as a conference paper at ICLR 2025

KITTI data

<VoxelResBackbone>

VOCVOC (BCE loss)UltraLiDAR ConcreTizer
#

 2
8

6
#

 8
8

Restoration from ���� ���	

#
 4

9
3

#
 1

1
2

3
OriginalPoint Regression

Figure 7: Additional qualitative results for VoxelResBackBone with KITTI dataset. Each row
presents the restoration result and corresponding original data for a specific KITTI validation scene.
The input is the 12th (the final) layer.

Waymo data

<VoxelResBackbone>

VOCVOC (BCE loss)UltraLiDAR ConcreTizer

#
 4

6
2

#
 1

0
0

Restoration from ���� ���	

#
 8

8
4

#
 1

4
5

9

OriginalPoint Regression

Figure 8: Additional qualitative results for VoxelResBackBone with Waymo dataset. Each row
presents the restoration result and corresponding original data for a specific Waymo validation scene.
The input is the 12th (the final) layer.

10

Published as a conference paper at ICLR 2025

Original data

DCS #4DCS #2DCS #1 DCS #10

H
ig

h
li

g
h

t
E

n
ti

re
 S

ce
n

e

Restoration from ���� ���	

Highlight

DCS - Std

Figure 9: Qualitative result for different DCS instances with ConcreTizer model.

11

Published as a conference paper at ICLR 2025

< Option 0 >

��� �′� �′�

< Option 2 >

��� �′� �′�

< Option 1 >

��� �′� �′�

Figure 10: DCS #2 split option 0 to 2.

< Option 3 >

��� �′� �′� �′� �′�

< Option 4 >

��� �′� �′	 �′� �′�

< Option 0 >

����′���′�
�′� �′�

< Option 1 >

��� �′	 �′� �′� �′�

< Option 2 >

��� �′� �′� �′� �′�

Figure 11: DCS #4 split option 0 to 4.

12

Published as a conference paper at ICLR 2025

Restoration from 𝟏𝟐𝒕𝒉 𝒍𝒂𝒚𝒆𝒓

Empty‐centricFeature‐centricDistributed

KITTI data

Original data
Ze
ro
 n
o
is
e

St
d
. 0
.2

St
d
. 0
.4

St
d
. 0
.6

St
d
. 0
.8

St
d
. 1
.0

Figure 12: Qualitative results for different noise levels.

13

Published as a conference paper at ICLR 2025

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 308–318, 2016.

Jia-Wei Chen, Li-Ju Chen, Chia-Mu Yu, and Chun-Shien Lu. Perceptual indistinguishability-net (pi-net): Facial
image obfuscation with manipulable semantics. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6478–6487, 2021.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition, pp. 3354–3361.
IEEE, 2012.

Benjamin Graham and Laurens Van der Maaten. Submanifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017.

Xinke Li, Zhirui Chen, Yue Zhao, Zekun Tong, Yabang Zhao, Andrew Lim, and Joey Tianyi Zhou. Pointba:
Towards backdoor attacks in 3d point cloud. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 16492–16501, 2021.

Sicong Liu, Junzhao Du, Anshumali Shrivastava, and Lin Zhong. Privacy adversarial network: representation
learning for mobile data privacy. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(4):1–18, 2019.

Nisarg Raval, Ashwin Machanavajjhala, and Jerry Pan. Olympus: Sensor privacy through utility aware
obfuscation. Proceedings on Privacy Enhancing Technologies, 2019.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo,
Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous driving: Waymo
open dataset. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
2446–2454, 2020.

OpenPCDet Development Team. Openpcdet: An open-source toolbox for 3d object detection from point clouds.
https://github.com/open-mmlab/OpenPCDet, 2020.

Xianlong Wang, Minghui Li, Wei Liu, Hangtao Zhang, Shengshan Hu, Yechao Zhang, Ziqi Zhou, and Hai Jin.
Unlearnable 3d point clouds: Class-wise transformation is all you need. In In Advances in Neural Information
Processing Systems (NeurIPS), 2024, 2024a.

Xianlong Wang, Minghui Li, Peng Xu, Wei Liu, Leo Yu Zhang, Shengshan Hu, and Yanjun Zhang. Pointapa:
Towards availability poisoning attacks in 3d point clouds. In European Symposium on Research in Computer
Security, pp. 125–145. Springer, 2024b.

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. Density-aware chamfer distance as a
comprehensive metric for point cloud completion. In In Advances in Neural Information Processing Systems
(NeurIPS), 2021, 2021.

Zhenyu Wu, Zhangyang Wang, Zhaowen Wang, and Hailin Jin. Towards privacy-preserving visual recognition
via adversarial training: A pilot study. In Proceedings of the European conference on computer vision (ECCV),
pp. 606–624, 2018.

Hanyu Xue, Bo Liu, Ming Ding, Tianqing Zhu, Dayong Ye, Li Song, and Wanlei Zhou. Dp-image: Differential
privacy for image data in feature space, 2023.

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors, 18(10):3337,
2018.

Jiang Zhang, Lillian Clark, Matthew Clark, Konstantinos Psounis, and Peter Kairouz. Privacy-utility trades in
crowdsourced signal map obfuscation. Computer Networks, 215:109187, 2022.

Ying Zhao and Jinjun Chen. A survey on differential privacy for unstructured data content. ACM Computing
Surveys (CSUR), 54(10s):1–28, 2022.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4490–4499, 2018.

14

https://github.com/open-mmlab/OpenPCDet

	Voxelization Effect
	Dispersion of VoI
	Metrics
	Implementation Details
	Model Architecture
	Supplementary Evaluation
	Further Details of Restoration Performance
	Further Details of DCS Instances
	DCS Optimal Split Position
	Further Details of Point Cloud Augmentation
	Further Details of Noise Effect
	Potential Defense Strategies for Inversion Attack

