
UTBoost: Rigorous Evaluation of Coding Agents on SWE-Bench

Anonymous ACL submission

Abstract001

The rise of Large Language Models (LLMs)002
has fueled the development of coding agents003
designed to solve real-world code generation004
tasks. SWE-Bench has become a widely used005
benchmark for evaluating the code generation006
capabilities of these agents, using real-world007
problems derived from GitHub issues and their008
corresponding pull requests. However, the man-009
ually written test cases included in these pull010
requests are often insufficient, allowing some011
generated patches to pass the tests while failing012
to resolve the underlying issue. To address this013
challenge, we introduce UTGenerator, an LLM-014
driven test case generator that automatically an-015
alyzes codebases and dependencies to generate016
test cases for real-world Python projects. Build-017
ing on UTGenerator, we propose UTBoost, a018
comprehensive framework for test case aug-019
mentation. UTBoost ensures that the generated020
patch functions equivalently to the gold patch021
and passes the same test cases. In our eval-022
uation, we identified 36 task instances with023
insufficient test cases and uncovered 345 erro-024
neous patches incorrectly labeled as passed in025
the original SWE Bench. These corrections026
significantly impact leaderboard rankings, af-027
fecting 40.9% of entries in SWE-Bench Lite028
and 24.4% in SWE-Bench Verified.029

1 Introduction030

Advances in large language models (LLMs) have031

enabled the development of automated coding032

agents capable of generating code for software en-033

gineering tasks. To evaluate their effectiveness on034

real-world Python projects, prior work introduced035

SWE-Bench (Jimenez et al., 2024), a benchmark036

specifically designed for this purpose. Each in-037

stance in SWE-Bench consists of a repository, an038

issue description, and a set of manually written test039

cases to verify whether the issue is resolved. The040

task of coding agents is to generate a patch that041

resolves the issue, as demonstrated by successfully042

passing all relevant test cases.043

However, the manually written test cases in 044

SWE-Bench can be too narrow to comprehensively 045

evaluate the correctness of the patches generated 046

by coding agents (OpenAI, 2024; Chen and Jiang, 047

2024; Aleithan et al., 2024). Consequently, erro- 048

neous patches generated by agents may be incor- 049

rectly considered to resolve the issue, compromis- 050

ing the reliability of SWE-Bench. 051

To comprehensively evaluate the code genera- 052

tion ability of coding agents on real-world Python 053

projects, we propose a novel LLM-based test case 054

generator named UTGenerator, which automati- 055

cally generates test cases. UTGenerator operates 056

in two steps. First, it identifies where new test 057

cases should be added by analyzing the codebase 058

and issue description. Then, based on this location, 059

UTGenerator analyzes package dependencies and 060

generates code as unit test cases. 061

To verify whether the generated patch functions 062

equivalently to the gold patch on the new test cases, 063

we employ intramorphic testing (Rigger and Su, 064

2022) to construct a test oracle. Intramorphic test- 065

ing is a white-box automated testing technique that 066

establishes a test oracle by comparing the outputs 067

of the original and modified systems using the same 068

input. Since the gold patch and the generated patch 069

are expected to resolve the issue equivalently, the 070

test oracle ensures that both patches pass the same 071

issue-related test cases. 072

As a motivating example, the issue description 073

in the instance mwaskom__seaborn-3010 requires 074

PolyFit, a function that computes polynomial fits 075

for data, to handle missing data in the inputs x and 076

y. However, the original test case for this issue, 077

as shown in Listing 1 (line 3), only considers sce- 078

narios where both x and y have missing data. A 079

comprehensive set of tests should include cases 080

where only one of the inputs, x or y, has missing 081

data. Our solution adds a test case where only x has 082

missing data to complement the original test cases, 083

as shown in Listing 2 (lines 3-4). Unlike the gold 084

1



patch that resolves the issue (Listing 3), the gen-085

erated patch fails to handle these additional cases086

but throws an error message, as shown in Listing 4087

(lines 4-5). Thus, while the generated patch passes088

the original test case, it does not resolve the issue.089

However, adding new test cases is not sufficient090

if these test cases are not properly accounted for091

in the SWE-Bench evaluation pipeline. This is be-092

cause SWE-Bench uses a parser based on regular093

expressions to extract test cases from the test log,094

but the original parser fails to parse many test cases095

due to certain defects. For example, it can not han-096

dle test cases that span multiple lines in the test log.097

To address these issues, we improved the original098

SWE-Bench parser by fixing its defects to enhance099

the rigor of the evaluation process. With the im-100

proved parser, we identified 64 erroneous patches101

generated by coding agents that were incorrectly102

labeled as passed in SWE-Bench Lite, and 79 er-103

roneous patches that were similarly mislabeled in104

SWE-Bench Verified.105

Building on UTGenerator and intramorphic test-106

ing, we propose UTBoost, a framework for aug-107

menting test cases in real-world Python projects.108

Given a SWE-Bench instance and a generated109

patch as input, UTBoost generates new test cases110

(e.g., Listing 2) and flags the instance as suspicious111

if the gold patch and the generated patch behave112

differently in the new test cases. If the generated113

test cases complement the original ones, they are114

added to the original test suite.115

We applied UTBoost to SWE-Bench Lite (Car-116

los E. Jimenez, 2024) and SWE-Bench Veri-117

fied (OpenAI, 2024). Our analysis identified 176118

erroneous patches in SWE-Bench Lite and 169 in119

SWE-Bench Verified that were incorrectly evalu-120

ated as passing in the original SWE-Bench. These121

corrections resulted in significant leaderboard up-122

dates, with ranking changes affecting 40.9% of en-123

tries in SWE-Bench Lite and 24.4% in SWE-Bench124

Verified. Notably, in the original SWE-Bench Ver-125

ified leaderboard, Amazon-Q-Developer-Agent126

ranked 1st and devlo ranked 2nd; however, both127

now share the 1st rank in the updated leaderboard.128

With the augmented test cases generated by UT-129

Generator, we identified 7.7% (23/300) of instances130

in SWE-Bench Lite and 5.2% (26/500) of instances131

in SWE-Bench Verified as having insufficient test132

cases. Using our improved parser, we also iden-133

tified annotation errors in 54.6% (164/300) of in-134

stances in SWE-Bench Lite and 54.2% (271/500)135

of instances in SWE-Bench Verified.136

1 def test_missing_data(self , df):
2 groupby = GroupBy (["group"])
3 df.iloc [5:10] = np.nan
4 res1 = PolyFit ()(df[["x", "y"]], groupby ,

"x", {})
5 res2 = PolyFit ()(df[["x", "y"]]. dropna (),

groupby , "x", {})
6 assert_frame_equal(res1 , res2)

Listing 1: The original test case in SWE-Bench that
only considers the case when there is missing data both
in x and y (mwaskom__seaborn-3010).

1 def test_none_values(self):
2 df = pd.DataFrame ({
3 "x": [1, 2, 3, None , 4, 5, 6],
4 "y": [1, 4, 9, 16, 25, 36, 49],
5 "group": [1, 1, 1, 1, 1, 1, 1]})
6 groupby = GroupBy (["group"])
7 res1 = PolyFit ()(df, groupby , "x", {})
8 res2 = PolyFit ()(df.dropna (), groupby , "x",

{})
9 assert_frame_equal(res1 , res2)

Listing 2: The augmented test case that considers
the case when there is only missing data in x
(mwaskom__seaborn-3010).

1 def __call__(self , data , groupby , orient , scales):
2 return (groupby.apply(
3 data.dropna(subset =["x", "y"]),
4 self._fit_predict))

Listing 3: The gold patch (mwaskom__seaborn-3010).

1 def _fit_predict(self , data):
2 y = data["y"]. dropna ()
3 x = data["x"]. dropna ()
4 if x.shape [0] != y.shape [0]:
5 raise ValueError("x and y must have the

same number of non -missing values")
6 if x.nunique () <= self.order:
7 # TODO warn?
8 xx = yy = []

Listing 4: The generated patch by IBM SWE-1.0
(mwaskom__seaborn-3010).

2 SWE-Bench 137

This section introduces SWE-Bench (Jimenez et al., 138

2024) and its two splits: SWE-Bench Lite and 139

SWE-Bench Verified (OpenAI, 2024). 140

SWE-Bench SWE-Bench is a benchmark for 141

evaluating the code generation capabilities of cod- 142

ing agents on real-world GitHub projects. It fea- 143

tures 12 popular Python repositories and focuses on 144

generating pull requests to address specific issues 145

by producing code edits represented as patch files. 146

Each task instance includes a gold patch crafted by 147

human developers, which serves as a reference for 148

resolving the issue. 149

In the SWE-Bench evaluation, an agent gener- 150

ates a patch based on the issue description and 151

2



the codebase. The patch is then applied, and152

its correctness is assessed using two types of153

unit tests: PASS_TO_PASS and FAIL_TO_PASS. The154

benchmark evaluates performance by measuring155

the percentage of patches that successfully pass156

both types of tests for each instance. To extract test157

results from logs generated in instance-specific vir-158

tual environments, the evaluation pipeline employs159

repository-specific parsers with manually crafted160

regular expressions, averaging 23 lines of code.161

SWE-Bench Lite The full SWE-bench test split162

comprises 2,294 issue-commit pairs across 12163

Python repositories. SWE-Bench Lite is a lite ver-164

sion of SWE-Bench, which is a subset of SWE-165

Bench with 300 task instances. These instances166

focus on evaluating functional bug fixes, ensuring167

they are more self-contained while maintaining the168

original diversity across 11 of the 12 repositories.169

SWE-Bench Verified OpenAI introduced a new170

version of SWE-Bench (OpenAI, 2024), named171

SWE-Bench Verified, to improve the robustness172

and reliability of the evaluation. They identified173

two major problems with the data in SWE-Bench:174

• Unit tests: The unit tests are sometimes too175

specific or unrelated to the issue, which poten-176

tially causes correct solutions to be rejected.177

• Issue description: Many samples have an is-178

sue description that is underspecified, leading179

to ambiguity on the problem and how it should180

be fixed.181

To address these two issues, OenAI launched a182

human annotation campaign with 93 professional183

software developers to screen each sample of the184

SWE-bench test set for appropriately scoped unit185

tests and well-specified issue descriptions. Finally,186

they released SWE-Bench Verified, a subset of 500187

samples that the human annotators verified to be188

non-problematic.189

3 Methodology190

In this section, we introduce UTBoost, an archi-191

tecture for comprehensively testing coding agents192

using intramorphic testing (Rigger and Su, 2022).193

We discuss the construction of the test oracle, detail194

the workflow of UTBoost, and present UTGenera-195

tor, our LLM-based test case generator.196

Component !!

Program "

Intramorphic 

Transformation

Result # 

Component !"

Component !#

Component !!

Program "$ = "[!"$/!"]

Component !"

Component !#

Testing Testing

Result #$ 
Intramorphic relation holds := same results

Figure 1: The architecture of intramorphic testing (we
define P , Ci, R as the program, the i-th component of
the program, and the program’s output, respectively).

3.1 Test Oracle 197

A test oracle determines whether a system behaves 198

correctly for a given input. Automated testing tech- 199

niques rely on an automated test oracle to test the 200

system without user interaction. In UTBoost, we 201

employ intramorphic testing to establish a test ora- 202

cle for evaluating the generated patches. Intramor- 203

phic testing creates a modified version of the sys- 204

tem, enabling a single input to define a test oracle 205

that establishes the relationship between the out- 206

puts of the original and modified systems. 207

In SWE-Bench, the gold patch serves as the 208

ground truth for resolving the issue. A generated 209

patch that resolves the issue provides an alternative 210

implementation to achieve the same functionality 211

as the gold patch and should pass the same test 212

cases associated with the issue. We define P as 213

the program to which the gold patch is applied and 214

P ′ as the program to which the generated patch is 215

applied. The difference between P and P ′ lies in 216

the component C of P , which is transformed into 217

C ′ in P ′ through an intramorphic transformation, 218

as illustrated in Figure 1. We then construct a test 219

oracle to evaluate the generated patches, defined by 220

the intramorphic relation P (T ) = P ′(T ), where T 221

represents the test cases. To the best of our knowl- 222

edge, this is the first work to apply intramorphic 223

testing for evaluating real-world software. 224

3.2 UTBoost Workflow 225

UTBoost is an automated testing approach that 226

constructs a test oracle for evaluating generated 227

patches through intramorphic testing, as illustrated 228

in Figure 2. We define the original test cases in 229

SWE-Bench as Torig and the augmented test cases 230

3



Is the intramorphic 
relation still satisfied?

Report suspicious issue

No

Yes
Pass

Test Case
Generator

Is the intramorphic 
relation satisfied?

No
Fail

Yes

SWE-
Bench

Gold Patch

Generated 
Patch

Augmented
Test case Testing result

Gold Patch

Generated 
Patch

Original
Test case Testing result

Figure 2: The architecture of UTBoost.

Issue

Project Codebase

Original Test Cases

SWE-Bench

1. sklearn/svm/tests/te
st_svm.py

2. sklearn/svm/base.py

Located Top-N Files
1. sklearn/svm/tests/test_svm.py 

{function:test_sparse_fit_sv_em
pty}

2. sklearn/svm/base.py
        {function: _sparse_fit}

Located Classes/Fuctions

1. sklearn/svm/test
s/test_svm.py       
{line: 693-740}

        …

Located Lines

2 31

LLM

File-level Localization
Function/Class-level Localization
Line-level Localization

1
2
3

Provide context to LLM

1. from scipy import sparse…
2. def test_sparse_fit():
         X_train = sparse.csr_matrix([[1, 0,          

0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + 
[0, 0, 0, 1]])…

Test cases and dependencies
Generate test 
case& dependency

Figure 3: The architecture of UTGenerator.

as Taug. The UTBoost process consists of two231

steps: (1) testing on the original test cases, and (2)232

testing on the augmented test cases.233

In the first step, we select the generated patches234

that pass the original test cases as gold patches235

in SWE-Bench, satisfying the intramorphic rela-236

tion P (Torig) = P ′(Torig). We then invoke the237

test case generator, UTGenerator, to produce aug-238

mented test cases, Taug.239

In the second step, we apply the augmented test240

cases Taug to both the program P and the pro-241

gram P ′ to check whether the intramorphic relation242

still holds for Taug. If the intramorphic relation243

P (Taug) = P ′(Taug) does not hold, we report it244

as a suspicious issue, as either the gold patch or245

the generated patch fails to pass the augmented test246

cases. This discrepancy indicates that the original247

test cases Torig are insufficient for fully evaluating248

the patch’s correctness. To achieve a more compre-249

hensive evaluation, we add Taug to the original test250

suite.251

3.3 UTGenerator252

In UTBoost, a test case generator is required to253

produce augmented test cases for more comprehen-254

sive testing. To enhance the diversity of these test255

cases, we introduce UTGenerator, an LLM-based256

test case generator. The architecture of UTGener-257

ator, illustrated in Figure 3, consists of two steps:258

(1) localization and (2) test case generation. The 259

localization step operates at three levels: file-level, 260

function/class-level, and line-level. 261

3.3.1 File-level Localization 262

Since real-world project codebases are generally 263

very large, we construct a tree-structured rep- 264

resentation of the codebase to organize its files 265

and their locations. Files and folders at the same 266

directory level are aligned vertically. UTGenerator 267

then takes the issue description, the original test 268

patch from SWE-Bench, and the tree-structured 269

codebase as input to an LLM, which identifies 270

the Top-N files most likely to require edits 271

for adding test cases. Figure 3 illustrates an 272

example of the three levels of file localization 273

in scikit-learn__scikit-learn-14894, 274

an instance from SWE-Bench Verified. 275

In the first step, UTGenerator identifies 276

sklearn/svm/tests/test_svm.py and 277

sklearn/svm/base.py as the most likely 278

files to add the augmented test cases. 279

3.3.2 Function/class-level Localization 280

For function/class-level localization, we first com- 281

press the codebase files by retaining only the head- 282

ers of classes and functions. After identifying 283

the Top-N files for potential edits through file- 284

level localization, we provide their compressed 285

formats, along with the issue description and the 286

4



original test patch, as input to an LLM. The287

LLM analyzes these inputs to identify the func-288

tions or classes most likely to require augmented289

test cases. As illustrated in the second step of290

Figure 3, this process identifies the functions291

test_sparse_fit_sv_empty and _sparse_fit292

as the most likely candidates for adding the aug-293

mented test cases.294

3.3.3 Line-level Localization295

After identifying the functions or classes where296

augmented test cases should be added, we ex-297

tract their code snippets and provide them, along298

with the issue description and the original test299

patch, as input to an LLM. The LLM analyzes300

the inputs to determine the specific lines within301

the functions or classes that are most suitable for302

adding the augmented test cases. For instance,303

as shown in Figure 3, lines 693–740 of the file304

sklearn/SVM/tests/test_svm.py are identified305

as the most likely candidates for adding the aug-306

mented test cases.307

3.3.4 Test Case Generation308

The final step is to generate the augmented test309

cases and their dependencies. We use a context win-310

dow of x lines of code to expand the located lines311

and control the range for adding the augmented test312

cases. For example, if the located lines are from313

line 693 to 740, the context window is defined314

as [max(693-x, 0), min(740+x, end_line)],315

where end_line represents the last line of the file.316

We then provide the code snippets within this con-317

text window, along with the issue description and318

the original test patch, as input to an LLM, asking319

it to generate the augmented test cases and their320

dependencies. As shown in Figure 3, UTGenerator321

generates a test case named test_sparse_fit and322

the corresponding dependency.323

3.4 Improved Parser324

The parser plays a crucial role in SWE-Bench, as it325

extracts test cases from the test logs. However, we326

observed that many test cases are not successfully327

parsed by the original SWE-Bench parser. For in-328

stance, some test logs contain side messages that329

the original parser fails to handle correctly. As330

shown in Listing 5, the test log for the test case331

test_immutable_content_type spans two lines332

(lines 2-3). The original SWE-Bench parser in-333

correctly processes this log by splitting the line334

at the last occurrence of the suffix and assign-335

1 # Test log of django__django -13710
2 test_immutable_content_type

(admin_inlines.tests.TestInlineAdminForm)
3 Regression for #9362 ... ok
4 test_all_inline_media

(admin_inlines.tests.TestInlineMedia) ... ok

Listing 5: Test Log of django__django-13710 (before
gold patch is applied).

1 # SWE -Bench parser for django
2 pass_suffixes = (" ... ok", " ... OK", " ... OK")
3 for suffix in pass_suffixes:
4 if line.endswith(suffix):
5 ... # omits several lines of code
6 test = line.rsplit(suffix , 1)[0]
7 test_status_map[test] =

TestStatus.PASSED.value
8 break

Listing 6: Original SWE-Bench parser for django.

ing the portion before the suffix as the test case 336

name (Listing 6, line 6). As a result, it extracts 337

"Regression for #9362" as the test case name 338

in PASS_TO_PASS of django__django-13710.1 339

To address the limitation that the original 340

SWE-Bench parser can not parser test cases that 341

span multiple lines in the test log, we improve 342

the parser by using a queue (Listing 7, line 3) to 343

record the neighbored log data and use regular 344

expression to match the test case (line 2). While 345

the log for one test case spans multiple lines, 346

the improved parser will search until it gets the 347

correct test case name (Listing 7, lines 12-18). By 348

using the improved parser, we can get the correct 349

test case name test_immutable_content_type 350

(admin_inlines.tests.TestInlineAdminForm) 351

in Listing 5 (lines 2-3). The improved parser 352

addresses several limitations of the original 353

SWE-Bench parser, not limited to this example, 354

thereby enhancing the rigor of SWE-Bench. 355

4 Experiments 356

In this section, we evaluate the performance of UT- 357

Boost and our improved parser on SWE-Bench. 358

Our investigation is guided by three research ques- 359

tions: 360

• RQ1: How effective is UTBoost in identifying 361

insufficient test cases? 362

• RQ2: How does the parser affect the evalua- 363

tion of SWE-Bench? 364

1https://huggingface.co/datasets/princeton-nlp/SWE-
bench_Lite/

5



1 # Improved parser for django
2 pattern_test = r"[a-zA-Z_]\w*\s\([\w.]+\)"
3 previous_line = deque()
4 for line in lines:
5 line = line.strip()
6 pass_suffixes = (" ... ok", " ... OK", " ...

OK")
7 for suffix in pass_suffixes:
8 if line.endswith(suffix):
9 test = line.rsplit(suffix , 1)[0]

10 # process when test log in separate
lines

11 if not re.fullmatch(pattern_test ,
test):

12 pt = -1
13 while previous_line[pt]:
14 if re.fullmatch(pattern_test ,

previous_line[pt]):
15 test = previous_line[pt]
16 break
17 pt -= 1
18 test_status_map[test] =

TestStatus.PASSED.value
19 break
20 previous_line.append(line)

Listing 7: Improved parser for Django.

• RQ3: How do insufficient test cases and er-365

roneous annotations affect the SWE-Bench366

leaderboard?367

4.1 Experiment Settings368

In our evaluation, we use the generated patches369

of the coding agents from the official SWE-Bench370

experiment repository.2 We extract the generated371

patches of the coding agents that pass the origi-372

nal SWE-Bench tests and evaluate them using our373

augmented test cases. Coding agents that do not374

provide generated patches are excluded from our375

analysis. Our code and data can be found at Anony-376

mous (2024).377

In UTGenerator, we use GPT-4o (gpt-4o-2024-378

08-06) as the LLM. We set a context window of379

10 lines of code for test case generation and use380

Top-3 for file-level localization. During the local-381

ization phase, the temperature is set to 0.8. In the382

test case generation phase, we sample one patch383

with a temperature of 0, 20 patches with a temper-384

ature of 0.8, 20 patches with a temperature of 0.9,385

and 20 patches with a temperature of 0.99. When386

UTBoost identifies conflicts between the results of387

the gold patch and the generated patches under the388

augmented test cases, two of our authors manually389

review the test cases and patches, reaching a con-390

sensus on whether the issue arises from insufficient391

test cases. Generating test cases using UTGen-392

erator costs an average of $1.6 per task instance393

of SWE-Bench for API usage. We use an AMD394

5800X server with Ubuntu 22.04 LTS to evaluate395

2https://github.com/swe-bench/experiments

the gold patches and generated patches on the test 396

cases, which takes 300 hours to complete. 397

4.2 Effectiveness of UTBoost 398

Overall, we identified 36 task instances with insuffi- 399

cient test cases in SWE-Bench using the augmented 400

test cases generated by UTBoost. Of these, 23 in- 401

stances are from SWE-Bench Lite, and 26 are from 402

SWE-Bench Verified. We then applied the aug- 403

mented test cases to evaluate the generated patches 404

that passed the original SWE-Bench test cases. 405

There are 599 generated patches that pass the 23 406

instances in SWE-Bench Lite and 584 generated 407

patches that pass the 26 instances in SWE-Bench 408

Verified. However, our augmented test cases found 409

that 28.4% (170/599) of the generated patches in 410

SWE-Bench Lite and 15.7% (92/584) in SWE- 411

Bench Verified are erroneous. 412

These findings demonstrate that a significant pro- 413

portion of generated patches recorded as passing 414

in SWE-Bench fail to address the issues effectively 415

because the test cases in SWE-Bench are insuffi- 416

cient. This underscores the effectiveness of the 417

augmented test cases generated by UTBoost. 418

Using UTBoost, we uncovered insufficient test 419

cases across 9 of the 12 Python projects included 420

in SWE-Bench. The distribution of the insufficient 421

test cases and erroneous patches are shown in Fig- 422

ure 4. Notably, django and sympy are the most 423

frequent projects with insufficient test cases and er- 424

roneous patches in both SWE-Bench Lite and SWE- 425

Bench Verified. Together, django and sympy ac- 426

count for 84.1% (143/170) of the erroneous patches 427

in SWE-Bench Lite and 82.6% (76/92) in SWE- 428

Bench Verified. 429

Answer to RQ1 The augmented test cases gener-
ated by UTBoost identified 170 erroneous patches
in SWE-Bench Lite and 92 in SWE-Bench Verified
that were evaluated as passed by the original test
cases, demonstrating the effectiveness of UTBoost
in detecting erroneous patches.

430

4.3 Impact of the Parser 431

In our evaluation, we found many annotation errors 432

in SWE-Bench stem from defects in the original 433

SWE-Bench parser. For instance, 55 test cases in 434

django__django-15278’s PASS_TO_PASS are un- 435

successfully parsed in SWE-Bench Verified. We 436

present three selected test cases in Listing 8 (lines 437

2-4). The message “Tests altering of the 438

6



sy
mpy

dja
ng

o

sci
kit

-le
arn
py

lin
t

matp
lot

lib

sea
bo

rn

req
ue

sts
0

2

4

6

8
8 8

2 2

1 1 1

N
um

be
ro

fi
ns

ta
nc

es

(a) Insufficient test cases in
SWE-Bench Lite

sea
bo

rn
sy

mpy

req
ue

sts

dja
ng

o
py

lin
t

sci
kit

-le
arn

matp
lot

lib
0

20

40

60

80

7

86

22

37

8
5 5

N
um

be
ro

fp
at

ch
es

(b) Erroneous patches in
SWE-Bench Lite

dja
ng

o
sy

mpy

sci
kit

-le
arn
py

lin
t

matp
lot

lib

sp
hin

x
xa

rra
y

0

5

10

12

6

2
1 1 1

3

N
um

be
ro

fi
ns

ta
nc

es

(c) Insufficient Test Cases in
SWE-Bench Verified

sy
mpy

dja
ng

o
py

lin
t

sci
kit

-le
arn

matp
lot

lib

sp
hin

x
xa

rra
y

0

20

40

46

30

1
4 5

1

5

N
um

be
ro

fp
at

ch
es

(d) Erroneous Patches in
SWE-Bench Verified

Figure 4: Distribution of Insufficient Test Cases And
Erroneous Patches.

1 # Three selected unsuccessfully parsed test cases
2 Tests removing and adding unique_together

constraints on a model.
3 Tries creating a model 's table , and then deleting

it.
4 Tests altering of the primary key.

Listing 8: Three selected unsuccessfully parsed
test cases in django__django-15278 (SWE-Bench
Verified).

primary key.” is incorrectly identified as the439

name of a test case.440

We applied the improved parser to cor-441

rect the annotation data for PASS_TO_PASS and442

FAIL_TO_PASS in SWE-Bench Lite and SWE-443

Bench Verified. This update affected 54.7%444

(164/300) of the instances in SWE-Bench Lite and445

54.2% (271/500) of the instances in SWE-Bench446

Verified. The distribution of instances with er-447

roneous annotations is shown in Figure 5, with448

django and sympy accounting for the majority of449

annotation errors. We evaluated the generated450

patches using the improved parser with updated451

annotations, finding that some patches originally452

marked as passed were actually erroneous. 64 er-453

sy
mpy

req
ue

sts

dja
ng

o
xa

rra
y

matp
lot

lib

ast
rop

y
0

20

40

60

80
69

5

84

2 3 1

N
um

be
ro

fi
ns

ta
nc

es

(a) Erroneous annotations in
SWE-Bench Lite

sea
bo

rn
sy

mpy

req
ue

sts

dja
ng

o
py

lin
t

ast
rop

y

matp
lot

lib
xa

rra
y

0

50

100

150

1

68

5

179

1278

N
um

be
ro

fp
at

ch
es

(b) Erroneous annotations in
SWE-Bench Verified

Figure 5: Distribution of erroneous annotations in SWE-
Bench

roneous patches generated by coding agents were 454

incorrectly evaluated as passed in the original SWE- 455

Bench Lite. Similarly, 79 erroneous patches were 456

incorrectly evaluated as passed in the original SWE- 457

Bench Verified. 458

Answer to RQ2 The original parser in SWE-
Bench failed to parse many test cases, resulting
in incorrect evaluation outcomes. The improved
parser corrected 54.7% of annotations in SWE-
Bench Lite and 54.2% in SWE-Bench Verified,
uncovering 64 erroneous patches in SWE-Bench
Lite and 79 in SWE-Bench Verified that were in-
correctly classified as passed in the original SWE-
Bench evaluation pipeline.

459

4.4 Update to the SWE-Bench Leaderboard 460

To enhance the accuracy of the SWE-Bench leader- 461

board, we added the augmented test cases gener- 462

ated by UTBoost to SWE-Bench and replaced the 463

original SWE-Bench parser with the improved one. 464

In total, we identified 176 erroneous patches in 465

SWE-Bench Lite and 169 in SWE-Bench Verified 466

that were incorrectly evaluated as passed in the 467

original SWE-Bench. We recalculated the cod- 468

ing agents’ scores on SWE-Bench Lite and SWE- 469

Bench Verified and updated their respective leader- 470

boards accordingly. 471

Significant ranking changes were observed in 472

both SWE-Bench Lite and SWE-Bench Verified. 473

For example, in the original SWE-Bench Ver- 474

ified leaderboard, Amazon-Q-Developer-Agent 475

(v20241202-dev) ranked 1st with a pass@1 rate 476

of 55%, while devlo ranked 2nd with 54.2%. After 477

the update, both agents share the 1st rank with a 478

pass@1 rate of 53.6%. This shift occurred because 479

7



seven patches from Amazon-Q-Developer-Agent480

(v20241202-dev) were identified as erroneous,481

compared to only three patches from devlo. Over-482

all, 40.9% (18/44) of rankings in SWE-Bench483

Lite and 24.4% (11/45) in SWE-Bench Verified484

changed. The updated leaderboards for SWE-485

Bench Lite and SWE-Bench Verified are provided486

in Appendix A.487

Answer to RQ3 The insufficient test cases and er-
roneous annotations in SWE-Bench greatly affect
the accuracy of the SWE-Bench leaderboard. Af-
ter updating the leaderboard with the augmented
test cases and the improved parser, we observe
significant ranking changes, affecting 40.9% of
entries in SWE-Bench Lite and 24.4% in SWE-
Bench Verified.

488

5 Related Works489

5.1 Code Generation Benchmark490

Several benchmarks (Chen et al., 2021; Austin491

et al., 2021) evaluate the code generation ability of492

LLMs by letting them generate a function or class493

to solve a problem. The input for these benchmarks494

is always straightforward; for example, given an495

unordered list, the question is to write an algorithm496

to get the ordered one. EvalPlus (Liu et al., 2024)497

adds the augmented test cases via type-aware mu-498

tation, such as removing/repeating a random list499

item. However, SWE-Bench’s test case is more500

complicated than MBPP and HumanEval because501

it may involve modification in multiple locations/-502

files, and there are many dependencies to deal with,503

e.g., importing some function from another pack-504

age. Therefore, we can not directly apply EvalPlus505

to add test cases for SWE-Bench since it does not506

know the locations to add the test cases. To ad-507

dress the challenges of generating augmented test508

cases for SWE-Bench, we propose UTGenerator509

to consider the codebase and dependencies while510

generating the test cases.511

5.2 Robustness of SWE-Bench512

The robustness of the coding benchmarks is signifi-513

cant to the rigorous evaluation of the coding agents’514

ability. To this end, several works are proposed to515

enhance or discuss the robustness of SWE-Bench.516

Aleithan et al. (Aleithan et al., 2024), Chen and517

Jiang (Chen and Jiang, 2024) manually check the518

passed generated patches of some coding agents519

and discovered that some of the passed patches520

are incorrect fixes. Manually checking these takes 521

lots of time. Thus, Aleithan et al. (Aleithan et al., 522

2024) only check SWE-Agent+GPT-4, and Chen et 523

al. (Chen and Jiang, 2024) select top-10 agents for 524

evaluation. Comparatively, UTBoost adds the aug- 525

mented test cases, which are reusable and easy to 526

be applied for evaluating all the submitted coding 527

agents. 528

OpenAI and SWE-Bench’s team let 93 experi- 529

enced engineers manually filter out a subset of 500 530

instances with high quality and named it SWE- 531

Bench Verified (OpenAI, 2024). However, it is 532

difficult even for experienced engineers to judge 533

if the test case for an issue is comprehensive. UT- 534

Boost has identified 26 instances with insufficient 535

test cases in SWE-Bench Verified and generated 536

the augmented test cases for them, demonstrating 537

the effectiveness of utilizing the LLM-based meth- 538

ods to achieve comprehensive testing. Based on 539

our knowledge, UTBoost is the first method to 540

address the challenge of insufficient test cases in 541

SWE-Bench, while the existing methods only re- 542

veal this problem. Additionally, we are the first to 543

discuss the impact of parsing errors by the original 544

SWE-Bench parser, which also impedes rigorous 545

evaluation of SWE-Bench. 546

6 Conclusion 547

In this paper, we introduce UTBoost, a framework 548

for augmenting test cases in real-world Python 549

projects using intramorphic testing. Built on UT- 550

Generator, UTBoost generates dependency-aware 551

test cases by analyzing codebases and issue descrip- 552

tions. It is the first approach to address insufficient 553

test cases in SWE-Bench, identifying 26 instances 554

in SWE-Bench Verified that were overlooked de- 555

spite a manual review by 93 engineers. 556

Furthermore, we improved the SWE-Bench 557

parser, uncovering errors in over 54% of annota- 558

tions in both SWE-Bench Lite and SWE-Bench 559

Verified. Using the augmented test cases and im- 560

proved parser, we identified 176 erroneous patches 561

in SWE-Bench Lite and 169 in SWE-Bench Ver- 562

ified that were incorrectly evaluated as passed in 563

the original SWE-Bench, leading to 40.9% ranking 564

changes in SWE-Bench Lite and 24.4% in SWE- 565

Bench Verified. UTBoost pioneers the application 566

of intramorphic testing to evaluate open-sourced 567

software systems and provides a versatile frame- 568

work adaptable to real-world projects in other pro- 569

gramming languages. 570

8



7 Limitations571

UTBoost augments the test cases of SWE-Bench to572

achieve robust evaluation. The main limitation of573

UTBoost is that it can only generate test cases for574

those instances that at least one coding agent has re-575

solved because UTBoost needs to cross-validate the576

gold patch and generated patches that pass the orig-577

inal SWE-Bench test cases. Currently, the submit-578

ted coding agents have resolved 74.6% (224/300)579

and 81.6% of the test cases in SWE-Bench Lite and580

SWE-Bench-Verified, and UTBoost can generate581

test cases for these instances.582

The limitations of our experiments can be sum-583

marized in two aspects. First, we only utilize GPT-584

4o (gpt-4o-2024-08-06) in UTGenerator. However,585

integrating other LLM APIs into UTGenerator is586

straightforward and could potentially enhance the587

generation of diverse test cases. Second, the archi-588

tecture of UTGenerator presents another limitation.589

Generating test cases and generating patches to590

address issues are inherently similar tasks, both591

requiring the identification of relevant locations fol-592

lowed by code generation. This similarity suggests593

that adapting a coding agent into a test case genera-594

tor agent is feasible. UTGenerator adopts a simpli-595

fied architecture inspired by Agentless (Xia et al.,596

2024), which eliminates the need for the LLM to597

plan future actions or interact with complex tools.598

Currently, there are 48 coding agents and 46 coding599

agents submitted to the SWE-Bench leaderboard.600

Incorporating test case generators with alternative601

architectures could further diversify the augmented602

test cases.603

8 Ethics Statement604

To mitigate the risk of LLMs generating harmful605

test cases that could compromise software systems,606

we conduct a thorough manual review of each test607

case produced by UTBoost. This ensures that no608

harmful code is introduced before integration into609

the SWE-Bench. In our paper, we use ChatGPT to610

check the grammar.611

References612

Aider. 2024. Aider is ai pair programming in your613
terminal).614

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mo-615
hajer, Elijah Nnorom, Gias Uddin, and Song Wang.616
2024. Swe-bench+: Enhanced coding benchmark for617
llms. arXiv preprint arXiv:2410.06992.618

Amazon. 2024. Amazon q developer: The most ca- 619
pable generative ai–powered assistant for software 620
development. 621

Anonymous. 2024. A toolkit for utboost. 622

Anthropic. 2024. Ai research and products that put 623
safety at the frontier. 624

AppMap. 2024. Enterprise ready ai dev assistant: Let 625
navie be your guide to ai-powered software develop- 626
ment. 627

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 628
Bosma, Henryk Michalewski, David Dohan, Ellen 629
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 630
Program synthesis with large language models. arXiv 631
preprint arXiv:2108.07732. 632

Bytedance. 2024. Code and innovate faster with ai. 633

Jiayi Geng Carlos E. Jimenez, John Yang. 2024. Swe- 634
bench lite. 635

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, 636
Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao 637
Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao 638
Cheng, Guangtai Liang, Yuchi Ma, Pan Bian, Tao 639
Xie, and Qianxiang Wang. 2024. Coder: Issue re- 640
solving with multi-agent and task graphs. Preprint, 641
arXiv:2406.01304. 642

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 643
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 644
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 645
Greg Brockman, Alex Ray, Raul Puri, Gretchen 646
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 647
try, Pamela Mishkin, Brooke Chan, Scott Gray, 648
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 649
Kaiser, Mohammad Bavarian, Clemens Winter, 650
Philippe Tillet, Felipe Petroski Such, Dave Cum- 651
mings, Matthias Plappert, Fotios Chantzis, Eliza- 652
beth Barnes, Ariel Herbert-Voss, William Hebgen 653
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 654
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 655
William Saunders, Christopher Hesse, Andrew N. 656
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 657
Morikawa, Alec Radford, Matthew Knight, Miles 658
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 659
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 660
Sutskever, and Wojciech Zaremba. 2021. Evaluating 661
large language models trained on code. 662

Zhi Chen and Lingxiao Jiang. 2024. Evaluating soft- 663
ware development agents: Patch patterns, code qual- 664
ity, and issue complexity in real-world github scenar- 665
ios. arXiv preprint arXiv:2410.12468. 666

Composio. 2024. Composio swebench-agent-v2: Oss 667
sota software engineering assistant. 668

devlo. 2024. Say hello to your ai-developer teammate. 669

Globant. 2024. Introducing the power of globant ai 670
agents. 671

Gru. 2024. We build ai developers. 672

9

https://github.com/Aider-AI/aider
https://github.com/Aider-AI/aider
https://github.com/Aider-AI/aider
https://aws.amazon.com/cn/q/developer/
https://aws.amazon.com/cn/q/developer/
https://aws.amazon.com/cn/q/developer/
https://aws.amazon.com/cn/q/developer/
https://aws.amazon.com/cn/q/developer/
https://anonymous.4open.science/r/UTBoost-7224
https://www.anthropic.com/
https://www.anthropic.com/
https://www.anthropic.com/
https://appmap.io/product/appmap-navie.html
https://appmap.io/product/appmap-navie.html
https://appmap.io/product/appmap-navie.html
https://appmap.io/product/appmap-navie.html
https://appmap.io/product/appmap-navie.html
https://www.marscode.com/
https://www.swebench.com/lite.html
https://www.swebench.com/lite.html
https://www.swebench.com/lite.html
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://github.com/ComposioHQ/composio/tree/master/python/swe/agent
https://github.com/ComposioHQ/composio/tree/master/python/swe/agent
https://github.com/ComposioHQ/composio/tree/master/python/swe/agent
https://devlo.ai/
https://ai.globant.com/us-en/
https://ai.globant.com/us-en/
https://ai.globant.com/us-en/
https://gru.ai/


All Hands. 2024. Openhands: Code less, make more.673

Honeycomb. 2024. Honeycomb — bringing autonomy674
to software engineering.675

IBM. 2024a. Agent-101: A software engineering agent676
for code assistance developed by ibm research).677

IBM. 2024b. Ibm ai agent swe-1.0 (with open llms): A678
software engineering agent for code development.679

Isoform. 2024. Isoform is your ai-driven integration680
engineer.681

Carlos E Jimenez, John Yang, Alexander Wettig,682
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R683
Narasimhan. 2024. SWE-bench: Can language mod-684
els resolve real-world github issues? In The Twelfth685
International Conference on Learning Representa-686
tions.687

Emergent Labs. 2024a. A new era of code intelligence.688

Engines Labs. 2024b. Ai software engineer to help your689
team ship faster).690

Bin Lei, Yuchen Li, Yiming Zeng, Tao Ren, Yi Luo,691
Tianyu Shi, Zitian Gao, Zeyu Hu, Weitai Kang,692
and Qiuwu Chen. 2024. Infant agent: A tool-693
integrated, logic-driven agent with cost-effective api694
usage. Preprint, arXiv:2411.01114.695

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-696
ming Zhang. 2024. Is your code generated by chatgpt697
really correct? rigorous evaluation of large language698
models for code generation. Advances in Neural699
Information Processing Systems, 36.700

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li,701
Fei Huang, and Yongbin Li. 2024. How to under-702
stand whole software repository? arXiv preprint703
arXiv:2406.01422.704

MASAI. 2024. Masai: Modular architecture for soft-705
ware engineering ai agents).706

NEBIUS. 2024. Leveraging training and search for707
better software engineering agents.708

nFactorial AI. 2024. nfactorial ai: Empowering709
decision-making with ai-driven insights).710

OpenAI. 2024. Introducing swe-bench verified.711

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhi-712
han Zhang, Mengzhao Jia, Jiawei Han, Hongming713
Zhang, and Dong Yu. 2024. Repograph: Enhancing714
ai software engineering with repository-level code715
graph. arXiv preprint arXiv:2410.14684.716

Huy Nhat Phan, Tien N. Nguyen, Phong X. Nguyen,717
and Nghi D. Q. Bui. 2024. Hyperagent: Generalist718
software engineering agents to solve coding tasks at719
scale. Preprint, arXiv:2409.16299.720

Manuel Rigger and Zhendong Su. 2022. Intramorphic 721
testing: A new approach to the test oracle problem. 722
In Proceedings of the 2022 ACM SIGPLAN Inter- 723
national Symposium on New Ideas, New Paradigms, 724
and Reflections on Programming and Software, pages 725
128–136. 726

SIMA. 2024. Sima (software intelligence: Multi- 727
agents). 728

Solver. 2024. Solver: Self-driving software is here). 729

SuperAGI. 2024. Supercoder: Technology that builds 730
technology. 731

EPAM Systems. 2024. Become an ai-first business to 732
thrive in the next wave of disruption. 733

Moatless Tools. 2024. Moatless tools. 734

TURINTECH. 2024. Ai-driven automation for software 735
excellence. 736

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and 737
Lingming Zhang. 2024. Agentless: Demystify- 738
ing llm-based software engineering agents. arXiv 739
preprint arXiv:2407.01489. 740

Rui Xie, Zhengran Zeng, Zhuohao Yu, Chang Gao, 741
Shikun Zhang, and Wei Ye. 2024. Codeshell techni- 742
cal report. Preprint, arXiv:2403.15747. 743

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian 744
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir 745
Press. 2024. Swe-agent: Agent-computer interfaces 746
enable automated software engineering. Preprint, 747
arXiv:2405.15793. 748

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik 749
Roychoudhury. 2024. Autocoderover: Autonomous 750
program improvement. In Proceedings of the 33rd 751
ACM SIGSOFT International Symposium on Soft- 752
ware Testing and Analysis, pages 1592–1604. 753

A SWE-Bench Leaderboard 754

In Table 1, we present a comparison between 755

the original and updated leaderboards for SWE- 756

Bench Lite. Similarly, Table 2 shows the com- 757

parison for SWE-Bench Verified. Coding agents 758

with ranking changes are highlighted in both ta- 759

bles. Notably, some coding agents share the 760

same rank, such as Amazon Q Developer Agent 761

(v20241202-dev) (Amazon, 2024) and devlo (de- 762

vlo, 2024). Overall, there are 18 ranking changes 763

in SWE-Bench Lite and 11 in SWE-Bench Verified. 764

The original leaderboards for SWE-Bench Lite 765

and SWE-Bench Verified correspond to the ver- 766

sions dated December 15, 2024. Since some cod- 767

ing agents do not provide their generated patches, 768

we exclude them, resulting in 44 coding agents in 769

SWE-Bench Lite and 45 in SWE-Bench Verified. 770

10

https://www.all-hands.dev/
https://honeycomb.sh/
https://honeycomb.sh/
https://honeycomb.sh/
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240612_IBM_Research_Agent101
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240612_IBM_Research_Agent101
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240612_IBM_Research_Agent101
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20241016_IBM-SWE-1.0
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20241016_IBM-SWE-1.0
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20241016_IBM-SWE-1.0
https://www.isoform.ai/
https://www.isoform.ai/
https://www.isoform.ai/
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://emergent.sh/
https://www.enginelabs.ai/
https://www.enginelabs.ai/
https://www.enginelabs.ai/
https://arxiv.org/abs/2411.01114
https://arxiv.org/abs/2411.01114
https://arxiv.org/abs/2411.01114
https://arxiv.org/abs/2411.01114
https://arxiv.org/abs/2411.01114
https://masai-dev-agent.github.io/
https://masai-dev-agent.github.io/
https://masai-dev-agent.github.io/
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents
https://nfactorial.dev/
https://nfactorial.dev/
https://nfactorial.dev/
https://openai.com/index/introducing-swe-bench-verified/
https://arxiv.org/abs/2409.16299
https://arxiv.org/abs/2409.16299
https://arxiv.org/abs/2409.16299
https://arxiv.org/abs/2409.16299
https://arxiv.org/abs/2409.16299
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240706_sima_gpt4o
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240706_sima_gpt4o
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240706_sima_gpt4o
https://solverai.com/
https://superagi.com/supercoder/
https://superagi.com/supercoder/
https://superagi.com/supercoder/
https://www.epam.com/services/artificial-intelligence
https://www.epam.com/services/artificial-intelligence
https://www.epam.com/services/artificial-intelligence
https://github.com/aorwall/moatless-tools
https://www.turintech.ai/
https://www.turintech.ai/
https://www.turintech.ai/
https://arxiv.org/abs/2403.15747
https://arxiv.org/abs/2403.15747
https://arxiv.org/abs/2403.15747
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793


Table 1: Comparison between the original and updated SWE-Bench Lite leaderboard (We highlight the background
for agents with ranking changes and the text for agents whose percentage of resolved cases has changed).

Leadearboard Original SWE-Bench Lite leaderboard Updated SWE-Bench Lite leaderboard
Rank Coding agent % Resolved Coding agent % Resolved
1 Globant Code Fixer Agent (Globant, 2024) 48.33 Globant Code Fixer Agent (Globant, 2024) 46.33
2 devlo (devlo, 2024) 47.33 devlo (devlo, 2024) 46.00
3 OpenHands + CodeAct v2.1 (claude-3-5-sonnet-20241022) (Hands, 2024) 41.67 OpenHands + CodeAct v2.1 (claude-3-5-sonnet-20241022) (Hands, 2024) 40.67
4 Composio SWE-Kit (2024-10-30) (Composio, 2024) 41.00 Composio SWE-Kit (2024-10-30) (Composio, 2024) 39.00
5 Agentless-1.5 + Claude-3.5 Sonnet (20241022) (Xia et al., 2024) 40.67 Agentless-1.5 + Claude-3.5 Sonnet (20241022) (Xia et al., 2024) 38.33
6 Bytedance MarsCode Agent (Bytedance, 2024) 39.33 Bytedance MarsCode Agent (Bytedance, 2024) 38.00
7 Moatless Tools + Claude 3.5 Sonnet (20241022) (Tools, 2024) 38.33 Honeycomb (Honeycomb, 2024) 37.67
8 Honeycomb (Honeycomb, 2024) 38.33 Moatless Tools + Claude 3.5 Sonnet (20241022) (Tools, 2024) 36.67
9 AppMap Navie v2 (AppMap, 2024) 36.00 AppMap Navie v2 (AppMap, 2024) 35.00
10 Gru(2024-08-11) (Gru, 2024) 35.67 Isoform (Isoform, 2024) 33.33
11 Isoform (Isoform, 2024) 35.00 Gru(2024-08-11) (Gru, 2024) 33.00
12 SuperCoder2.0 (SuperAGI, 2024) 34.00 SuperCoder2.0 (SuperAGI, 2024) 32.00
13 Alibaba Lingma Agent (Ma et al., 2024) 33.00 Alibaba Lingma Agent (Ma et al., 2024) 31.33
14 Agentless-1.5 + GPT 4o (2024-05-13) (Xia et al., 2024) 32.00 Agentless-1.5 + GPT 4o (2024-05-13) (Xia et al., 2024) 30.33
15 CodeShellTester + GPT 4o (2024-05-13) (Xie et al., 2024) 31.33 AutoCodeRover (v20240620) + GPT 4o (2024-05-13) (Zhang et al., 2024) 30.00
16 AutoCodeRover (v20240620) + GPT 4o (2024-05-13) (Zhang et al., 2024) 30.67 CodeShellTester + GPT 4o (2024-05-13) (Xie et al., 2024) 29.67
17 AIGCode Infant-Coder(2024-08-30) (Lei et al., 2024) 30.00 AIGCode Infant-Coder(2024-08-30) (Lei et al., 2024) 28.67
18 Amazon Q Developer Agent (v20240719-dev) (Amazon, 2024) 29.67 Amazon Q Developer Agent (v20240719-dev) (Amazon, 2024) 28.00
19 Agentless + RepoGraph + GPT-4o (Xia et al., 2024; Ouyang et al., 2024) 29.67 Agentless + RepoGraph + GPT-4o (Xia et al., 2024; Ouyang et al., 2024) 27.67
20 CodeR + GPT 4 (1106) (Chen et al., 2024) 28.33 CodeR + GPT 4 (1106) (Chen et al., 2024) 26.67
21 SIMA + GPT 4o (2024-05-13) (SIMA, 2024) 27.67 MASAI + GPT 4o (2024-05-13) (MASAI, 2024) 26.67
22 MASAI + GPT 4o (2024-05-13) (MASAI, 2024) 27.33 SIMA + GPT 4o (2024-05-13) (SIMA, 2024) 26.33
23 Agentless + GPT 4o (2024-05-13) (Xia et al., 2024) 27.33 Agentless + GPT 4o (2024-05-13) 25.33
24 Moatless Tools + Claude 3.5 Sonnet (Tools, 2024) 26.67 Aider + GPT 4o & Claude 3 Opus (Aider, 2024) 25.33
25 OpenHands + CodeAct v1.8 (Hands, 2024) 26.67 Moatless Tools + Claude 3.5 Sonnet (Tools, 2024) 25.33
26 IBM Research Agent-101 (IBM, 2024a) 26.67 HyperAgent (Phan et al., 2024) 25.00
27 Aider + GPT 4o & Claude 3 Opus (Aider, 2024) 26.33 IBM Research Agent-101 (IBM, 2024a) 25.00
28 HyperAgent (Phan et al., 2024) 25.33 OpenHands + CodeAct v1.8 (Hands, 2024) 24.33
29 Moatless Tools + GPT 4o (2024-05-13) (Tools, 2024) 24.67 Moatless Tools + GPT 4o (2024-05-13) (Tools, 2024) 24.00
30 IBM AI Agent SWE-1.0 (with open LLMs) (IBM, 2024b) 23.67 SWE-agent + Claude 3.5 Sonnet (Yang et al., 2024) 23.00
31 SWE-agent + Claude 3.5 Sonnet (Yang et al., 2024) 23.00 IBM AI Agent SWE-1.0 (with open LLMs) (IBM, 2024b) 22.33
32 AppMap Navie + GPT 4o (2024-05-13) (AppMap, 2024) 21.67 AppMap Navie + GPT 4o (2024-05-13) (AppMap, 2024) 20.33
33 Bytedance AutoSE (20240828) (Bytedance, 2024) 21.67 Bytedance AutoSE (20240828) (Bytedance, 2024) 19.67
34 Amazon Q Developer Agent (v20240430-dev) (Amazon, 2024) 20.33 Amazon Q Developer Agent (v20240430-dev) (Amazon, 2024) 19.33
35 AutoCodeRover (v20240408) + GPT 4 (0125) (Zhang et al., 2024) 19.00 AutoCodeRover (v20240408) + GPT 4 (0125) (Zhang et al., 2024) 18.33
36 SWE-agent + GPT 4o (2024-05-13) (Yang et al., 2024) 18.33 SWE-agent + GPT 4 (1106) (Yang et al., 2024) 17.33
37 SWE-agent + GPT 4 (1106) (Yang et al., 2024) 18.00 SWE-agent + GPT 4o (2024-05-13) (Yang et al., 2024) 17.00
38 SWE-agent + Claude 3 Opus (Yang et al., 2024) 11.67 SWE-agent + Claude 3 Opus (Yang et al., 2024) 11.67
39 RAG + Claude 3 Opus (Jimenez et al., 2024) 4.33 RAG + Claude 3 Opus (Jimenez et al., 2024) 4.33
40 RAG + Claude 2 (Jimenez et al., 2024) 3.00 RAG + Claude 2 (Jimenez et al., 2024) 3.00
41 RAG + GPT 4 (1106) (Jimenez et al., 2024) 2.67 RAG + GPT 4 (1106) (Jimenez et al., 2024) 2.33
42 RAG + SWE-Llama 7B (Jimenez et al., 2024) 1.33 RAG + SWE-Llama 7B (Jimenez et al., 2024) 1.00
43 RAG + SWE-Llama 13B (Jimenez et al., 2024) 1.00 RAG + SWE-Llama 13B (Jimenez et al., 2024) 1.00
44 RAG + ChatGPT 3.5 (Jimenez et al., 2024) 0.33 RAG + ChatGPT 3.5 (Jimenez et al., 2024) 0.33

Table 2: Comparison between the original and updated SWE-Bench Verified leaderboard (We highlight the
background for agents with ranking changes and the text for agents whose percentage of resolved cases has
changed).

Leadearboard Original SWE-Bench Verifiied leaderboard Updated SWE-Bench Verified leaderboard
Rank Coding agent % Resolved Coding agent % Resolved
1 Amazon Q Developer Agent (v20241202-dev) (Amazon, 2024) 55.00 Amazon Q Developer Agent (v20241202-dev) (Amazon, 2024) 53.60
2 devlo (devlo, 2024) 54.20 devlo (devlo, 2024) 53.60
3 OpenHands + CodeAct v2.1 (claude-3-5-sonnet-20241022) (Hands, 2024) 53.00 OpenHands + CodeAct v2.1 (claude-3-5-sonnet-20241022) (Hands, 2024) 51.80
4 Engine Labs (2024-11-25) (Labs, 2024b) 51.80 Engine Labs (2024-11-25) (Labs, 2024b) 50.80
5 Agentless-1.5 + Claude-3.5 Sonnet (20241022) (Xia et al., 2024) 50.80 Agentless-1.5 + Claude-3.5 Sonnet (20241022) (Xia et al., 2024) 49.60
6 Solver (2024-10-28) (Solver, 2024) 50.00 Bytedance MarsCode Agent (Bytedance, 2024) 49.40
7 Bytedance MarsCode Agent (Bytedance, 2024) 50.00 Solver (2024-10-28) (Solver, 2024) 49.20
8 nFactorial (2024-11-05) (nFactorial AI, 2024) 49.20 nFactorial (2024-11-05) (nFactorial AI, 2024) 48.40
9 Tools + Claude 3.5 Sonnet (2024-10-22) (Anthropic, 2024) 49.00 Tools + Claude 3.5 Sonnet (2024-10-22) (Anthropic, 2024) 48.20
10 Composio SWE-Kit (2024-10-25) (Composio, 2024) 48.60 Composio SWE-Kit (2024-10-25) (Composio, 2024) 47.40
11 AppMap Navie v2 (AppMap, 2024) 47.20 AppMap Navie v2 (AppMap, 2024) 46.40
12 Emergent E1 (v2024-10-12) (Labs, 2024a) 46.60 Emergent E1 (v2024-10-12) (Labs, 2024a) 45.60
13 AutoCodeRover-v2.0 (Claude-3.5-Sonnet-20241022) (Zhang et al., 2024) 46.20 AutoCodeRover-v2.0 (Claude-3.5-Sonnet-20241022) (Zhang et al., 2024) 45.40
14 Solver (2024-09-12) (Solver, 2024) 45.40 Solver (2024-09-12) (Solver, 2024) 44.80
15 Gru(2024-08-24) (Gru, 2024) 45.20 Gru(2024-08-24) (Gru, 2024) 43.8
16 Solver (2024-09-12) (Solver, 2024) 43.60 Solver (2024-09-12) (Solver, 2024) 42.80
17 nFactorial (2024-10-30) (nFactorial AI, 2024) 41.60 nFactorial (2024-10-30) (nFactorial AI, 2024) 40.60
18 Nebius AI Qwen 2.5 72B Generator + LLama 3.1 70B Critic (NEBIUS, 2024) 40.60 Honeycomb (Honeycomb, 2024) 40.20
19 Tools + Claude 3.5 Haiku (Anthropic, 2024) 40.60 Tools + Claude 3.5 Haiku (Anthropic, 2024) 40.00
20 Honeycomb (Honeycomb, 2024) 40.60 Nebius AI Qwen 2.5 72B Generator + LLama 3.1 70B Critic (NEBIUS, 2024) 39.60
21 Composio SWEkit + Claude 3.5 Sonnet (2024-10-16) (Composio, 2024) 40.60 Composio SWEkit + Claude 3.5 Sonnet (2024-10-16) (Anthropic, 2024) 39.00
22 EPAM AI/Run Developer Agent v20241029 + Anthopic Claude 3.5 Sonnet (Systems, 2024) 39.60 EPAM AI/Run Developer Agent v20241029 + Anthopic Claude 3.5 Sonnet (Systems, 2024) 39.00
23 Amazon Q Developer Agent (v20240719-dev) (Amazon, 2024) 38.80 Agentless-1.5 + GPT 4o (2024-05-13) (Xia et al., 2024) 38.40
24 Agentless-1.5 + GPT 4o (2024-05-13) (Xia et al., 2024) 38.80 Amazon Q Developer Agent (v20240719-dev) (Amazon, 2024) 38.00
25 AutoCodeRover (v20240620) + GPT 4o (2024-05-13) (Zhang et al., 2024) 38.40 AutoCodeRover (v20240620) + GPT 4o (2024-05-13) (Zhang et al., 2024) 37.80
26 Artemis Agent v1 (2024-11-20) (TURINTECH, 2024) 32.00 Artemis Agent v1 (2024-11-20) (TURINTECH, 2024) 30.80
27 nFactorial (2024-10-07) (nFactorial AI, 2024) 31.60 nFactorial (2024-10-07) (nFactorial AI, 2024) 30.80
28 Lingma Agent + Lingma SWE-GPT 72b (v0925) (Ma et al., 2024) 28.80 Lingma Agent + Lingma SWE-GPT 72b (v0925) (Ma et al., 2024) 27.20
29 EPAM AI/Run Developer Agent + GPT4o (Systems, 2024) 27.00 EPAM AI/Run Developer Agent + GPT4o (Systems, 2024) 26.80
30 AppMap Navie + GPT 4o (2024-05-13) (AppMap, 2024) 26.20 nFactorial (2024-10-01) (nFactorial AI, 2024) 25.60
31 nFactorial (2024-10-01) (nFactorial AI, 2024) 25.80 AppMap Navie + GPT 4o (2024-05-13) (AppMap, 2024) 25.20
32 Amazon Q Developer Agent (v20240430-dev) (Amazon, 2024) 25.60 Lingma Agent + Lingma SWE-GPT 72b (v0918) (Ma et al., 2024) 24.80
33 Lingma Agent + Lingma SWE-GPT 72b (v0918) (Ma et al., 2024) 25.00 Amazon Q Developer Agent (v20240430-dev) (Amazon, 2024) 24.80
34 EPAM AI/Run Developer Agent + GPT4o (Systems, 2024) 24.00 EPAM AI/Run Developer Agent + GPT4o (Systems, 2024) 23.80
35 SWE-agent + GPT 4o (2024-05-13) (Yang et al., 2024) 23.20 SWE-agent + GPT 4o (2024-05-13) (Yang et al., 2024) 22.40
36 SWE-agent + GPT 4 (1106) (Yang et al., 2024) 22.40 SWE-agent + GPT 4 (1106) (Yang et al., 2024) 21.80
37 SWE-agent + Claude 3 Opus (Yang et al., 2024) 18.20 SWE-agent + Claude 3 Opus (Yang et al., 2024) 17.80
38 Lingma Agent + Lingma SWE-GPT 7b (v0925) (Ma et al., 2024) 18.20 Lingma Agent + Lingma SWE-GPT 7b (v0925) (Ma et al., 2024) 17.80
39 Lingma Agent + Lingma SWE-GPT 7b (v0918) (Ma et al., 2024) 10.20 Lingma Agent + Lingma SWE-GPT 7b (v0918) 9.60
40 RAG + Claude 3 Opus (Jimenez et al., 2024) 7.00 RAG + Claude 3 Opus (Jimenez et al., 2024) 7.00
41 RAG + Claude 2 (Jimenez et al., 2024) 4.40 RAG + Claude 2 (Jimenez et al., 2024) 4.20
42 RAG + GPT 4 (1106) (Jimenez et al., 2024) 2.80 RAG + GPT 4 (1106) (Jimenez et al., 2024) 2.60
43 RAG + SWE-Llama 7B (Jimenez et al., 2024) 1.40 RAG + SWE-Llama 13B (Jimenez et al., 2024) 1.00
44 RAG + SWE-Llama 13B (Jimenez et al., 2024) 1.20 RAG + SWE-Llama 7B (Jimenez et al., 2024) 0.80
45 RAG + ChatGPT 3.5 (Jimenez et al., 2024) 0.40 RAG + ChatGPT 3.5 (Jimenez et al., 2024) 0.40

11


	Introduction
	SWE-Bench
	Methodology
	Test Oracle
	UTBoost Workflow
	UTGenerator
	File-level Localization
	Function/class-level Localization
	Line-level Localization
	Test Case Generation

	Improved Parser

	Experiments
	Experiment Settings
	Effectiveness of UTBoost
	Impact of the Parser
	Update to the SWE-Bench Leaderboard

	Related Works
	Code Generation Benchmark
	Robustness of SWE-Bench

	Conclusion
	Limitations
	Ethics Statement
	SWE-Bench Leaderboard

