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A Theory593

We aim to show that rank-game has an equilibrium that bounds the f -divergence between the594

agent and the expert (Theorem A.1) in the imitation learning setting. For imitation learning, we have595

the vanilla implicit ranking ρagent ⪯ ρE , between the behavior of agent and the expert. Later, we596

show that, the bounded f -divergence can be used to bound the performance gap with the expert under597

the expert’s unknown reward function using a solution to Vajda’s tight lower bound (Corollary A.1.1).598

Our proof proceeds by first showing that minimizing the empirical ranking loss produces a reward599

function that is close to the reward function obtained by the true ranking loss. Then, we show that600

even under the presence of policy optimization errors maximizing the obtained reward function will601

lead to a bounded f -divergence with the expert.602

Theorem A.1. (Performance of the rank-game equilibrium pair) Consider an equilibrium of603

the imitation rank-game (π̂, R̂), such that R̂ minimizes the empirical ranking-loss for dataset604

Dπ̂ = {(ρπ̂, ρE)} and the ranking-loss generalization error is bounded by ϵ′r = 2R2
maxϵr, and the605

policy π̂ has bounded suboptimality with J(R̂; π̂) ≥ J(R̂;π′) − ϵπ ∀π
′
, then we have that at this606

equilibrium pair:607

Df

(
ρπ̂(s, a)||ρE(s, a)

)
≤ (1− γ)ϵπ + 4Rmax

√
2ϵr

k
(7)

where Df is an f -divergence with the generator function f(x) = 1−x
1+x [53, 4, 15, 42].608

Proof. Previous works [66, 60] characterize the equilibrium in imitation learning based on the609

supremum ranking loss/min-max adversarial setting under no error assumption. In this section, we610

consider the ranking loss function Lk and derive the equilibrium for the rank-game in presence611

of reward learning and policy optimization errors. Lk attempts to explain the rankings between the612

agent and the expert using their state-action visitations Dπ = {ρπ(s, a), ρE(s, a)} respectively, by613

attempting to induce a performance gap of k. With this dataset Dπ, Lk regresses the return of state614

or state-action pairs in the expert’s visitation to a scalar k and the agent’s visitation to a value of 0.615

Thus, we have:616

Lk(D;R) = EρE(s,a)

[
(R(s, a)− k)2

]
+ Eρπ(s,a)

[
(R(s, a)− 0)2

]
(8)

The above ranking loss is minimized (∇Lk = 0) pointwise when617

R∗(s, a) =
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)
(9)

In practice, we have finite samples from both the expert visitation distribution and the agent distribu-618

tion so we minimize the following empirical ranking loss L̂k(D;R):619

L̂k(D;R) =

∑
s,a∈ρ̂E [(R(s, a)− k)2]

|ρ̂E | +

∑
s,a∈ρ̂π [(R(s, a)− 0)2]

|ρ̂π| (10)

where ρ̂E and ρ̂π are empirical state-action visitations respectively.620

From empirical loss function to reward optimality: Since the reward function is trained with621

supervised learning, we can quantify the sample error in minimizing the empirical loss using concen-622

tration bounds [57] up to a constant with high probability. Since 0 < R(s, a) < Rmax With high623

probability,624

∀R, |Lk(D;R)− L̂k(D;R)|≤ 2R2
maxϵr (11)

where ϵr is the statistical estimation error that can be bounded using concentration bounds such625

as Hoeffding’s. Let R∗ belong to the optimal solution for Lk(D;R) and R̂∗ belong to the optimal626

minimizing solution for L̂k(D;R). Therefore, we have that,627

∀R, L̂k(D; R̂∗) ≤ L̂k(D;R) (12)
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Using Eq 11 and Eq 12, we have628

∀R, L̂k(D; R̂∗) ≤ L̂k(D;R) (13)
≤ Lk(D;R) + 2R2

maxϵr (14)
≤ Lk(D;R∗) + 2R2

maxϵr (15)

and similarly629

∀R, Lk(D;R∗) ≤ Lk(D;R) (16)

≤ L̂k(D;R) + 2R2
maxϵr (17)

≤ L̂k(D; R̂∗) + 2R2
maxϵr (18)

Eq 15 and Eq 18 implies that Lk(D;R∗) and L̂k(D; R̂∗) are bounded with high probability. i.e630

|Lk(D;R∗)− L̂k(D; R̂∗)|≤ 2R2
maxϵr (19)

We will use Eq 19 to show that indeed R̂∗ has a bounded loss compared to R∗.631

L̂k(D; R̂∗)− Lk(D;R∗) ≤ 2R2
maxϵr (20)

Lk(D; R̂∗)− 2R2
max − Lk(D;R∗)ϵr ≤ 2R2

maxϵr (21)

Lk(D; R̂∗)− Lk(D;R∗) ≤ 4R2
maxϵr (22)

We consider the tabular MDP setting and overload R to denote a vector of reward values for the entire632

state-action space of size |S × A|. Using the Taylor series expansion for loss function Lk, we have:633

Lk(D; R̂∗)− Lk(D;R∗) ≤ 4R2
maxϵr (23)

Lk(D;R∗) + ⟨∇R∗Lk(D;R∗), R̂∗ −R∗⟩
+0.5(R̂∗ −R∗)TH(R̂∗ −R∗)− Lk(D;R∗) ≤ 4R2

maxϵr (24)

(R̂∗ −R∗)TH(R̂∗ −R∗) ≤ 8R2
maxϵr (25)

where H denotes the hessian for the loss function w.r.t R and is given by H = P ρπ

+P ρE

where P ρ634

is a matrix of size |S × A|×|S × A| with ρ vector of visitations as its diagonal and zero elsewhere.635

(R̂∗ −R∗)TH(R̂∗ −R∗) ≤ 8R2
maxϵr (26)

Es∼ρπ

[
(R̂∗(s, a)−R∗(s, a))2

]
+ Es∼ρE

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr (27)

Since both terms in the LHS are positive we have Es,a∼ρπ

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr636

and Es,a∼ρE

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr. Applying Jensen’s inequality, we further have637

(Es,a∼ρπ

[
R̂∗(s, a)−R∗(s, a)

]
)2 ≤ 8R2

maxϵr and (Es,a∼ρE

[
R̂∗(s, a)−R∗(s, a)

]
)2 ≤ 8R2

maxϵr.638

Hence,639
∣∣∣Es,a∼ρπ

[
R̂∗(s, a)−R∗(s, a)

]∣∣∣ ≤ Rmax

√
8ϵr , and (28)

∣∣∣Es,a∼ρE

[
R̂∗(s, a)−R∗(s, a)

]∣∣∣ ≤ Rmax

√
8ϵr (29)

At this point we have bounded the expected difference between the reward functions obtained from640

the empirical ranking loss and the true ranking loss. We will now characterize the equilibrium641

obtained by learning a policy on the reward function R̂∗ that is optimal under the empirical ranking642

loss. Under a policy optimization error of ϵπ we have:643

J(R̂∗; π̂) ≥ J(R̂∗;π′)− ϵπ ∀π
′ ∈ Π (30)

where J(R;π) denotes the performance of policy π under reward function R.644
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Taking π
′
= πE , we can reduce the above expression as follows:645

J(R̂∗, πE)− J(R̂∗, π̂) ≤ϵπ (31)
1

1− γ

[
EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]]
≤ ϵπ (32)

Using Eq 28 and Eq 29 we can lower bound EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]
as follows:646

EρE(s,a)

[
R̂∗(s, a)

]
≥ EρE(s,a)[R

∗(s, a)]−Rmax

√
8ϵr (33)

Eρπ(s,a)

[
R̂∗(s, a)

]
≤ Eρπ(s,a)[R

∗(s, a)] +Rmax

√
8ϵr (34)

where R∗(s, a) is given by Equation 9.647

Subtracting Equation 34 from Equation 33, we have648

EρE(s,a)

[
R̂∗(s, a)

]
−Eρπ(s,a)

[
R̂∗(s, a)

]
≥ EρE(s,a)[R

∗(s, a)]−Eρπ(s,a)[R
∗(s, a)]−2Rmax

√
8ϵr

(35)

Plugging in the lower bound from Equation 35 in Equation 32 we have:649

1

1− γ
[EρE(s,a)[R

∗(s, a)]− Eρπ(s,a)[R
∗(s, a)]− 2Rmax

√
8ϵr] ≤ ϵπ (36)

Replacing R∗ using Equation 9 we get,650

1

1− γ

[
EρE(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− 2Rmax

√
8ϵr

]
≤ ϵπ

(37)
651

EρE(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
≤ (1− γ)ϵπ + 2Rmax

√
8ϵr

(38)

EρE(s,a)

[
(ρE(s, a)− ρπ(s, a))

ρE(s, a) + ρπ(s, a)

]
≤ (1− γ)ϵπ + 2Rmax

√
8ϵr

k
(39)

The convex function f(x) = 1−x
1+x in R+ defines an f -divergence. Under this generator function, the652

LHS of Equation 39 defines an f -divergence between the state-visitations of the agent ρπ(s, a) and653

the expert ρE(s, a). Hence, we have that654

Df [ρ
π(s, a), ρE(s, a)] ≤ (1− γ)ϵπ + 4Rmax

√
2ϵr

k
(40)

This bound shows that the equilibrium of the ranking game is a near-optimal imitation learning655

solution when ranking loss target k trades off effectively with the policy optimization error ϵπ and656

reward generalization error ϵr. We note that, since k ≤ Rmax we can get the tightest bound when657

k = Rmax. Now, in imitation learning both k and Rmax are tunable hyperparameters. We vary k658

while keeping k = Rmax and observe in appendix D.9 that this hyperparameter can significantly659

affect learning performance.660

Corollary A.1.1. (From f -divergence to performance gap) For the equilibrium of the rank-game661

(π̂, R̂) as described in Theorem A.1, we have that the performance gap of the expert policy with π̂ is662

18



bounded under the unknown expert’s reward function (rgt) bounded in [0, RE
max] as follows:663

|J(πE , rgt)− J(π̂, rgt)|≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
2ϵr

k

1− γ
(41)

Proof. In Theorem A.1, we show that the equilibrium of rank-game ensures that.the f -divergence664

of expert visitation and agent visitation is bounded with the generator function f = 1−x
1+x . First we665

attempt to find a tight lower bound of our f -divergence in terms of the total variational distance666

between the two distributions. Such a bound has been discussed in previous literature for the usual667

f -divergences like KL, Hellinger and χ2. This problem of finding a tight lower bound in terms of668

variational distance for a general f -divergence was introduced in [64] and referred to as Vajda’s tight669

lower bound and a solution for arbitrary f -divergences was proposed in [23]. The f -divergence with670

generator function f = 1−x
1+x satisfies that f(t) = tf( 1t )+2f ′(1)(t−1) and hence the total variational671

bound for this f divergence takes the form Df ≥ 2−DTV

2 f( 2+DTV

2−DTV
)− f ′(1)DTV . Plugging in the672

function definition f = 1−x
1+x the inequality simplifies to:673

674

Df (ρ
π(s, a)∥ρE(s, a)) ≥ (DTV (ρ

π(s, a)∥ρE(s, a))2
4

(42)

We also note an upper bound for this f -divergence in TV distance, sandwiching this particular675

f -divergence with TV bounds:676

Df (ρ
π(s, a)∥ρE(s, a)) = EρE(s,a)

[
ρE(s, a)

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
ρE(s, a)

ρE(s) + ρπ(s, a)

]
(43)

≤
∑

s,a∈S×A

∣∣ρE(s, a)− ρπ(s, a)
∣∣
∣∣∣∣

ρE(s, a)

ρE(s, a) + ρπ(s, a)

∣∣∣∣ (44)

≤ DTV (ρ
π(s, a)∥ρE(s, a)) (45)

So,677

DTV (ρ
π(s, a)∥ρE(s, a)) ≥ Df (ρ

π(s, a)∥ρE(s, a)) ≥ (DTV (ρ
π(s, a)∥ρE(s, a))2

4
(46)

Therefore from Eq 40 we have that,678

DTV (ρ
π(s, a)||ρE(s, a)) ≤ 2

√
(1− γ)ϵπ + 4Rmax

√
2ϵr

k
(47)

For any policy π, and experts unknown reward function rgt, J(π, r) = 1
1−γ [Es,a∼ρπ [r(s, a)]].679

Therefore,680

|J(πE , rgt)− J(π, rgt)| =
∣∣∣∣

1

1− γ
[Es,a∼ρE [rgt(s, a)]]−

1

1− γ
[Es,a∼ρπ [rgt(s, a)]]

∣∣∣∣ ∀π (48)

=
1

1− γ

∣∣∣∣∣∣
∑

s,a∈S×A
|(ρE − ρπ)rgt(s, a)

∣∣∣∣∣∣
(49)

≤ RE
max

1− γ

∑

s,a∈S×A

∣∣(ρE − ρπ)
∣∣ (50)

≤ 2RE
max

1− γ
DTV (ρE , ρπ) (51)

(52)

where RE
max is the upper bound for the expert’s reward function. Under a worst case expert reward681

function which assigns finite reward values to the expert’s visitation and −∞ outside the visitation,682
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even a small mistake (visiting any state outside the expert’s visitation) by the policy can result in an683

infinite performance gap between expert and the agent. Thus, this parameter is decided by the expert684

and is not in control of the learning agent.685

From Eq 47 and Eq 51 we have686

|J(πE , rgt)− J(π̂, rgt)|≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
2ϵr

k

1− γ
(53)

687

Lemma A.2. (Regret bound under finite data assumptions) Let M̂t denote the approximate transition688

model under the collected dataset of transitions until iteration t. Assume that the ground truth model689

M and the reward function are realizable. Under these assumptions the regret of rank-game at tth690

iteration:691

V πE

M − V πt

M ≤ 2γϵπ
t

mRmax

(1− γ)2
+

4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
ϵr

k
(54)

where V π
M denotes the performance of policy π under transition dynamics M , ϵπ

t

m is expected model692

error under policy πt’s visitation, ρπM is the visitation of policy π in transition dynamics M and ϵstat693

is the statistical error due to finite expert samples.694

Proof. We use M to denote the ground truth model and M̂t to denote the approximate transition695

model with collected data until the tth iteration of rank-game. We are interested in solving the696

following optimization problem under finite data assumptions:697

max
π

Es,a∼ρπ
M̂t

[
f̂∗
π(s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

π(s, a)]

|ρ̂E | s.t f̂∗
π = argmin

f
(L̂k(f ;D

π
M̂t

)) (55)

where ρ̂E is the empirical distribution generated from finite expert samples and Dπ
M̂t

= {(ρ̂π
M̂t

, ρ̂EM )}.698

Using standard concentration bounds such as Hoeffding’s [29], we can bound the empirical estimate699

with true estimate ∀π with high probability:700

∣∣∣∣
∑

s,a∈ρ̂E [f∗
π(s, a)]

|ρ̂E | − Es∼ρE
M
[f∗

π(s, a)]

∣∣∣∣ ≤ ϵstat (56)

Using the concentration bounds and the fact that πt is the solution that maximizes the optimization701

problem Eq 55 at t-iteration,702

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

πt(s, a)]

|ρ̂E | ≥E
s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

πE (s, a)]

|ρ̂E | (57)

≥ E
s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
− Es,a∼ρE

M

[
f̂∗
πE (s, a)

]
− ϵstat

(58)

f̂∗
πt is the reward function that minimizes the empirical ranking loss L̂k. Let f∗

πt be the solution to703

the true ranking loss Lk. As shown previously in Eq 28 and Eq 29, we can bound the expected values704

of these two quantities with high probability under agent or expert distribution.705

We also have from concentration bound:706

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

πt(s, a)]

|ρ̂E | ≤ E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
− Es,a∼ρE

M

[
f̂∗
πt(s, a)

]
+ ϵstat

(59)
Therefore, combining Eq 59 and Eq 57:707

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
−Es,a∼ρE

M

[
f̂∗
πt(s, a)

]
≥ E

s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
−Es,a∼ρE

M

[
f̂∗
πE (s, a)

]
−2ϵstat

(60)
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The LHS of the Eq. 60 can be further upper bounded as follows:708

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
− Es,a∼ρE

M

[
f̂∗
πt(s, a)

]
≤ E

s,a∼ρπt

M̂t

[f∗
πt(s, a)]− Es,a∼ρE

M
[f∗

πt(s, a)] + 2Rmax

√
8ϵr

(61)

= E
s,a∼ρπt

M̂t

[
kρπ

E

M (s, a)

ρπ
E

M (s, a) + ρπ
t

M̂t
(s, a)

]

− Es,a∼ρE
M

[
kρπ

E

M (s, a)

ρπ
E

M (s, a) + ρπ
t

M̂t
(s, a)

]
+ 2Rmax

√
8ϵr

(62)

= kE
s,a∼ρπE

M


ρπ

t

M̂t
(s, a)− ρπ

E

M (s, a)

ρπ
t

M̂t
(s, a) + ρπ

E

M (s, a)


+ 2Rmax

√
8ϵr

(63)

= −kDf (ρ
πt

M̂t
∥ρπE

M ) + 2Rmax

√
8ϵr (64)

Similarly the RHS of Eq 60 can be further lower bounded as follows:709

E
s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
− Es,a∼ρE

M

[
f̂∗
π(s, a)

]
− 2ϵstat (65)

≥ E
s,a∼ρπE

M̂t

[f∗
πE (s, a)]− Es∼ρE

M
[f∗

π(s, a)]− 2ϵstat − 2Rmax

√
8ϵr (66)

= kE
s,a∼ρπE

M


ρπ

E

M̂t
(s, a)− ρπ

E

M (s, a)

ρπ
E

M̂t
(s, a) + ρπ

E

M (s, a)


− 2ϵstat − 2Rmax

√
8ϵr (67)

= −kDf (ρ
E
M̂t
∥ρEM )− 2ϵstat − 2Rmax

√
8ϵr (68)

Plugging the relations obtained (Eq 68 and 64) back in Eq 60, we see that the f -divergence between710

the agent visitation in the learned MDP and the expert visitation in the ground truth MDP is bounded711

by the f -divergence of the expert policy’s visitation on the learned vs. ground truth environment. We712

expect this term to be low if the dynamics are accurately learned at the transitions encountered in713

visitation of expert.714

Df (ρ
πt

M̂t
∥ρπE

M ) ≤ Df (ρ
πE

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(69)

We can use the total-variation lower bound for this f -divergence to later obtain a performance bound715

between the policy in learned MDP and expert in ground-truth MDP.716

DTV (ρ
πt

M̂t
∥ρπE

M ) ≤ 2
√
Df (ρπ

t

M̂t
∥ρπE

M ) ≤ 2

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(70)

Similar to Corollary A.1.1, we can further get a performance bound:717

|V πE

M − V πt

M̂
|≤ 2Rmax

1− γ
DTV (ρ

πt

M̂t
∥ρπE

M ) ≤ 4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(71)

Let the local model error in the visitation of πt be bounded by ϵπ
t

m , i.e718

Es,a∼ρπt

[
DTV (PM (.|s, a)∥PM̂ (.|s, a))

]
≤ ϵπ

t

m . Using simulation lemma for local models [35, 33],719

we have:720

|V πt

M − V πt

M̂
|≤ 2γϵπ

t

mRmax

(1− γ)2
(72)
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We are interested in bounding the performance of the policy πt in ground-truth MDP rather than the721

learned MDP.722

V πE

M − V πt

M ≤ V πE

M − V πt

M̂
+

4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(73)

≤ 2γϵπ
t

mRmax

(1− γ)2
+

4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(74)

The regret of an algorithm with ranking-loss depends on the accuracy of the approximate transition723

model at the visitation of the output policy πt and the expected accuracy of the approximate transition724

model at the transitions encountered in the visitation of expert. Using an exploratory policy optimiza-725

tion procedure, the regret grows sublinearly as shown in [36]. [36] uses an exploration bonus and726

shows that the RHS in the above regret simplifies to be information gain and for a number of MDP727

families the growth rate of information gain is mild.728

Potential imitation suboptimality with additional rankings729

In this section, we consider how additional rankings can affect the intended performance gap730

as discussed in 4.2. Consider a tabular MDP setting in which we are given a set of rankings731

ρπ ⪯ ρ1 ⪯ .. ⪯ ρn ⪯ ρE . In such a case, we regress the state-action pairs from their respective732

visitations to [0, k1, k2, ..kn, k] where 0 < k1 < k2.. < kn < k. We will discuss in Appendix B.1.1733

how this regression generalizes Lk . For this regression, the optimal reward function that minimizes734

the ranking loss pointwise is given by:735

R∗(s, a) =

∑n
i=1 kiρ

πi

(s, a) + ρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + ρE(s, a)

(75)

We consider a surrogate ranking loss with regression target keff that achieves the same optimal736

reward when only ρ ⪯ ρE ranking is given. Therefore:737

∑n
i=1 kiρ

i(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
i(s, a) + ρE(s, a)

=
keffρ

E(s, a)

ρE(s, a) + ρπ(s, a)
(76)

k′ can be upper bounded as follows:738

keff =
ρE(s, a) + ρπ(s, a)

ρE(s, a)

∑n
i=1 kiρ

πi

(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + kρE(s, a)

(77)

≤ ρE(s, a) + ρπ(s, a)

ρE(s, a)

∑n
i=1 kiρ

πi

(s, a) + kρE(s, a)

ρπ(s, a) + ρE(s, a)
(78)

= k +

n∑

i=1

ki
ρπ

i

(s, a)

ρE(s, a)
(79)

keff can be lower bounded by:739

keff =
ρE(s, a) + ρπ(s, a)

ρE(s, a)

∑n
i=1 kiρ

πi

(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + ρE(s, a)

(80)

≥ ρE(s, a) + ρπ(s, a)

ρE(s, a)

kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + ρE(s, a)

(81)

=
k

1 +
∑n

i=1 ρπi (s,a)

ρπ(s,a)+ρE(s,a)

(82)

Thus, keff can increase or decrease compared to k after augmenting the ranking dataset. We discuss740

the consequences of a decreased k in Section 4.2.741
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B Algorithm Details742

B.1 Ranking Loss for the Reward Agent743

Consider a dataset of behavior rankings D = {(ρ11 ⪯ ρ21), (ρ
1
2 ⪯ ρ22), ...(ρ

1
n ⪯ ρ2n)}, wherein for ρij744

— i denotes the comparison index within a pair of policies, j denotes the pair number, and ρ11 ⪯ ρ21745

denotes that ρ21 is preferable in comparison to ρ11 and in turn implies that ρ21 has a higher return. Each746

pair of behavior comparisons in the dataset are between the state-action or state visitations. We will747

restrict our attention to a specific instantiation of the ranking loss (a regression loss) that attempts to748

explain the rankings between each pair of policies present in the dataset by a performance gap of at749

least k, i.e. Eρ1 [R(s, a)] ≤ Eρ2 [R(s, a)]− k. Formally, the ranking loss is defined as follows:750

min
R

Lk(D;R) = min
R

E(ρ1,ρ2)∼D
[
Es∼ρ1(s,a)

[
(R(s, a)− 0)2

]
+ Es∼ρ2(s,a)

[
(R(s, a)− k)2

]]

(83)

When k is set to 1 (k = 1), this loss function resembles the loss function used for SQIL [52]. Thus,751

SQIL can be understood as a special case.752

Our work explores the setting of imitation learning given samples from state or state-action visitation753

ρE of the expert πE . We will use πagent
m to denote the mth update of the agent in Algorithm 1. The754

updated agent generates a new visitation in the environment which is stored in an empty dataset755

Donline
m given by Donline

m = {ρπagent
m ⪯ ρπ

E}756

B.1.1 Reward loss with automatically generated rankings (auto)757

The ranking dataset Dp contains pairwise comparison between behaviors ρi ⪯ ρj . First, we assume758

access to the trajectories that generate the behaviors, i.e ρi = {τ i1, τ i2...τ in} and ρj = {τ j1 , τ j2 ...τ jm} In759

this method we propose to automatically generate additional rankings using the following procedure:760

(a) Sample trajectory τ i ∼ ρi and τ j ∼ ρj . Both trajectories are equal length because of our use of761

absorbing states (see Appendix C). (b) Generate an interpolation τ ijλp
between trajectories depending762

on a parameter λp. A trajectory is a matrix of dimensions H × (|S|+|A|), where H is the horizon763

length of all the trajectories.764

τ ijλp
= λpτi + (1− λp)τj (84)

These intermediate interpolated trajectories lead to a ranking that matches the ranking under the765

expert reward function if the reward function is indeed linear in state features. We further note that τ766

can also be a trajectory of features rather than state-action pairs.767

Next, we generate regression targets for the interpolated trajectories. For a trajectory τ ijλp
the768

regression target is given by a vector λp0 + (1 − λp)k1, where vectors 0, 1 are given by [0,0,..0]769

and [1,1,...,1] of length H respectively. This procedure can be regarded as a form of mixup [68] in770

trajectory space. The set of obtained τ ijλp
after expending the sampling budget forms our behavior771

ρijλp
.772

A generalized and computationally efficient interpolation strategy for rank-game773

Once we have generated P interpolated rankings, we effectively have O(P 2) rankings that we can774

use to augment our ranking dataset. Using them all naively would incur a high memory burden.775

Thus, we present another method for achieving the same objective of using automatically generated776

rankings in a more efficient and generalized way. For each pairwise ranking ρi ⪯ ρj in the datasetDp,777

we have the following new set of rankings ρi ⪯ ρijλ1
⪯ .. ⪯ ρijλP

⪯ ρj . Using the O(P 2) rankings778

in the ranking loss Lk, the ranking loss can be simplified to the following using basic algebraic779

manipulation:780
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(P + 1)E(s,a)∼ρj

[
(R(s, a)− k)2

]
+ (P )E(s,a)∼ρij

λP

[
(R(s, a)− k)2

]
+ ..+ (1)E(s,a)∼ρij

λ1

[
(R(s, a)− k)2

]

+(P + 1)E(s,a)∼ρi

[
(R(s, a)− 0)2

]
+ (P )E(s,a)∼ρij

λ1

[
(R(s, a)− 0)2

]
+ ..+ (1)E(s,a)∼ρij

λP

[
(R(s, a)− 0)2

]

(85)

The reward function that minimizes the above loss pointwise is given by:781

R∗(s, a) =
k[(P + 1)ρj + PρijλP

+ (P − 1)ρijλP−1
+ ..+ ρijλ1

]

(P + 1)(ρj + ρijλP
+ ..+ ρijλ1

+ ρi)
(86)

=
k[ρj + P

P+1ρ
ij
λP

+ P−1
P+1ρ

ij
λP−1

+ ..+ 1
P+1ρ

ij
λ1
]

(ρj + ρijλP
+ ..+ ρijλ1

+ ρi)
(87)

We consider a modification to the ranking loss objective (Equation 83) that increases flexibility in782

regression targets for ranking as well as reducing the computational burden from dealing with O(P 2)783

rankings pairs to O(P ). In this modification we regress the current agent, the expert, and each of784

the intermediate interpolants (ρi, ρijλ1
, ..., ρijλP

, ρE) to a fixed scalar return (k0, k1, ..., kP+1) where785

k0 ≤ k1 ≤ ... ≤ kP+1 = k. The optimal reward function for this loss function is given by:786

R∗(s, a) =
kp+1ρ

E(s, a) + kpρ
ij
λP

(s, a) + kp−1ρ
ij
λP−1

(s, a) + ..+ k1ρ
ij
λ1
(s, a) + k0ρ

π(s, a)

(ρE(s, a) + ρijλP
(s, a) + ..+ ρijλ1

(s, a) + ρπ)(s, a)
(88)

This modified loss function generalizes Eq 86 and recovers it exactly when [k0, k1.., kP+1] is set to787

be [0, k 1
P+1 , .., k

P
P+1 , k]. We will call this reward loss function a generalized ranking loss.788

Shaping the ranking loss: The generalized ranking loss contains a set of regression targets789

(k0, k1, ..., kP+1) which needs to be decided apriori. We propose two strategies for deciding these790

regression targets.We consider two families of parameterized mappings: (1) linear in α (kα = α ∗ k)791

and (2) rate of increase in return exponential in α (dkα

dα ∝ eβα), where β is the temperature parameter792

and denote this family by exp-β. We also set kα=0 = 0 (in agent’s visitation) and kα=1 = k (in793

expert’s visitation) under the reward function that is bounded in [0, Rmax]. The shaped ranking794

regression loss, denoted by SLk(D;R), that induces a performance gap between p+ 2 consecutive795

rankings (ρi = ρijλ0
, ρijλ1

, ..., ρijλP
, ρj = ρijλP+1

) is given by:796

SLk(D;R) =
1

p+ 2

p+1∑

i=0

Es∼ρij
λi

(s,a)

[
(R(s, a)− ki)

2
]

(89)

Figure 6 above shows the flexibility in reward shaping afforded by the two families of parameterized797

functions. The temperature parameter β > 0 encourages the initial preferences to have a smaller798

performance gap than the latter preferences. Conversely, β < 0 encourages the initial preferences799

to have a larger performance gap compared to the latter preferences. We ablate these choices of800

parameteric functions in Appendix D.5.801

B.1.2 Reward loss with offline annotated rankings (pref)802

Automatically generated rankings are generated without any additional supervision and can be803

understood as a form of data augmentation. By contrast, with offline annotated rankings, we are804

given a fixed dataset of comparisons which is a form of additional supervision for the reward805

function. Automatically generated rankings can only help by making the reward landscape easier806

to optimize, but offline rankings can help reduce the exploration burden by informing the agent807

about counterfactuals that it had no information about. This can, for instance, help the agent avoid808

unnecessary exploration by providing a dense improvement signal. The offline rankings are either809

provided by a human or extracted from a set of trajectories for which ground truth reward is known.810

In our work, we extract offline preferences by uniformly sampling p trajectories from an offline811

dataset obtained from a training run of an RL method (SAC) [26] with ground truth reward.812
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Figure 6: This figure shows the assignment of value kα (intended return value) corresponding to values of α
(degree of time-conditional interpolation between the visitation distribution of the agent and the expert). When
the rate of increase is exponential with positive slope, we have a higher performance gap over comparisons
closer to the expert and when the rate of increase is negative, the performance gap is higher for comparisons
closer to the agent.

For imitation learning with offline annotated rankings, at every iteration m of Algorithm 1 we have813

a new dataset of rankings given by Donline
m = {ρagentm ⪯ ρE} along with a fixed offline dataset814

containing rankings of the form (Doffline = {ρ1 ⪯ ρ2... ⪯ ρp}). We always ground the offline815

preferences by expert’s visitation in our experiments, i.e ρp ⪯ ρE . We incorporate the offline rankings816

as a soft constraint in reward learning by combining the ranking loss Lk between the policy agent817

and the expert, with a shaped ranking loss SLk over offline trajectories:818

Loffline
k (Donline

, ,Doffline;R) = λLk(Donline;R) + (1− λ) ∗ SLk(Doffline;R) (90)

where SLk is the smooth ranking loss from Equation 89. Here, instead of the consecutive rankings be-819

ing interpolants, they are offline rankings. The videos attached in the supplementary show the benefit820

of using preferences in imitation learning. The policy learned without preferences in the pen environ-821

ment drops the pen frequently and in the door environment is unable to successfully open the door.822

B.2 Stackelberg Game Instantiation823

A Stackelberg game view of optimizing the two-player game with a dataset of behavior rankings leads824

to two methods: PAL (Policy as Leader) and RAL (Reward as Leader) (refer Section 4.3). PAL uses825

a fast reward update step and we simulate this step by training the reward function until convergence826

(using a validation set) on the dataset of rankings. We simulate a slow update step of the policy by827

using a few iterations of the SAC [26] update for the policy. RAL uses a slow reward update which828

we approximate by dataset aggregation — aggregating all the datasets of rankings generated by the829

agent in each previous iteration enforces the reward function to update slowly. A fast policy update is830

simulated by using more iterations of SAC. Since SAC does not perform well with a high update to831

environment step ratio, more iterations of SAC would imply more environment steps under a fixed832

reward function. This was observed to lead to reduced learning efficiency, and an intermediate value833

of SAC updates was observed to perform best (Table 5).834

B.2.1 Policy as Leader835

Algorithm 2 presents psuedocode for a practical instantiation of the PAL methods - RANK-PAL836

(vanilla), RANK-PAL (auto) and RANK-PAL (pref) that we use in our work. Recall that (vanilla)837

variant uses no additional rankings, whereas (auto) uses automatically generated rankings and (pref)838

uses offline annotated ranking.839
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Algorithm 2 Policy As Leader (PAL) practical instantiation

1: Initialize: Policy network πθ, reward network Rϕ, replay bufferR
2: Hyperparameters: Common: Policy update steps npol, Reward update steps nrew, Performance

gap k, empty ranking dataset Donline, RANK-PAL (auto): number of interpolations P , RANK-
PAL(pref): Offline annotated rankings Doffline.

3: for m = 0, 1, 2, . . . do
4: Collect transitions in the environment and add to replay buffer R. Run policy update step:

πm
θ = Soft Actor-Critic(Rm−1

ϕ ;πm−1
θ ) with transitions relabelled with reward obtained from

Rm−1
ϕ . // call npol times

5: Add absorbing state/state-actions to all early-terminated trajectories collected in the current
npol policy update steps to make them full horizon and collect in Donline

m . Donline = Donline
m

(discard old data).
6: (for RANK-PAL(auto)) Generate interpolations for rankings in the dataset Donline and collect

in Donline
auto

7: Reward Update step: // call nrew times

Rm
ϕ =





minLk(Donline;Rm−1
ϕ ), RANK-PAL (vanilla) (Equation 83)

minSLk(Donline
auto ;Rm−1

ϕ ), RANK-PAL (auto) (Equation 89)
minLoffline

k (Donline,Doffline;R), RANK-PAL (pref) (Equation 90)

8: end for

B.2.2 Reward as Leader840

Algorithm 3 presents psuedocode for a practical instantiation of the RAL methods - RANK-RAL841

(vanilla), RANK-RAL (auto).842

Algorithm 3 Reward As Leader (RAL) practical instantiation

1: Initialize: Policy network πθ, reward network Rϕ, replay bufferR, trajectory buffer D
2: Hyperparameters: Common: Policy update steps npol, Reward update steps nrew, Performance

gap k, empty ranking dataset Donline, RANK-PAL (auto): number of interpolations P , RANK-
PAL (pref): Offline annotated rankings Doffline.

3: for m = 0, 1, 2, . . . do
4: Collect transitions in the environment and add to replay buffer R. Run policy update step:

πm
θ = Soft Actor-Critic(Rm−1

ϕ ;πm−1
θ ) with transitions relabelled with reward obtained from

Rm−1
ϕ . // call npol times

5: Add absorbing state/state-actions to all early-terminated trajectories collected in the current
npol policy update steps to make them full horizon and collect in Donline

m . Aggregate data in
Donline = Donline

m ∪ Donline.
6: (for RANK-RAL(auto)) Generate interpolations for rankings in the dataset Donline and collect

in Donline
auto

7: Reward Update step: // call nrew times

Rm
ϕ =

{
minLk(Donline;Rm−1

ϕ ), RANK-RAL (vanilla) (Equation 83)
minSLk(Donline

auto , Rm−1
ϕ ), RANK-RAL(auto) (Equation 89)

8: end for

C Implementation and Experiment Details843

Environments: Figure 7 shows some of the environments we use in this work. For benchmarking844

we use 6 MuJoCo (licensed under CC BY 4.0) locomotion environments. We also test our method on845

manipulation environments - Door opening environment from Robosuite [70] (licensed under MIT846

License) and the Pen-v0 environment from mjrl [50] (licensed under Apache License 2.0).847
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Env Swimmer Hopper HalfCheetah Walker Ant Humanoid
BCO 102.76±0.90 20.10±2.15 5.12±3.82 4.00±1.25 12.80±1.26 3.90±1.24
GaiFO 99.04±1.61 81.13± 9.99 13.54±7.24 83.83±2.55 20.10±24.41 3.93±1.81
DACfO 95.09±6.14 94.73±3.63 85.03±5.09 54.70±44.64 86.45±1.67 19.31±32.19
f -IRL 103.89±2.37 97.45± 0.61 96.06±4.63 101.16±1.25 71.18±19.80 77.93±6.372
OPOLO 98.64±0.14 89.56±5.46 88.92±3.20 79.19±24.35 93.37± 3.78 24.87±17.04
IMIT-PAL
(ours)

105.93±3.12 86.47± 7.66 90.65±15.17 75.60±1.90 82.40±9.05 94.49±3.21

IMIT-RAL
(ours)

100.35±3.6 92.34±8.63 96.80±2.45 94.41±2.94 78.06±4.24 91.27±9.33

RANK-
PAL (ours)

98.83±0.09 87.14± 16.14 94.05±3.59 93.88±0.72 98.93±1.83 96.84±3.28

RANK-
RAL (ours)

99.31±1.50 99.34±0.20 101.14±7.45 93.24±1.25 93.21±2.98 94.45±4.13

Expert 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0
(|S|, |A|) (8, 2) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 3: Asymptotic normalized performance of LfO methods at 2 million timesteps on MuJoCo locomotion
tasks. The results in this Table also include evaluations for the IMIT-{PAL, RAL} methods.

Env Swimmer Hopper HalfCheetah Walker Ant Humanoid
BCO 210.22±3.43 721.92±89.89 410.83±238.02 224.58±71.42 704.88±13.49 324.94±44.39

GAIfO 202.66±4.87 2871.47±365.73 1532.57±693.72 4666.31±143.75 1141.66±1400.11 326.69±13.26
DACfO 194.65±14.08 3350.55±141.69 11057.54±407.26 3045.21±2485.33 5112.15±38.01 1165.40±1867.61
f -IRL 212.50±6.43 3446.33±35.66 12527.24±344.95 5630.32±71.35 4200.48±1124.17 4362.46±459.72

OPOLO 210.84±1.31 3168.35±206.26 11576.12±155.09 4407.70±1356.39 5529.44±164.94 1468.90± 1041.853
IMIT-PAL (ours) 216.64±7.95 3059.43±283.85 11806.47± 1750.24 4208.17±107.41 4872.39±480.23 5265.60±287.44
IMIT-RAL (ours) 205.33±8.92 3266.28±318.03 12626.18±54.71 5254.54±165.19 4612.8±192.06 5089.88±621.07

RANK-PAL (ours) 202.24±1.80 3082.98±582.59 12259.06± 206.82 5225.49±42.02 5862.42±47.68 5393.45±291.16
RANK-RAL (ours) 203.20±4.65 3512.67±21.09 13204.49±721.77 5189.51±71.27 5520.14±116.77 5262.96±337.44

Expert 204.6 ± 0 3535.88 ± 0 13051.46 ± 0 5456.91 ± 0 5926.17 ± 0 5565.53 ± 0
(|S|, |A|) (8, 2) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 4: Asymptotic performance of LfO methods at 2 million timesteps on MuJoCo locomotion tasks. The
results in this Table also include evaluations for the IMIT-{PAL, RAL} methods.

Expert data: For all environments, we obtain expert data by a policy trained until convergence using848

SAC [26] with ground truth rewards.849

Baselines: We compare our proposed methods against 6 representative LfO approaches that cover a850

spectrum of on-policy and off-policy, model-free methods from prior work: GAIfO [62, 28], DACfO851

[37], BCO [61], f -IRL [45], OPOLO [71] and IQ-Learn [21]. GAIfO [62] is a modification of852

the adversarial GAIL method [28], in which the discriminator is trained to distinguish between853

state-distributions rather than state-action distributions. DAC-fO [37] is an off-policy modification854

of GAIfO [62], in which the discriminator distinguishes the expert states with respect to the entire855

replay buffer of the agent’s previously visited states, with additional implementation details such as856

added absorbing states to early-terminated trajectories. BCO [61] learns an inverse dynamics model,857

iteratively using the state-action-next state visitation in the environment and using it to predict the858

actions that generate the expert state trajectory. OPOLO [71] is a recent method which presents859

a principled off-policy approach for imitation learning by minimizing an upper-bound of the state860

marginal matching objective. IQ-Learn [21] proposes to make imitation learning non-adversarial by861

directly optimizing the Q-function and removing the need to learn a reward as a subproblem. All the862

approaches only have access to expert state-trajectories.863

We use the author’s open-source implementations of baselines OPOLO, DACfO, GAIfO, BCO avail-864

able at https://github.com/illidanlab/opolo-code. We use the author-provided865

hyperparameters (similar to those used in [71]) for all MuJoCo locomotion environments. For f -IRL,866

we use the author implementation available at https://github.com/twni2016/f-IRL and867

use the author provided hyperparameters. IQ-Learn was tested on our expert dataset by following868

authors implementation found here: https://github.com/Div99/IQ-Learn. We tested869

two IQ-Learn loss variants: ’v0’ and ’value’ as found in their hyperparameter configurations and took870

the best out of the two runs.871
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Figure 7: We evaluate rank-game over environments including Hopper-v2, Ant-v2, Humanoid-v2, Door, and
Pen-v0.

Policy Optimization: We implement RANK-PAL and RANK-RAL with policy learning using872

SAC [26]. We build upon the SAC code [2] (https://github.com/openai/spinningup) without changing873

any hyperparameters.874

Reward Learning: For reward learning, we use an MLP parameterized by two hidden layers of875

64 dimensions each. Furthermore, we clip the outputs of the reward network between [−10, 10]876

range to keep the range of rewards bounded while also adding an L2 regularization of 0.01. We add877

absorbing states to early terminated agent trajectories following [38]. For training the ranking loss878

until convergence in both update strategies (PAL and RAL), we used evaluation on a holdout set that879

is 0.1 the total dataset size as a proxy for convergence.880

Data sharing between players: We rely on data sharing between players to utilize the same collected881

transitions for both players’ gradient updates. The reward learning objective in RANK-PAL and882

RANK-RAL requires rolling out the current policy. This makes using an off-policy routine for883

training the policy player quite inefficient, since off-policy model-free algorithms update a policy884

frequently even when executing a trajectory. To remedy this, we reuse the data collected with a885

mixture of policies obtained during the previous off-policy policy learning step for training the reward886

player. This allows us to reuse the same data for policy learning as well as reward learning at each887

iteration.888

Ranking loss for reward shaping via offline annotated rankings: In practice for the (pref) setting889

(Section 4.2), to increase supervision and prevent overfitting, we augment the offline dataset by890

regressing the snippets (length l) of each offline trajectory τ i for behavior ρi to k ∗ l, in addition to891

regressing the rewards for each state to k. The snippets are generated as contiguous subsequence892

from the trajectory, similar to [10].893

C.1 Hyperparameters894

Hyperparameters for RANK-{PAL,RAL} (vanilla,auto and pref) methods are shown in Table 5.895

For RANK-PAL, we found the following hyperparameters to give best results: npol = H and896

nrew = (’validation’ or H/b), where H is the environment horizon (usually set to 1000 for MuJoCo897

locomotion tasks) and b is the batch size used for the reward update. For RANK-RAL, we found898

npol = H and nrew = (’validation’ or |D|/b), where |D| indicates the cumulative size of the ranking899

dataset. We found that scaling reward updates proportionally to the size of the dataset also performs900

well and is a computationally effective alternative to training the reward until convergence (see901

Section D.7).902

D Additional Experiments903

D.1 Complete evaluation of LfO with rank-game(auto)904

Figure 8 shows a comparison of RANK-PAL(auto) and RANK-RAL(auto) for the LfO setting on the905

Mujoco benchmark tasks: Swimmer-v2, Hopper-v2, HalfCheetah-v2, Walker2d-906

v2, Ant-v2 and Humanoid-v2. This section provides complete results for Section 5.1 in the907

main paper.908
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Hyperparameter Value
Policy updates npol H
Reward batch size(b) 1024
Reward gradient updates nrew val or |D|/1024
Reward learning rate 1e-3
Reward clamp range [-10,10]
Reward l2 weight decay 0.0001
Number of interpolations [auto] 5
Reward shaping parameterization [auto] exp-[-1]
Offline rankings loss weight (λ) [pref] 0.3
Snippet length l [pref] 10

Table 5: Common hyperparameters for the RANK-GAME algorithms. Square brackets in the left column
indicate which hyperparameters that are specific to ‘auto’ and ‘pref’ methods.
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Figure 8: Comparison of performance on OpenAI gym benchmark tasks. The shaded region represents standard
deviation across 5 random runs. RANK-PAL and RANK-RAL substantially outperform the baselines in sample
efficiency. Dotted blue line shows the expert’s performance.

D.2 Evaluation of LfD with rank-game(auto)909

rank-game is a general framework for both LfD(with expert states and actions) and LfO (with only910

expert states/observations). We compare performance of rank-game compared to LfD baselines:911

IQ-Learn [21], DAC [37] and BC [48].912

In figure 9, we observe that rank-game is among the most sample efficient methods for learning913

from demonstrations. IQlearn shows poor learning performance on some tasks which we suspect is914

due to the low number of expert trajectories we use in our experiments compared to the original work.915

DAC was tuned using the guidelines from [46] to ensure fair comparison.916

D.3 Utility of automatically generated rankings in rank-game(auto)917

We investigate the question of how much the automatically generated rankings actually help in this918

experiment. To do that, we keep all the hyperparameters same and compare RANK-GAME (vanilla)919

with RANK-GAME (auto). RANK-GAME (vanilla) uses no additional ranking information and Lk920

is used as the reward loss.921
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Figure 9: Comparison of rank-game methods with baselines in the LfD setting (expert actions are available).
RANK-{PAL,RAL} are competitive to state of the art methods.
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Figure 10: RANK-PAL(vanilla) has high variance learning curves with lower sample efficiency compared to
RANK-PAL(auto).

Figure 10 shows that in RANK-PAL (auto) has lower variance throughout training (more stable) and922

is more sample efficient compared to RANK-PAL(vanilla).923

D.4 Comparison of imit-game and rank-game methods924

Imitation learning algorithms, particularly adversarial methods, have a number of implementation925

components that can affect learning performance. In this experiment, we aim to further reduce any926

implementation/hyperparameter gap between adversarial imitation learning (AIL) methods that are927

based on the supremum-loss (described in section 3) function and rank-game to bring out the928

obtained algorithmic improvements. To achieve this, we swap out the ranking loss Lk based on929

regression with a supremum-loss and call this method IMIT-{PAL,RAL}. This results in all the930

other hyperparameters such as batch size, reward clipping, policy and reward learning iterations, and931

optimizer iterations to be held constant across experiments.932

We present a comparison of RANK-{PAL, RAL} and IMIT-{PAL, RAL} in terms of asymptotic933

performance in Table 3 and their sample efficiency in Figure 11. Note that Table 3 shows normalized934

returns that are mean-shifted and scaled between [0-100] using the performance of a uniform random935

policy and the expert policy. The expert returns are given in Table 4 and we use the following936

performance values from random policies for normalization: { Hopper= 13.828, HalfCheetah=937
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−271.93, Walker= 1.53, Ant=−62.01, Humanoid= 112.19}. Table 4 shows unnormalized asymptotic938

performance of the different methods.939

In terms of sample efficiency, we notice IMIT-{PAL, RAL} methods compare favorably to other940

regularized supremum-loss counterparts like GAIL and DAC but are outperformed by RANK-{PAL,941

RAL} (auto) methods. We hypothesize that better learning efficiency in Lk compared to supremum-942

loss is due to regression to fixed targets being a simpler optimization than maximizing the expected943

performance gap under two distributions.944
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Figure 11: Comparison of performance on OpenAI gym benchmark tasks. Specifically, we seek to compare
RANK-{PAL, RAL} methods to IMIT-{PAL, RAL} methods and IMIT-{PAL, RAL} methods to their non-
Stackelberg counterparts GAIfO and DACfO. The shaded region represents standard deviation across 5 random
runs. RANK-PAL and RANK-RAL substantially outperform the baselines in sample efficiency and IMIT-{PAL,
RAL} is competitive to the strongest prior baseline OPOLO.

D.5 Effect of parameterized reward shaping in rank-game (auto)945

We experiment with different ways of shaping the regression targets (Appendix B) for automatically946

generated interpolations in RANK-GAME (auto) in Figure 12. In the two left-most plots for RANK-947

PAL (auto), we see that reward shaping instantiations (exponential with negative temperature) which948

learns a higher performance gap for pairs of interpolants closer to the agent lead to higher sample949

efficiency. We note that decreasing the temperature too much leads to a fall in sample efficiency. The950

same behavior is observed in RANK-RAL (two right-most plots) methods but we find them to be951

more robust to parameterized shaping than PAL methods. We use the following interpolation scheme:952

exponential with temperature=−1 for our experiments in the main paper.953
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Figure 12: The two left-most plots show the effect of reward shaping in RANK-PAL (auto) methods using
linear and exponential shaping functions. The two right-most plots show the same effect of reward shaping in
RANK-RAL (auto) methods. Reward shaping instantiations which induce a higher performance gap between
pairs of interpolants closer to the agent perform better and RAL is more robust to reward shaping variants than
PAL.
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D.6 On the rank preserving nature of SLk954

The ranking loss SLk (Appendix B, Eq 89) regresses the ρi, ρj and each of the intermediate955

interpolants (ρi = ρijλ0
, ρijλ1

, ..., ρijλP
, ρj = ρijλP+1

) to fixed scalar returns (k0, k1, ..., kP+1) where956

k0 ≤ k1 ≤ ... ≤ kp+1 = k. The ranking loss SLk is given by:957

SLk(D;R) =
1

p+ 2

P+1∑

i=0

Es∼ρij
λi

(s,a)

[
(R(s, a)− ki)

2
]

(91)

SLk provides a dense reward assignment for the reward agent but does not guarantee that minimizing958

SLk would lead to the performance ordering between rankings, i.e Eρ1 [f(s)] < Eρ2 [f(s)] <959

Eρ3 [f(s)] < .. < EρP+1 [f(s)]. An ideal loss function for this task regresses the expected return960

under each behavior to scalar values indicative of ranking, but needs to solve a complex credit961

assignment problem. Formally, we can write the ideal loss function for reward agent as follows962

SLideal
k (D;R) =

1

p+ 2

P+1∑

i=0

[Es∼ρij
λi

(s,a)[R(s, a)]− ki]
2 (92)

We note that the SLk upper bounds SLideal
k using Jensen’s inequality and thus is a reasonable target963

for optimization. In this section we wish to further understand if SLk has a rank-preserving policy.964

SLk is a family of loss function for ranking that assigns a scalar reward value for each states of a965

particular state visitation corresponding to its ranking. Ideally, given a ranking between behaviors966

ρ0 ⪯ ρ1 ⪯ ρ2... ⪯ ρP+1 we aim to learn a reward function f that satisfies Eρ0 [f(s)] < Eρ1 [f(s)] <967

Eρ2 [f(s)] < .. < EρP+1 [f(s)]. We empirically test the ability of the ranking loss function SLk to968

facilitate the desired behavior in performance ranking. We consider a finite state space S and number969

of rankings P . We uniformly sample P + 1 possible state visitations and the intermediate regression970

targets {ki}ni=1 s.t ki ≤ ki+1. To evaluate the rank-preserving ability of our proposed loss function971

we study the fraction of comparisons the optimization solution that minimizes SLk is able to get972

correct. Note that P + 1 sequential ranking induces P (P + 1)/2 comparisons.973

Figure 13: Increasing the state size of the domain increases the rank consistency afforded by SLk and increasing
the number of rankings decreases the rank consistency.

Figure 13 shows that with large state spaces SLk is almost rank preserving and the rank preserving974

ability degrades with increasing number of rankings to be satisfied.975

D.7 Stackelberg game design976

We consider the sensitivity of the two-player game with respect to policy update iterations and reward977

update iterations. Our results (Figure 14) draw analogous conclusions to [51] where we find that978

using a validation loss for training reward function on on-policy and aggregate dataset in PAL and979

RAL respectively works best. Despite its good performance, validation loss based training can be980

wall-clock inefficient. We found a substitute method to perform similarly while giving improvements981

in wall-clock time - make number of iterations of reward learning scale proportionally to the dataset982

set size. A proportionality constant of (1/batch-size) worked as well as validation loss in practice.983
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Contrary to [51] where the policy is updated by obtaining policy visitation samples from the learned984

model, our ability to increase the policy update is hindered due to unavailability of a learned model985

and requires costly real-environment interactions. We tune the policy iteration parameter (Figure 15)986

and observe the increasing the number of policy updates can hinder learning performance.987
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Figure 14: The left two plots use PAL strategy and the right two plots use RAL strategy. Reward learning using
a validation loss on a holdout set leads to improved learning performance compared to hand designed reward
learning iterations.
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Figure 15: Small number of policy updates are useful for good learning performance in the PAL setting here.

D.8 Sensitivity of reward range for the ranking loss Lk988

In Section 4.2, we discussed how the scale of learned reward function can have an effect on learning989

performance. We validate the hypothesis here, where we set Rmax = k and test the learning990

performance of RANK-PAL (auto) on various different values of k. Our results in figure D.9 show991

that the hyperparameter k has a large effect on learning performance and intermediate values of k992

works well with k = 10 performing the best.993
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Figure 16: Intermediate values of k work best in practice.

D.9 Effect of regularizer for rank-game994

rank-game(auto) incorporates automatically generated rankings which can be understood as a995

form of regularization, particularly mixup [68] in trajectory space. In this experiment, we work in the996

PAL setting with ranking loss Lk and compare the performances of other regularizers: Weight-decay997

(wd), Spectral normalization (sn), state-based mixup to (auto). Contrary to trajectory based mixup998

(auto) where we interpolate trajectories, in state-based mixup we sample states randomly from the999

behaviors which are pairwise ranked and interpolate between them.1000
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Figure 17: (auto) regularization outperforms other forms of regularization in rank-game

Figure 17 shows learning with (auto) regularizer is more efficient and stable compared to other1001

regularizers.1002

D.10 Ablation analysis summary1003

We have ablated the following components for our method: Automatically-generated rankings D.3,1004

Ranking loss D.4, Parameterized reward shaping D.5, Stackelberg game design D.7 and range of the1005

bounded reward D.9. Our analysis above (Figure 11,16 and 14) shows quantitatively that the key im-1006

provements over baselines are driven by using the proposed ranking loss, controlling the reward range1007

and the reward/policy update frequency in the Stackelberg framework. Parameterized reward shaping1008

(best hyperparameter : exp -1 compare to unshaped/linear shaping) and automatically-generated rank-1009

ings contribute to relatively small improvements. We note that a single hyperparameter combination1010

(Table 5) works well across all tasks demonstrating robustness of the method to environment changes.1011

1012

D.11 Varying number of expert trajectories for imitation learning1013
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Figure 18: We investigate learning from ex-
pert observation+offline preferences where
the offline preferences are noisy. RANK-PAL
shows considerable robustness to noisy pref-
erences.

In the main text, we considered experiment settings where1014

the agent is provided with only 1 expert trajectory. In this1015

section, we test how our methods performs compared to1016

baselines as we increase the number of available expert ob-1017

servation trajectories. We note that these experiments are1018

in the LfO setting. Figure 19 shows that RANK-GAME1019

compares favorably to other methods for varying number1020

of expert demonstrations/observations trajectories.1021

1022

D.12 Robustness to noisy preferences1023

In this section, we investigate the effect of noisy prefer-1024

ences on imitation learning. We consider the setting of1025

Section 5.2 where we attempt to solve hard exploration1026

problems for LfO setting by leveraging trajectory snippet1027

comparisons. In this experiment, we consider a setting1028

similar to [10] where we inject varying level of noise, i.e1029

flip x% of trajectory snippet at random. Figure 18 shows1030

that RANK-PAL(pref) is robust in learning near-expert1031

behavior upto 60 percent noise in the Door environment. We hypothesize that this robustness to noise1032

is possible because the preferences are only used to shape reward functions and does not change the1033

optimality of expert.1034
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Figure 19: Performance analysis of different algorithms in the LfO setting with varying number of expert
trajectories. RANK-PAL (auto) compares favorably to other methods

D.13 Learning purely from offline rankings in manipulation environments1035
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Figure 20: Testing with 10, 20 and 50 suboptimal preferences uniformly sampled from a replay buffer of SAC
trained from pre-specified reward we see that TREX is not able to solve these tasks. The black dotted line shows
asymptotic performance of RANK-PAL (auto) method.
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In section 5.2, we saw that offline annotated preferences can help solve complex manipulation tasks1036

via imitation. Now, we compare with the ability of a prior method—TREX [10] that learns purely1037

from suboptimal preferences—under increasing numbers of preferences. We test on two manipulation1038

tasks: Pen-v0 and Door-v0 given varying number of suboptimal preferences: 10, 20, 50. These1039

preferences are uniformly sampled from a replay buffer of SAC trained until convergence under a1040

pre-specified reward, obtained via D4RL (licensed under CC BY) .We observe in Figure 20 that1041

T-REX is unable to solve these tasks under any selected number of suboptimal preferences.1042
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