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A PRELIMINARY

A.1 CHANGE POINT DETECTION METHODS

WBSLSW: The WBSLSW method (Korkas & PryzlewiczV, 2017) incorporates the non-parametric
locally stationary wavelet process with wild binary segmentation, and can detect the second-order
structure of the sequence with an unknown number of change points. We implement the WBSLSW
using the R package wbsts.

KCP: The KCP (Harchaoui & Cappé, 2007) method is a dynamic programming method with a
known number of change points. This algorithm detects the change points by minimizing the kernel
least-squares criterion. In our cases, we combine KCP with a linear penalty pruning the number of
change points. This is done by using the python package ruptures (Truong et al., 2020) with a
Gaussian kernel and default parameters.

DPHMM: The DPHMM method developed by Ko et al. (2015) is a combination of the Dirichlet
process and the Hidden Markov model to detect change points using MCMC. This method allows
the number of change points to be unknown. We implement this algorithm using the R package
dirichletprocess with default parameters and set X = 10

ECP30: Zhang et al. (2017) propose a new change point search framework called change point
procedure via pruned objectives. The ECP30 method uses the new search frame with the E-statistics
which measures the goodness-of-fit. This method is implemented using e . cp3o—-delta function
with default parameters in R package ecp. (Nicholas A. James and Wenyu Zhang and David S.

Matteson, 2019). The maximum number of change points K is 10.

D,,-BOCD: D,,,-BOCD is an online method developed by Altamirano et al. (2023). This method is
generalized from BOCD (Adams & MacKay, 2007) with diffusion score matching, which is robust
to sequences with outliers. We implement this method using the code provided on the author’s
GitHub page.

A.2 VARIATIONAL INFERENCE

Variational inference (VI) Blei et al. (2017) works as a fast approximation method for Bayesian
inference. Given the observation x and latent variable z, VI uses a tractable variational distribution
¢ drawn from the function class F to approach the complicated posterior p(z | x) by minimizing
their KL divergence. However, the KL can not be computed analytically. Classical VI optimizes
an alternative objective called Evidence Lower Bound (ELBO) that is equivalent to log marginal
likelihood minus the KL:

ELBO(q) + KL(qllp(z | x))
from{eli o )

Under the common mean-field assumption ¢(z) = [}, ¢; (2;), the maximizer of ELBO g; has

Inp(x)

the analytical solution g7 (z;) o exp {E, , [logp (z,x)]}, where z_; denotes all variables z; other
than z;, that can be solved by the coordinate ascent algorithm.

Recently, VI has been commonly applied in training deep generative models, including
VAE (Kingma & Welling, 2013) and deep diffusion model (Ho et al., 2020) to approximate complex
posterior distributions. VI plays a crucial role in approximating the posterior distribution over the
latent variables, enabling efficient learning and generation of high-quality samples from complex
data distributions.

B NORMAL MEAN-VARIANCE SHIFT MODEL

In this section, we derive updating formulas for the Normal Mean-Variance Shift model. Denoting
the set of all latent variables as & = {{t}/_ |, {fr11}i_}'} and the hyperparameters set aj =
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{8, v0, Vo }, we assume a constrained mean-field @ family in variational inference:

K+1
Q€)= Q(t1) HQ (tk[tx 1) H Q (ur) Q(A).
k=2
Then the variational lower bound is given by

K+1

L@ = Y | > Q(tkvtk—l)/Q(uk)Q(Ak)lnp(Yk|tkatk—laukaAk)dudek

k—1 |tg,tre—1

- N (0,57 ) W (A, V)
+ Z / Q (ur) Q(Ag)1 Qo) Or(An) dugdAy,
p(tr | te 1)
+; tk%;] Q¢ (tg, tg—1)In —Qt (on [ tn )

Minimizing KL divergence leads to an analytical solution. We can directly apply it to give the
optimal solutions for the family of factors () of variational posteriors

N
Qt1) = ~IIZ(Z)= Q (trltr—1) HH Aok ()t (

kzy
1=1 1=17=1

Qur) =N (up [ me, L"), Q(AR) =W (Ag | v, Vi) .
Given prior distributions defined above, solutions for variational parameters are given by
-1

N N m
me = |0 Y Qtklm), tioa(n) Y 141/8

n=1m>n Jj=n

X ZZQ(tk(m b 1(")2% ;

n=1lm>n
N N
Ly = (MDY Q(ti(m),tii(n Zl+a ;
n=lm>n
N N
vi = w+y, > Qti(m zln)z
n=1lm2>n j=n

and

N N
Vil = D0 D Qtkm), e Zyjyj 2ZyJ<Uk>T+Z<uw;I>

n=1lm>n

As we mentioned in Section 2.2, solutions for Q; (ty | tx—1) can be obtained through sum-product
algorithm. The updating formulas are given by

Q (tk(n) = 1) = M-ty (n) 'Ntm—(n) = ﬁ'k,na
and

Q (tr—1(m) = 1,t5(n) = 1)

= sty (M) Timm - exD (Egrunan Imp(Yi, b, ur, Ag | te-1)) - g (n),
where messages are obtained recursively. For £ = 1 K,
n

H—ty, (n) = Z {U—)tk_1 (m) * Tk,m,n * €XP { Z % <1n |Ak|>

m=1 Jj=m

o

1
2
J

Il
3

Tr [(y; -y =y (up ) = (uk) -y + (unyug ) - (M) }},
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and

N n
/’Ltk—1<—(m) = Z {Mtk—l(—(n) *Tk,m,n * €XP { Z % <1D |Ak|>

n=m j=m

_% Xn: Tr [(ys-y) —yy - (ul) + (urswf)) - (Ag)] }}

j=m

To start recursion, the initial message state y1_,¢, and ji¢, . are given by

"1
fst, (M) = 7Tl,mexp{z:§<1n|1\1|>

Jj=m
1 n
33l ) ] )00
Jj=m
and
"1
e (m) = exp{ 5 (k)
j=m
1 n
33 k) G ) )] |
Jj=m
where we have assumed:
(up) = my, <ukuZ> memy, + LY, (M) = vV,

(In [Ag]) = Zw <“’“+1 ) 4+ D2+ In |V,

and ¢(+) is the digamma function.

C PROOF OF THEOREM 1

To start up, it’s worth mentioning that practically for a sequence of time 7', we observe finite data
points {y1, ..., yr} at each time stamp ¢ = 1,..., T, which is the input for the proposed algorithm.
However, in theory, we consider a continuous timeline and there are infinitely many data points
between any time intervals [m,n] C [0, 7. Thus before discussing our theoretical results, we first
list our setup and assumptions:

Al: The underlying sequence on time interval [0, 7] consists of K change points 0 < 77 < ... <
Tg < T with Ty = 0 and Tx4+1 = T. For any time stamp 7,1 < t < T}, the random function
y(t) : R — RP represents the sample drawn from A (y | uy, Sy) at time .

A2: The total number of collected observations is N. For any time interval [m,n] C [0,T], the
number of observations within this interval equals O(N “7").

A3: The algorithm initializes Mr 11 > K + 1 regimes corresponding to {t; }MK“ change
points. The regimes are segmented by a time subset {t1, ..., tar,,,—1 } With equidistance, such that
tiy1 — 1, = MT . Based on the characteristic of the regime between [t;,¢;+1], we can further

]\/—[K+1

categorize {t;},_ ! into two subsets:

* Any t; € {ta, }/< | denotes the junction points e.g In initialization, there is a true change
point T}, located w1th1n the interval [t;_1,¢;] and y(t) for ¢ € [t;, tx+1] does not identically
distributes.

e Fork=1,...,K+1,anyi € {My_1 + 1, ..., M — 1} denotes the non-junction index and
we have T}, 1 < t; < T}, where we let My = 0. Every y(t) for t € [t;,tr41] distributes
equivalently with those in [T}, Tg+1]-

15



Under review as a conference paper at ICLR 2024

Ad4: The row of transition matrix Il is a uniform distribution, such that 7 ; ; = N “+ . The obser-
vation dimension D, the number of change point K and initialized change point number My — 1
is fixed.

We further define the random functions of a(t), b(t) and c(t) for time interval [m, n| as following:

men =b(t)dt ifn <m,

n Jo
/a(t)dt =

0 c(t)at ifn > m.
with

b{t) = max [In 8] /2 = (y(8) — )" Si (y(t) —we) /2| ¢ € [Tir, T

eft) = max |In || /2 = (y(t) )" Sk (y(t) — i) /2| ¢ ¢ [T, T

Intuitively, the defined b(¢) is the maximum likelihood value at time ¢, where the likelihood function
is parameterized with true v and .S, while ¢(t) is the maximum likelihood value associated with false
parameters « and S. Thus, the integral range [m,n] of b(t) and ¢(t) indicates the sequence length
that is correctly aligned or not, respectively.

Corollary 1. As N approaches infinity, for any time interval [m, n|,the random variables, we have:
/ (c(t) — b(#)) dt = O(N“T*) < 0.

Proof: First using the Lemma from (Bishop et al., 2007):

Lemma 1. Let {X,,} be a stochastic sequence with j1,, = E (X,,) and 02 = Var (X,,) < oc, then
Xn = HUn + Op (Un)

Thus, based on the Lemma 1 and our assumptions, it’s easy to see the following results hold:

1): The value of [ b(t)dt equals to:

n

N (sl - 5 T (B [Ou0 ) - Bly(ola] - wBle]+ ] i)

n—m

1 -
= N7 mpx <§ln|5k|> + O, (N7,

2): The value off:; c(t)dt eqauls to:

—m

n max 1 1 _ n—m
N7 (§1n|5k| -3 [(Mk — )" S (o — ) + Tr(S,." - Sk)D + Op(N 27).

Then the value of [ (c(t) — b(t)) dt is given by:

/ " (elt) — () dt

n—m

_ max Max
=N"T " k’/;ék’_

n—m

[k = 1) S (= o) + Te(S T S| + O (N7 < 0,

| =

Based on the above assumptions, we can present our results in the following:
Theorem 2. Fort; € {tn, ,+1,-.-,tar, }, the value of each forward message is given by:

G-ln T, n—"T},
tost; (n) = W exp (/0 b(t)dt) exp (/o a(t)dt) .

Proof: We will use the method of induction to drive the general formula of the forward message.
By considering each data y(t) as the continuous function of time ¢, the initial message is given by:
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.
o lm) = m,m.exp{ ARG
0

=5 T [(s0) 90T =0 () = () 57+ (ubadT)) - (AD)] }}

Op(m1,m - exp { [y b(t)dt}) ifm < Ty,

O (T - eXp{ Jeydt + [y c(t)dt)} ifm > T

_ o, (% exp ( / ) b(t)dt) exp ( / m a(t)dt)> ,

where we use the fact that m; ,, = 1/N and the initial segment is a subset of the first regime
[0,£1] C [0,T1] and the initialized parameters are consistent with the true value S; and uq, such
that:

(W) =i B, (ufdT) =ar-al, (A =S B sy, (n]A]) =S| B sy,

Now consider the next message using the updated formula:

n n 1
H—ts (Tl) = / {/’Lfn—>t1 (m) *M2,m,n - €XpP { / 5 <1n ‘AgD
0 m

5T (50 y 0T ) ()~ )y + (3, 48T)) - (AD)] dt}}dm
0, (ﬁ(fon N7 dm) - exp {J b(t)dt}) ifn <7,

0, (ﬁ(fon N7 dm) - exp {fOT] b(t)dt + [ c(t)dt)}) ifn>T.

=0, (% exp (/O‘T] b(t)dt) - exp (/T:l oz(t)dt)) .

Therefore, the exponential term is exactly the same as the initial message. It’s easy to see as long as
i€ {l,...,M; — 1}, the message is given by:

(i—1)n

tt, (n) = % exp (/0 ) b(t)dt) exp (/O" ) a(t)dt) .

Now consider the first junction point 7 = M, the message is given by:

(M;—1)m
T

Hoty, () = O, ( / ’ {NM]],V o o / ! b(t)dt)

X eXp (/T:na(t)dt) - exp (/On—m c(t)dt) }dm).

We can discuss in part:

1. forn >m > T;:

(M; —Dn

ity (n) = Op (NMlj\([ln ];)(M]_l) exp (/OTl b(t)dt) exp (/On_Tl c(t)dt)> :
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2.forn>1T, > m:

(M;—Dn

N - n T]
:U’—H:Ml (Tl) = OP NM (111 N)(Ml ) /0 €Xp (/0 b(t)dt)

< exp ( /0 T e - b()dt) exp ( /0 o c(t)dt)dm) .

3.forTh >n>m:

(My—1)n

N—7— n Ty
H—tar, (n) = Op(NMl (th)(Ml—l) /O €xp </O b(t)dt)

<exp ( /O ew —b(t)dt) exp ( /o n —b(t)dt)dm).

Thus,

(A{];])n "

Hotar, (1) = Oy (NMIJ\(fln N)an-1) P </OT b(t)dt) P ( /T

1

a(t)dt)) .

Then we evaluate the first non-junction point ¢ = M; + 1. By discussing it by part, we show that:
1.ifn > 17y

n

fstar, 2 (n) = Op (exp (./0T2 b(t)dt) exp (/T a(t)dt)

Mym

X /On {NM1+1](\;1 jv)(Ml_l) exp (/Tl ‘m(c(t) - b(t))dt) } dm> _

2. iftn <7T7:

Psta, 2 (n) = Op (exp (/OT2 b(t)dt) exp (/Tn oz(t)dt)

. /O” {NM1+1]ZH%]\T/:L)(M1—1) exp (/n_m(c(t) - b(t))dt) } dm),

In both cases, we can rewrite the message as:

N Al%m T2 n
-0 ( bt dt) ( ¢ dt) ,
st () = Oy | iy o /O at)esn ( [ ot
which returns to the initial message ji—.¢, (n) with the same exponential terms. g

By the same induction procedure, it’s easy to see Theorem 2 holds for all ¢ € {tas, 41, tar, }-

Theorem 3. Fort; € {tn, ,,---,La,—1}, the value of each backward message is given by:

Ut (m) = exp (/OT_Tk_l b(t)dt) exp (/OTk_l_m oz(t)dt) .
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Proof: The proof of Theorem 3 is similar to that of Theorem 2. The initial backward message is
given by:

utA4K+1—1<—(m)

exp{ /T{ (A% ) — 5 T [ (4000 — 90 ()"
(e o0 ) - ()}

o (exp{f b(t )dt}) ifm > Tk,

Op(exp{fTTK tydt + [1¥ t)dt)} if m < Tk.

- o, (exp ([ woaen ([ a(t)dt)> ,

where the initialized parameters are consistent estimators of true ux 1 and Sk 41.Now consider the
next backward message using the updated formula:

T
Hotarg g2 (’m’) = / {:uﬁtMKH -1 (n) * MMy 1—1,m,n

Jm

XMQLﬁ<mAHM5
+ (g, uidya) ) - (Afeya) Jd }}}

0, (NMT_T exp {fOT‘m b(t)dt}) it m > Ty,

[(y(t) - y(t) " = 2y(t) - (ufey)

0, (N’"% exp{fOT T byt + [ elt) dt)}) it m < Ty

o, (exp (/OT_TK b(t)dt) exp (/OTK_ma(t)dt>> .

Thus, it’s easy to show forall i € {Mg + 1,..., Mg 1 — 2},

1= (o [ )

Then we consider the first junction point ¢ = Mg

fewy o (m) = NOT" /m ! { exp /O o b(t)dr)
X exp (/OTK_H a(t)dt) exp (/On—m c(t)dt> }dn

Tk—m

a(t)dt)> .

Consider three cases:

1.Ifn>m > Ty

figy o (m) = N7 / T{eXp( /0 o b(t)dt)

~

X exp (/Om_TK —b(t)dt) exp </0n—m (c(t) — b(t))dt) }dn
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2.Ifn>Tkx > m:

Pty (M) = N"TT /mT { exp (/OT_TK b(t)dt)

X exp (/OTK_m (:(t)dt> exp (/On_TK (e(t) — b(t))dt) }dn.
3.7 >n>m:

Hery, (M) = N /mT { exp (/(JTTK b(t)dt) - exp </OTKm c(t)dt) }dn.

Thus we can sum it up as:

i, (m) = O, (exp ( /O o b(t)dt) exp ( /0 e a(t)dt)) .

When it comes to the new point in the previous segment ¢ = Mg — 1:

1.If n <Tk:
T T—Tw_1
ptye(m) = N[ {exp ([ wow)
m 0
T —n Tk 1—m
<exp ( / eft) — b(t)dt) exp ( / u(t)dt)}dn.

0 0

2.Ifn>Tgk:

_ T—Tk-1
/LtMK7]<_(77'I/) = NTT exp (/ b(f)df)
0

x / ' {eXp ( /O m e (elt) — (1))t

m

X exp (/.TK] " a(t)dt) }dn.
0

Thus, following the same procedure in the proof of Theorem 2, we can derive that for all 7, the
recursive formula holds.

We are now ready to prove the location consistency. First consider the change point ¢; €
{tMy_,+1s - ta,—1}. The unnormalized marginal probability Q(¢; = m) is given by:

N% TH+Te—Tk -1 m—Ty Ti_1—m
————— X b(t)dt | ex / a(t)dt | ex / a(t)dt |.
T p</ <>> p(o <>> p<0 <))

Thus we can discuss all possible values of location m:

1. When T}, 1 < m < Tj: It’s easy to show

/OmTk a(t)dt + /OTHm alt)dt = — '/OTkm b(t)dt — /OmTH b(t)dt.

im

_ in T+T,—Ty_1 T —Tr_—1
Ot = m) = W exp ( /O b(t)dt) exp (- /O b(t)dt>

in

= % exp (/o b(t)dt).
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2. When m > T},: It’s easy to show

/ " e+ /Tkl_m“(t)(“: /O.m_Tk (elt) _b(t))dt_/c;Tk_Tk] o

0 0
Thus

im

3. Whenm < Tj_1: It’s easy to show

[ awar [t [T et o= [T v
Thus

iTm T Tp_1—m
Ot: = m) = W oxp ( /O b(t)dt) exp ( /0 (c(t) — b(t))dt) .

The value of Q(t; = m) requires normalization. The normalization constant is given by:

N
c = /o Q(t; = m)dm

= 0O, <W exp (/OT b(t)dt)).

Thus, the value of Q(t; = m) = Q(t; = m)/C is given by:

% ifm e [Tk—l»Tk)»
im—iTy m—T .
Qti=m) = N~ T  exp fO (c(t) = b(t)) dt> itm > Ty,
sz—Tsz exp fOqu —-m (c(t) — b)) dt) ifm < Tj_q.
1 if m =T,
_ Op(Nm_TT’“) itm € [Tp—1,Tk),
min{|m—Ty|,|m—Ty_1|}
Op(exp(N . ) it m ¢ [T, Ti).

For junction points T; with ¢ € {M, k}le, the unormalized probability is given by:

. % T | Ty —1—m]
Qti =m) = W exp (/0 b(t)dt> exp (/O (c(t) — b(t))dt)

Then, the normalization constant is

N ~
Cc = / Q(t; =m)dm
0

- o, (% exp (/OT b(t)dt)) .

Since Q(t; = m) = Q(t; = m)/C, we have

. . o m—Ty|
Qt=m) = Nm—”kexp( [ (c(t)—b(t))dt)

= Op<exp(—NmTTk)).

Hence the proof is finished.
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D SIMULATION SETTINGS

D.1 INITIALIZATION AND HYPERPARAMETERS SETTING

The hierarchical model given in Equation 1 has hyperparameters o = {3,2°, V9}. To implement
Algorithm 1, the hyperparameters in the conjugate prior defined in Equation 1 set as follows:
the parameter § in all Gaussian prior distributions A/ (0, B ) are set to the data dimension D.
Similarly the prior Wishart distribution W(v°, V) is assigned with 1° = D, V? = D - T where T is
identity matrix of dimension D. The Gaussian-Wishart prior has been studied for low-rank matrix
completion, which imposes an appropriate penalty, and encourages sparse solutions with promising
convergence.

Throughout all the experiments, the initialization of Algorithm 1 follows the description of A3
in Section 2.3 where we evenly divide the entire sequence into K segments. Then {Q(6)}X_, are
initialized using the statistical moments (mean and variance for the Gaussian distribution) from these
segments.

D.2 NUMERICAL DEMONSTRATION

In this section, We evaluate the performance by varying values of sequence length N. In
particular, we consider sampling the 1-dimensional mean-variance shift sequence with five
equally spaced segments. The length of each segment is N/5 and N varies in the set
{50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600}. In each segment, samples are drawn from
a normal distribution with the following parameters.

w=1[0,3,2,4,4 A=][1,0251,1,4]

Elements in u and A represent the mean and precision of a particular segment. For example, samples
in the first segment follow a A (0, 1) distribution. We initialize our algorithm with K = 10 and set
the iteration number to 30. The simulations are repeated 100 times and the average number of
change points and average mean absolute error are reported in Figure 2.

D.3 LOCATION AND PARAMETER ESTIMATION

In this subsection, we consider one mixed distribution sequence and two normal sequences. Model 1
is a variance shift sequence model. The five ordered segments are sample from Binomial(10,0.3),
N (3,4), Poisson(3), and Binomial(15,0.2), each with 100 samples. For Model 2 and Model 3,
the multivariate normal sequences, parameters are specified in the following Table 3. Let

u'? =100,0,0,0,0], ul? =ul® =00,2,0,1.2], u{? =ul® =14,0,2,0,4]

ul? =[01), u =l =10,2,0,1,0,1,0,0,0,1], ' =wul¥ =[1,0,2,0,4,0,0,4,0,1].

I is the identity matrix of size D and I g is an identity matrix with the non-diagonal elements equal
to 0.8. 0y is a zero vector in 10-d. Specifically, all three Models are subject to four change points
occurring at 7 = {100, 200, 300, 400}, each representing a change in distribution. Clearly, Model 2
and 3 incorporate the mean shift or correlation shift around change points. For all three models, N,
the length of the sequence is 500, and the upper bound of the number of change points K is 10. The
iteration number is set to 30. For each model, the repetition of simulation is 100 and the average
Rand index of each model is reported in Table 1.
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Table 3: Normal Mean correlation-Shift of Model 2 and 3

u A T D N

Model 2 [u(? 4 ul? v wl?] 1,515 1,155 100,200,300,400 5 500

Model 3 [u$? 4wl w(P ¥ 150155 1,115L  100,200,300,400 10 500

In this part, we evaluate the accuracy of the posterior parameter estimation. Here we only consider
normal sequence cases for estimation. The parameters are summarized in Table 4

Table 4: Normal Mean correlation-Shift in Case 1, 2 and 3

u A T D N

Case 1 [0,3,2,4,4] 1,0.25,1,1,4  100,200,300,400 1 500
2 @2 2 2 (2) —1 -1 —1

Case2 [uy”/,us’,uy ,uy ,us '] IjgIps, ILLI g 100,200,300,400 5 500

Case3 [ul® uf? uf P P 151150 LLI;L  100,200,300,400 10 500

The included symbols are the same as above. The estimation error (Mean square error) is measured
by taking [? norm of the difference between the estimated mean and ground truth, while the MSE.SD
is the ordinary standard deviation of estimation. Notice that in the estimation of the covariance ma-
trix, the estimation error is further divided by data dimension D to maintain numerical consistency.
These simulations are also repeated 100 times and the average MSE is shown in Table 2:

N
1 R 2
M S ei—e‘, 5
ean square error N ; ol )
and
Ly b, — 00| — 2 3 6, — 00| 2 6
v - |3 (ol 3w
N_1¢:1 Ol N; J Oll ©)

D.4 NON-GAUSSIAN EXAMPLES SETTINGS

In these non-Gaussian examples, we consider testing the performance on Poisson, chi-squared, or the
exponential random sequences. For the Poisson sequence, the rate parameters A of five segments
are A = [1,5,2,10,3]. df = [1,5,2,4,1] are set to be the parameters of chi-squared sequence.
The scale parameters of the exponential distribution are 3 = [1,5,0.5,4,1]. N, the length of the

sequence is 500 and each segment contains 100 samples. K, the upper bound of the number of
change points is 8.
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