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Abstract

In the online learning with experts problem, an algorithm makes predictions about1

an outcome on each of T days, given a set of n experts who make predictions on2

each day. The algorithm is given feedback on the outcomes of each day, including3

the cost of its prediction and the cost of the expert predictions, and the goal is4

to make a prediction with the minimum cost, compared to the best expert in5

hindsight. However, often the predictions made by experts or algorithms at some6

time influence future outcomes, so that the input is adaptively generated.7

In this paper, we study robust algorithms for the experts problem under memory8

constraints. We first give a randomized algorithm that is robust to adaptive inputs9

that uses Õ
(

n
R
√
T

)
space for M = O

(
R2T
log2 n

)
, thereby showing a smooth space-10

regret trade-off. We then show a space lower bound of Ω̃
(
nM
RT

)
for any randomized11

algorithm that achieves regret R with probability 1− 2−Ω(T ), when the best expert12

makes M mistakes. Such an algorithm is useful for adaptive inputs, as the failure13

probability is low enough to union bound over all computation paths. Our result14

implies that the natural deterministic algorithm, which iterates through pools of15

experts until each expert in the pool has erred, is optimal up to polylogarithmic16

factors. Finally, we empirically demonstrate the benefit of using robust procedures17

against a white-box adversary that has access to the internal state of the algorithm.18

1 Introduction19

Online learning with experts is a fundamental problem in sequential prediction. On each of T days,20

an algorithm must make a prediction about an outcome, given a set of n experts who make predictions21

on the outcome. The algorithm is then given feedback on the cost of its prediction and on the expert22

predictions for the current day. In the discrete prediction with experts problem, the set of possible23

predictions is restricted to a finite set, and the cost is 0 if the prediction is correct, and 1 otherwise.24

More generally, we assume the costs are restricted to be in a range [0, ρ] for some fixed parameter25

ρ > 0, with lower costs indicating better performance. This process continues for the T days, after26

which the performance (total cost) of the algorithm is compared to the performance (total cost) of27

the best performing expert. In particular, the goal for the online learning with experts problem is to28

minimize the regret, which is the amortized difference between the total cost of the algorithm and the29

total cost of the best performing expert, i.e., the expert that incurs the least overall cost.30

A well-known folklore algorithm for handling the discrete prediction with experts problem is the31

weighted majority algorithm [42]. The deterministic variant of the weighted majority algorithm32

simply initializes “weights” for all experts to 1, down-weights any incorrect expert on a given day,33

and selects the prediction supported by the largest weight of experts. The algorithm solves the34

discrete prediction with experts problem with O (M + log n) total mistakes, where M is the number35
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of mistakes made by the best expert, thus achieving regret O (M + log n). More generally, a large36

body of literature has studied optimizations to the weighted majority algorithm, such as a randomized37

variant where the probability of the algorithm selecting each prediction is proportional to the sum of38

the weights of the experts supporting the prediction. The randomized weighted majority algorithm39

achieves regret O
(√

log n/T
)

[42], which has been shown to be information-theoretically optimal,40

up to a constant. There have subsequently been many follow-ups to the weighted and randomized41

weighted majority algorithms that achieve similar regret bounds, but improve in other areas. For42

example, on a variety of structured problems, such as online shortest paths, follow the perturbed43

leader [38] achieves the same regret bound as randomized weighted majority but uses less runtime on44

each day. In addition, the multiplicative weights algorithm achieves the optimal
√

lnn/(2T ) regret,45

with a tight leading constant [33]. However, these classic algorithms use a framework that maintains46

the cumulative cost of each expert, which requires the algorithm to store Ω(n) bits of information.47

Memory bounds. Recently, [49] considered the online learning with experts problem when memory48

is a premium for the algorithm. On the hardness side, they showed that any algorithm achieving49

a target average regret R requires Ω
(

n
R2T

)
space, which implies that any algorithm achieving the50

information-theoretic O
(√

log n/T
)

regret must use near-linear space. On the other hand, when the51

number of mistakes M made by the best expert is small, i.e., M = O
(
R2T

)
, [49] gave a randomized52

algorithm that uses Õ
(

n
RT

)
space for arbitrary-order streams, thus showing that the hardness of their53

lower bound originates from a setting where the best expert makes a large number of mistakes.54

Subsequently, [47] considered the online learning with experts problem when the algorithm is limited55

to memory sublinear in n. They introduced a general framework that achieves o(T ) regret using o(n)56

memory, with a trade-off parameter between space and regret that obtains On

(
T 4/5

)
regret with57

O (
√
n) space and On

(
T 0.67

)
regret with O

(
n0.99

)
space.58

Adaptive inputs. Up to now, the discussion has focused on an oblivious setting, where the input to59

the algorithm may be worst-case, but is chosen independently of the algorithm and its outputs. The60

online learning with experts problem is often considered in the adaptive setting, where the input to61

the algorithm is allowed to depend on previous outputs by the algorithm, e.g., in financial markets,62

future stock quotes can depend on previous investment choices. Formally, we define the adaptive63

setting as a two-player game between an algorithm D and an adversary A that adaptively creates the64

input stream to D. The game then proceeds in days and on the t-th day:65

(1) The adversary A chooses the outputs of all experts on day t as well as the outcome of day t,66

depending on all previous stream updates and all previous outputs from the algorithm D.67

(2) The outputs (i.e., predictions) of all experts are simultaneously given to the algorithm D,68

which updates its data structures, acquires a fresh batch Rt of random bits, and outputs a69

predicted outcome for day t.70

(3) The outcome of day t is revealed to D, while the predicted outcome for day t by D is71

revealed to the adversary A.72

The goal ofA is to induce D to make as many incorrect predictions as possible throughout the stream.73

It is clear that any deterministic algorithm for the online learning with experts problem will maintain74

the same guarantees in the adaptive model. Unfortunately, both the algorithms of [49] and [47] are75

randomized procedures that rely on iteratively sampling “pools” of experts, which can potentially be76

exploited by an adaptive adversary who learns the experts sampled in each pool. Interestingly, both77

the randomized weighted majority algorithm [42] and the multiplicative weights algorithm [33] are78

known to be robust to adaptive inputs.79

1.1 Our Contributions80

In this paper, we study the capabilities and limits of sublinear space algorithms for the online learning81

with experts problem on adaptive inputs.82

Robust algorithms. Towards adaptive robustness, it is natural to study deterministic algorithms,83

since they retain the same guarantee under adaptive adversaries. As a warm-up, we first provide84
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a simple deterministic algorithm that uses space Õ
(
nM
RT

)
. Consider an algorithm that iteratively85

selects the next pool of k = Õ
(
nM
RT

)
experts and running the deterministic majority algorithm on the86

experts in the pool, while removing any incorrect experts from the pool until the pool is completely87

depleted, at which point the next pool of Õ
(
nM
RT

)
experts is selected. The main intuition is that each88

pool can incur at most O (log n) mistakes before it is depleted and the best expert can only make89

M mistakes. By the time the pool has cycled through nM experts, i.e., M times for each of the n90

experts, then the best expert no longer makes any mistakes and will be retained by the pool. Thus, the91

total number of mistakes made by the algorithm is nM
k ·O (log n). On the other hand, for a target92

average regret R, the mistake bound of the algorithm is required to be at most M +RT , so it suffices93

to set k = Õ
(
nM
RT

)
to achieve regret R. Since the algorithm runs deterministic majority on a pool of94

k = Õ
(
nM
RT

)
experts, then this algorithm uses Õ

(
nM
RT

)
space. Formally, we show:95

Theorem 1.1 (Simple deterministic algorithm; see Section 3.1). Suppose the best expert makes M96

mistakes and let R ≥ 4M logn
T . There exists a deterministic algorithm (Algorithm 2) that uses space97

Õ
(
nM
RT

)
and achieves an average regret of R.98

The algorithm is simple, computationally efficient, and easy to implement. However, the drawback is99

that for M = Ω(RT ), the algorithm requires space near-linear in the number of experts n, which is100

undesirable when n is large. To address this issue, we complement our deterministic algorithm with101

a randomized algorithm that is robust to adaptive inputs and allows for a different memory-regret102

trade-off:103

Theorem 1.2 (Robust randomized algorithm). Let R > 64 log2 n
T , and suppose the best expert makes104

at most M ≤ R2T
128 log2 n

mistakes. Then there exists an algorithm for the discrete prediction with105

experts problem that uses Õ
(

n
R
√
T

)
space and achieves regret at most R, with high probability.106

This gives a trade-off between the space and regret, almost all the way to the information-theoretic107

limit of R = On

(√
1/T

)
for general worst-case input. However, it incurs a multiplicative space108

overhead of Õ(
√
T ) compared to the optimal algorithms for oblivious input. Thus we believe the109

complete characterization of the space complexity of the discrete prediction with experts problem110

with adaptive input is a natural open question resulting from our work.111

Tight memory bounds for robust algorithms. It is natural to ask whether there exist robust112

algorithms that are more space-efficient than the straightforward deterministic approach. For example,113

[12] showed that any oblivious randomized algorithm with failure probability 2−Ω(nT ) will be114

robust against adaptive outputs in the discrete prediction with experts problem, so a reasonable115

approach would be to boost the success probability of existing oblivious algorithms to 1− 2−Ω(nT ).116

Unfortunately, we show this cannot work:117

Theorem 1.3 (Memory lower bound for high-probability algorithms). For n = o(2T ), any random-118

ized algorithm algorithm that achieves R regret with probability at least 1− 2−Ω(T ) for the discrete119

prediction with experts problem must use Ω
(
nM
RT

)
space when the best expert makes M mistakes.120

In particular, Theorem 1.3 shows that any deterministic algorithm must use Ω
(
nM
RT

)
space, which121

taken together with the deterministic procedure above, resolves the deterministic streaming complexity122

of online learning with experts. We emphasize that Theorem 1.3 also shows that using the strategy of123

high-probability randomized algorithms to guarantee robustness against adaptive input does not work124

any better than a deterministic algorithm.125

At a conceptual level, our lower bound in Theorem 1.3 shows that surprisingly, the number M of the126

mistakes made by the best expert is an intrinsic parameter that governs the abilities and limitations127

of robust algorithms in this model. Thus, even though M is not a parameter that may naturally be128

ascertained in practice, it nevertheless completely characterizes the complexity of the problem. On129

the other hand, for algorithmic purposes, it suffices to acquire a constant-factor approximation to M130

as an input to the algorithm.131

Another reason Theorem 1.3 is somewhat surprising is because as the number of mistakes M made132

by the best expert increases, then the algorithm is also permitted to make more mistakes and in some133
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sense, the problem seems “easier”. However, Theorem 1.3 shows this intuition is not true—the134

problem actually becomes more difficult as M increases.135

Moreover, we give an alternative proof in the regime when M = Ω(T ). The proof differs from the136

proof of Theorem 1.3. Instead, it leverages the communication complexity of a new set disjointness137

problem, recently proposed by [39]. The statement is technically weaker Theorem 1.3 and appears in138

the appendix; see Appendix E.139

Empirical evaluations. Finally, we conduct experimental evaluations in Section 5 by comparing140

the natural deterministic algorithm to the randomized algorithm of [49] against a white-box adversary141

who has access to the internal state of the algorithm, including any experts sampled and maintained142

by the algorithm. The deterministic algorithm iteratively selects pools of k = Õ
(
nM
RT

)
experts,143

discarding any expert that has erred, and refreshing the pool with the next batch of k experts once the144

pool is emptied. The randomized algorithm similarly discards erroneous experts from a pool of k145

experts, but it repeatedly samples pools of k experts rather than selecting the next pool of k experts.146

On average across the multiple trials for each setting, the randomized algorithm made several times147

more mistakes than the deterministic algorithm, ranging from 1.98x times more mistakes to 3.29x148

times more mistakes than the deterministic algorithm, thus demonstrating the importance of robust149

algorithms against adversarial inputs.150

1.2 Related Work151

The experts problem and memory bounds. The experts problem has been extensively studied [17],152

both in the discrete decision setting [42] and in the setting where costs are determined by various153

loss functions [35, 52–55]. Hence, the experts problem can be applied to many different applications,154

such as portfolio optimization [24, 23], ensemble boosting [32], and forecasting [37]. Given certain155

assumptions on the expert, such as assuming the experts are decisions trees [36, 50], threshold156

functions [43], or have nice linear structures [38], additional optimizations have been made to157

improve the algorithmic runtimes for the experts problem and more generally, existing work has158

largely ignored optimizing for memory constraints in favor of focusing on time complexity or regret159

guarantees, thus frequently using Ω(n) memory to track the performance of each expert.160

Recently, [49] introduced the study of memory-regret trade-offs for the experts problem. For n≫ T ,161

[49] showed that the space complexity of the problem is Θ̃
(

n
R2T

)
in the random-order streams,162

but also gave a randomized algorithm that uses Õ
(

n
RT

)
space for arbitrary-order streams when the163

number of mistakes M made by the best expert is “small”. Subsequently, [47] considered the online164

learning with experts problem for T ≫ n, introducing a general space-regret trade-off framework165

that achieves o(T ) regret using o(n) memory, including On(T
4/5) regret with O (

√
n) space and166

On(T
0.67) regret with O

(
n0.99

)
space.167

Concurrent and independent work. Concurrent to our work, [46] considered a variant of the168

problem where at each time, the algorithm selects an expert instead of a prediction. They then169

introduce an algorithm robust against an adaptive adversary who observes the specific expert chosen170

by the algorithm at each time, as well as lower bounds for any algorithm robust to such an adversary.171

One way to ensure adversarial robustness is through deterministic algorithms. On that end, we172

achieve stronger lower bounds for deterministic algorithms, showing that there must be a dependency173

on the number M of mistakes made by the best expert, i.e., any deterministic algorithm achieving174

amortized regret R must use Ω̃
(
nM
RT

)
space. In fact, when the number of mistakes M made by the175

best expert is sufficiently small, i.e., M = O
(

R2T
log2 n

)
for amortized regret R, we give a randomized176

upper bound that uses less space than this lower bound. By comparison, the lower bound of [46]177

shows that any algorithm achieving R amortized regret must use Ω̃
(√

n
R

)
space, though their lower178

bound also applies to randomized algorithms.179

Due to the difference in setting, our algorithmic techniques are quite different from those of [46]. We180

use a recent idea of [34, 4, 10] to hide the internal randomness of our algorithm from the adversary181

whereas [46] rotates between groups of experts to prevent an adversary from inducing high regret by182

making a specific expert bad immediately after it is selected.183
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2 Preliminaries184

For any t ≤ n and vector (X1, X2, · · · , Xn), we let X<t denote (X1, · · · , Xt−1), X≤t =185

(X1, · · · , Xt), and X−t = (X1, · · · , Xt−1, Xt+1, · · · , Xn). Also, X>t and X≥t are defined simi-186

larly. Let ei denote the ith standard basis vector, and for any S, eS the vector that has a 1 at index187

i ∈ S and 0 everywhere else. For a random variable X , let H(X) denote its entropy.188

We write [n] for an integer n > 0 to denote the set {1, . . . , n}. We write poly(n) to denote a fixed189

polynomial in n and if an event occurs with probability at least 1− 1
poly(n) , we say the event occurs190

with high probability. We give additional technical preliminaries in Appendix B.191

Formal problem statement. In the online learning with experts problem, there are n experts that192

each make predictions on each of T days. The prediction are in {0, 1}. An algorithm uses the experts193

to output a prediction for each day t ∈ [T ]. The actual outcome of the day t is then revealed, at which194

point the algorithm is penalized with a cost that is 0 if the prediction is correct, and 1 otherwise.195

This process continues for the T days. At the end, suppose that the best expert has incurred cost196

M , while the algorithm has incurred C. Then the performance of the algorithm is measured by the197

(average) regret R = max
(
C−M

T , 0
)
.198

Differential privacy. We use tools from differential privacy.199

Definition 2.1 (Differential privacy, [30]). Given a privacy parameter ε > 0 and a failure parameter200

δ ∈ (0, 1), a randomized algorithm A : X ∗ → Y is (ε, δ)-differentially private if, for every pair of201

neighboring streams S and S′ and for all E ⊆ Y ,202

Pr [A(S) ∈ E] ≤ eε ·Pr [A(S′) ∈ E] + δ.

Theorem 2.2 (Private median, e.g., [34]). Given a database D ∈ X∗, a privacy parameter ε > 0203

and a failure parameter δ ∈ (0, 1), there exists an (ε, 0)-differentially private algorithm PRIVMED204

that outputs an element x ∈ X such that with probability at least 1− δ, there are at least |S|2 −m205

elements in S that are at least x, and at least |S|2 −m elements in S in S that are at most x, for206

m = O
(

1
ε log

|X|
δ

)
.207

Theorem 2.3 (Advanced composition, e.g., [31]). Let ε, δ′ ∈ (0, 1] and let δ ∈ [0, 1]. Any mecha-208

nism that permits k adaptive interactions with mechanisms that preserve (ε, δ)-differential privacy209

guarantees (ε′, kδ + δ′)-differential privacy, where ε′ =
√
2k ln 1

δ′ · ε+ 2kε2.210

Theorem 2.4 (Generalization of DP, e.g., [29, 9]). Let ε ∈ (0, 1/3), δ ∈ (0, ε/4), and n ≥ 1
ε2 log

2ε
δ .211

Suppose A : Xn → 2X is an (ε, δ)-differentially private algorithm that curates a database of size212

n and produces a function h : X → {0, 1}. Suppose D is a distribution over X and S is a set of n213

elements drawn independently and identically distributed from D. Then214

Pr
S∼D,h←A(S)

[∣∣∣∣∣ 1

|S|
∑
x∈S

h(x)− E
x∼D

[h(x)]

∣∣∣∣∣ ≥ 10ε

]
<

δ

ε
.

3 Algorithms Against Adaptive Adversaries215

In this section, we show that there exists algorithms for the discrete prediction with experts problem216

that is robust to adaptive outputs.217

3.1 A Near-Optimal Deterministic Algorithm218

We first present a simple deterministic algorithm for arbitrary-order streams. The algorithm repeatedly219

selects pools of the next k = Õ
(
nM
RT

)
experts. While the pool is non-empty, the algorithm runs the220

deterministic majority algorithm on the algorithm and removes any incorrect experts from the pool.221

Once the pool is empty, the next Õ
(
nM
RT

)
experts are added to the pool, possibly cycling through all222

n experts multiple times if necessary, where an expert can be added to the pool again even if it has223

been previously deleted from the pool. We give the formal algorithm and analysis in Appendix C.224
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Theorem 3.1 (Determistic algorithm). Among n experts in a stream of length T , suppose the best225

expert makes M mistakes and let R ≥ 4M logn
T . There exists a deterministic algorithm (Algorithm 2)226

that uses space Õ
(
nM
RT

)
and achieves an average regret of R.227

In light of lower bound Theorem 1.3, it is evident that Theorem 3.1 is nearly optimal, up to polyloga-228

rithmic factors, for deterministic algorithms, which are automatically adversarially robust. On the229

other hand, it does not seem necessary that any adversarially robust algorithm must be deterministic.230

Indeed, we now give a randomized adversarially robust algorithm with better space guarantees.231

3.2 A Randomized Robust Streaming Algorithm232

We first recall the following randomized algorithm for arbitrary-order streams with oblivious input,233

i.e., non-adaptive input:234

Lemma 3.2 (Algorithm for oblivious inputs; [49]). Let R >
√

128 log2 n
T , and suppose the best expert235

makes at most M ≤ R2T
1280 log2 n

mistakes. Then there exists an algorithm DISCPRED for the discrete236

prediction with experts problem that uses Õ
(

n
RT

)
space and achieves regret at most R, with high237

probability, i.e., probability at least 1− 1
poly(n,T ) .238

The algorithm of Lemma 3.2 for constant probability proceeds by sampling pools of k = Õ
(

n
RT

)
239

experts and running majority vote on the pool, while iteratively deleting poorly performing experts240

until no experts remain in the pool, at which a new pool of k experts is randomly sampled. The241

main intuition is that either the pool of experts will perform well and achieve low regret, or the pool242

will be continuously re-sampled until the best expert is sampled multiple times, after which point243

it will not be deleted from the pool. Unfortunately, it is not evident that this algorithm is robust to244

adaptive inputs because an adversary can potentially learn the experts in each sampled pool and force245

the experts to make mistakes only on days in which they are sampled by the algorithm. To boost246

the algorithm to high probability of success, we take the deterministic majority vote of O (log n)247

independent instances of the algorithm with constant success probability.248

Towards adaptive robustness, we use differential privacy to hide the internal randomness of the249

algorithm, and in particular, the identity of the experts that are sampled by each pool. We first250

run Õ(
√
T ) copies of the algorithm and then output the private median of the Õ(

√
T ) copies,251

guaranteeing roughly
(

1

Õ(
√
T )

, 0
)

-differential privacy because we use Õ(
√
T ) copies of the algorithm.252

Advanced composition, i.e., Theorem 2.3, then ensures (O(1), 1/poly(n))-differential privacy, so253

that correctness then follows from the generalization properties of DP, i.e., Theorem 2.4.254

We give our algorithm in full in Algorithm 1.255

Algorithm 1 Randomized, robust streaming algorithm for the experts problem
Input: A stream of length T with n experts and a target regret R
Output: A sequence of predictions with regret R

1: Run m = O
(√

T log(nT )
)

independent instances of DISCPRED with regret R
4

2: Run PRIVMED on the m instances with privacy parameter ε = O
(

1√
T log(nT )

)
and failure

probability δ = 1
poly(n,T )

3: At each time t ∈ [T ], select the output of PRIVMED

Next, we show the correctness of our algorithm on adaptive inputs.256

Theorem 3.3 (Algorithm for adaptive inputs). Let R >
√

2048 log2 n
T , and suppose the best expert257

makes at most M ≤ R2T
1280 log2 n

mistakes. Then there exists an algorithm for the discrete prediction258

with experts problem that uses Õ
(

n
R
√
T

)
space and achieves regret at most R, with probability at259

least 1− 1
poly(n,T ) .260
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Proof. Suppose we run m = O
(√

T log(nT )
)

independent instances of DISCPRED with regret R
4 .261

Note that for R >
√

2048 log2 n
T , we have R

4 >
√

128 log2 n
T , which is a valid input to DISCPRED262

in Lemma 3.2. By Lemma 3.2, each instance succeeds on an arbitrary-order stream with probability at263

least 1−1/poly(n, T ). By a union bound over the m instances, all instances succeed with probability264

at least 1−1/poly(n, T ). In particular, each instance has regret at most R/4, so that the total number265

of mistakes by each instance is at most M + RT/4. Thus, the total number of mistakes by all266

instances is at most m (M +RT/4).267

To consider an adaptive stream, observe that PRIVMED is called with privacy parameter268

O
(
1/
√
T log(nT )

)
and failure probability 1/poly(n, T ). By Theorem 2.3, the mechanism permits269

T adaptive interactions and guarantees privacy O (1) with failure probability 1/poly(n, T ). By The-270

orem 2.4, we have that with high probability, if the output of the algorithm is incorrect, then at271

least m/3 of the instances DISCPRED are also incorrect. Since the total number of mistakes by all272

instances is at most m (M +RT/4), then the total number of mistakes by the algorithm is at most273

3 (M +RT/4) ≤ M + RT , since M ≤ R2T
1280 log2 n

. Hence, the algorithm achieves R regret with274

high probability.275

By Lemma 3.2, each instance of DISCPRED uses Õ
(

n
RT

)
space. Since we use m =276

O
(√

T log(nT )
)

independent instances of DISCPRED, then the total space is Õ
(

n
R
√
T

)
.277

4 Lower Bound for Arbitrary-Order Streams278

In this section, we provide a space lower bound for randomized algorithms with a high probability of279

success. Together with Theorem 1.1, the lower bound completely characterizes the complexity of280

deterministic algorithms for the online learning with experts problem. We restate Theorem 1.3, give a281

proof sketch and defer the full analysis to Appendix D.282

Theorem 4.1 (Memory lower bound for high-probability algorithms). For n = o(2T ), any random-283

ized algorithm algorithm that achieves R regret with probability at least 1− 2−Ω(T ) for the discrete284

prediction with experts problem must use Ω
(
nM
RT

)
space when the best expert makes M mistakes.285

Proof sketch of Theorem 4.1. We consider the communication problem of ε-DIFFDIST. It combines286

n instances of the distributed detection problem given by [14]. This was also used by the prior work287

of [49] to prove space lower bounds for expert learning in random-order stream.288

Specifically, for fixed T , the ε-DIFFDIST problem with ε = M
T consists of T players, who each hold289

n bits, indexed from 1 to n. The players must distinguish between:290

(1) the NO case D(n)
NO , in which every bit for every player is drawn i.i.d. from a fair coin and291

(2) the YES case D(n)
YES, in which an index L ∈ [n] is selected arbitrarily and the L-th bit of292

each player is chosen i.i.d. from a Bernoulli distribution with parameter
(
1− M

T

)
, while all293

other bits for every player are chosen i.i.d. from a fair coin.294

At a high level, the proof proceeds in two steps:295

(1) First, we show that the ε-DIFFDIST problem can be reduced to the expert prediction problem296

in the streaming setting.297

(2) Second, we prove a communication complexity lower bound for ε-DIFFDIST against any298

protocol that succeeds with probability 1− 2−Θ(T ), which includes deterministic protocols.299

The first step is straightforward. In the reduction, each player in an instance of ε-DIFFDIST corre-300

sponds to a day of the expert problem. The n bit input held by each player correspond to the n expert301

predictions of each day. Therefore, in the NO case, each expert is correct on roughly half of the days.302

In the YES case, there is a single expert L ∈ [n] that is correct on roughly 1/2 + δ of the days (for303

δ = 1/2−M/T ), while all other experts randomly guess each day. Suppose that there is a streaming304
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algorithm for the expert prediction problem with average regret δ/2. Then roughly speaking, in the305

YES case, the algorithm is correct approximately on 1/2 + δ/2 of the days, while in the NO case306

where every expert is randomly guessing, the algorithm is correct on less than 1/2 + δ/2 of the days.307

This distinguishes the YES and NO case and thus solves ε-DIFFDIST.308

For the second step, we show that solving the ε-DIFFDIST problem with probability at least 1−2−Θ(T )309

requires Ω(nM) total communication. We give a sketch of the argument below.310

Observe that if the input is viewed as a T × n matrix, then D(n)
NO is a product distribution across311

columns that can be written as ζn, where ζ is the distribution over a single column such that all312

entries of the column are i.i.d. Bernoulli with parameter 1
2 . We view D(n)

NO as a hard distribution and313

applies an information complexity analysis. By a direct sum argument, it suffices to show that the314

single column problem, i.e., distinguishing between D(1)
NO and D(1)

YES (i.e., for n = 1), requires Ω(M)315

total communication.316

Let (C1, C2, . . . , CT ) be a single column drawn from the hard distribution—namely, the NO case317

where each player holds one i.i.d. Bernoulli with parameter 1/2. Let A be a fixed protocol with318

success probability at least 1− exp(−Θ(T )). For all i < T , let Mi denote the message sent from319

player Pi to player Pi+1 and M<i = {Mj : j < i}. Let Π = Π(C1, · · · , CT ) be the communication320

transcript of A given the input (Ci)
T
i=1. A standard information complexity argument [8] implies that321

the total communication is at least the information cost, defined as I(C1, . . . , CT ; Π(C1, . . . , CT )),322

where I(X,Y ) denotes the mutual information between random variables X and Y .323

The key step now is to lower bound the information cost by Ω(M). The main ideas are the following.324

For any i ∈ [T ], we say that (Mi,M<i) is informative for i with respect to the input C and the325

transcript Π = (M1,M2, . . . ,MT ) if326

|Pr (Ci = 0 |Mi,M<i)− Pr (Ci = 1 |Mi,M<i)| ≥ c (4.1)

for some constant c > 0. Otherwise, we say that Mi is uninformative. Intuitively, an informative327

message Mi reveals sufficiently large information about Ci so that the mutual information I(Mi, Ci |328

M<i) would be large. Let pi be the probability that (Mi,M<i) is informative. Intuitively, we need329

that
∑

i pi is large, because then there would be sufficiently many informative messages, and so the330

information cost is high. To formalize this approach, we claim two key lemmas. First, by Lemma D.9331

I(Π;C1, C2, . . . , CT ) =

T∑
j=1

I (Mj ;Cj |M<j) ≥ Ω

 T∑
j=1

pj

 .

Conceptually, this shows that the information cost is at least the expected number of informative332

messages. Furthermore, by Lemma D.10, the latter is indeed high, and in particular,
∑

j pj ≥ Ω(M).333

Much of the technical work is dedicated to prove these lemmas. This finishes the proof since the334

communication complexity is lower bounded by the information cost.335

5 Experimental Evaluations336

In this section, we perform experimental evaluations as a simple proof-of-concept demonstrating the337

importance of deterministic algorithms against adversarial input.338

Experimental setup. We assume a white-box adversary with access to the internal state of the339

algorithm. We evaluate the natural deterministic algorithm that iteratively selects pools of k =340

Õ
(
nM
RT

)
experts, discarding any expert that has erred, and refreshing the pool with the next batch341

of k experts once the pool is emptied. As a baseline, we compare to a randomized algorithm that342

repeatedly samples pools of k = Õ
(
nM
RT

)
experts, discarding any expert that has erred, and refreshing343

the pool with the next batch of k sampled experts once the pool is emptied.344

Provided that the best expert has not yet made M mistakes, the adversary simply compels the experts345

in each pool to err. Once all experts have made at least M mistakes, the adversary gives up and346

permits all subsequent predictions to be correct. It can be theoretically verified that against such347

an adversary, the deterministic algorithm is the optimal algorithm, in the sense that it achieves the348

smallest number of errors.349
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Experimental details. We first evaluate our experiments on the setting n = 10000, M = 20, and350

T = 1000 across various values of R ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}. For each setting of351

R, we ran the experiment 20 times, recording the runtime and number of errors by the algorithms352

in each repetition. We then computed the minimum, mean, and maximum number of errors by the353

randomized algorithm across all 20 repetitions. We then repeated the experimental setup for a 10x354

larger setting of T , i.e., n = 10000, M = 20, and T = 1000. Our experiments were performed on a355

64-bit operating system using an AMD Ryzen 7 5700U CPU with 8.00 GB RAM and 8 cores with356

base clock 1.80 GHz.357

Results. Our experiments show that the deterministic algorithm performs significantly better than358

the randomized algorithm. On average across the 20 trials for each setting, the randomized algorithm359

made several times more mistakes than the deterministic algorithm, ranging from 1.98x times more360

mistakes for the setting n = 100000,M = 20, T = 1000, R = 0.05 to 3.06x times more mistakes for361

the setting n = 100000,M = 10, T = 10000, R = 0.3. Even the best performance by a randomized362

algorithm over all trials, which occurred at the setting n = 100000,M = 20, T = 1000, R =363

0.05, the randomized algorithm made 1.9x times more mistakes than the deterministic algorithm.364

Meanwhile, the worst performance by a randomized algorithm over all trials, which occurred at365

the setting n = 100000,M = 10, T = 10000, R = 0.25, the randomized algorithm made 3.29x366

times more mistakes than the deterministic algorithm. The average runtime was 98 seconds for367

each batch of 20 experiments for the setting of n = 100000,M = 20, T = 1000, R = 0.05368

while the average runtime was 98 seconds for each batch of 20 experiments for the setting of369

n = 100000,M = 10, T = 10000, R = 0.3 was roughly 350 seconds. See Figure 1 for a summary.370

(a) n = 100000,M = 20, T = 1000 (b) n = 100000,M = 10, T = 10000

Figure 1: Comparison of errors made by deterministic algorithm and average number of errors made
by randomized algorithm across 20 repetitions for each trial, across various values of input target
regret R. Minimum and maximum numbers of errors by randomized algorithm across each trial are
also reported.

6 Conclusion371

In this work, we provide robust streaming algorithms for learning with experts. We provide a372

deterministic algorithm parametrized by the number of mistakes made by the best expert. We also373

give a randomized algorithm with a different space-regret trade-off, based on differential privacy.374

We complement our algorithms with a lower bound for high-probability success algorithms. This375

gives tight memory lower bound for deterministic algorithms. We then show the importance of robust376

algorithmic design by empirically comparing the performance of the natural deterministic algorithm377

and the state-of-the-art randomized algorithm when the inputs are adaptive.378

We remark that our results do not rule out space-efficient robust algorithms that match the bounds of379

the oblivious randomized algorithm of [49] for constant probability of success. We believe whether380

or not there exists such an algorithm is a fascinating question for future work.381
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A Additional Related Work on Adaptive Inputs529

Motivated by non-independent inputs and adversarial attacks, adaptive inputs have recently been530

considered in the centralized model [19, 41, 20, 21], in the streaming model [6, 12, 34, 57, 15, 18,531

11, 1, 3, 22, 4, 28], and in the dynamic model [56, 10]. In particular, algorithms robust to inputs532

that can depend on the previous outputs by the algorithm, i.e., black-box attacks, are also robust to533

situations in which future inputs may be dependent on previous outputs. This is especially relevant in534

applications such as forecasting, in which a prediction on day i can lead to a series of actions that535

might impact outcomes and expert predictions on day i+ 1 and beyond.536

Adaptive adversaries have received considerable attention in literature for online learning when537

the goal is simply to achieve the best possible regret [13, 17, 44]. Building off a line of results on538

multi-armed bandit problems [5, 7, 40], the work of [45] first considered the experts setting against539

memory-bounded adaptive adversaries, giving an algorithm with regret O
(
T 2/3

)
. An early paper of540

[25] introduced a family of algorithms for adaptive inputs, but provided guarantees using concepts not541

quite related to the standard definitions of regret. More recent works have explored online learning542

with additional considerations, such as alternative quantities to optimize [27], additional switching543

costs [16, 26, 48], and feedback graphs [2]. The closest work to our setting is the recent result by [47]544

showing that no algorithm using space sublinear in n can achieve regret sublinear in T when the545

input is chosen by an adversary with access to the internal state of the algorithm, i.e., a white-box546

adversary.547

B Additional Technical Preliminaries548

B.1 Information Theory549

For any p ∈ [0, 1], we slightly abuse notation and let H(p) = −p log2 p− (1− p) log2(1− p) be the550

binary entropy function. The following is a standard upper and lower bound of H(p).551

Lemma B.1 (Bound on the binary entropy function; see e.g. [51]). For p ∈ [0, 1], the binary entropy552

function satisfies553

4p(1− p) ≤ H(p) ≤ 2(p(1− p))1/ ln 4.

B.2 Communication Complexity554

Definition B.2 (Mutual information). Let X and Y be a pair of random variables with joint555

distribution p(x, y). Then the mutual information is defined as I(X;Y ) :=
∑

x,y p(x, y) log
p(x,y)

p(x)p(y) ,556

for marginal distributions p(x) and p(y).557

In a multi-party communication problem of t players, each player is given xi ∈ Xt. They communi-558

cate according to fixed protocol to compute a function f : Xt×· · ·×Xt → Y . A protocol Π is called559

a δ-error protocol for f if there exists a function Πout such that Pr [Πout (Π(x, y)) = f(x, y)] ⩾ 1− δ.560

For a (multi-party) communication problem, we denote the transcript of all communication in a561

protocol as Π ∈ {0, 1}∗. The communication cost of a protocol, as a result, is the bit length of the562

transcript. Let Rδ(f) denote the minimum communication cost across all δ-error protocols for f .563

Definition B.3 (Information cost). Let Π be a randomized protocol that produces a random variable564

Π(X1, . . . , XT ) as a transcript on inputs X1, . . . , XT drawn from a distribution µ. Then the565

information cost of Π with respect to µ is defined as I(X1, . . . , XT ; Π(X1, . . . , XT )).566

Definition B.4 (Information complexity). The information complexity of a function f with respect to567

a distribution µ and failure probability δ is the minimum information cost of a protocol for f with568

respect to µ that fails with probability at most δ on every input and denoted by ICµ,δ(f).569

Lemma B.5 (Information cost decomposition lemma, Lemma 5.1 in [8]). Let µ be a mixture570

of product distributions and suppose Π is a protocol for inputs (X1, . . . , XT ) ∼ µn. Then571

I(X1, . . . , XT ; Π(X1, . . . , XT )) ≥
∑n

i=1 I(X1,i, . . . , XT,i; Π(X1, . . . , XT )), where Xi,j denotes572

the j-th component of Xi.573

Lemma B.6 (Information complexity lower bounds communication complexity; Proposition 4.3 [8]).574

For any distribution µ and error δ, Rδ(f) ≥ ICµ,δ(f).575
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C Proof of Theorem 3.1 and Formal Algorithm576

We give a formal description of our deterministic robust algorithm in pseudocode.577

Algorithm 2 Deterministic algorithm for the experts problem

Input: A stream of length T with n experts, upper bound M on the number of mistakes made by the
best expert, and target regret R

Output: A sequence of predictions with regret R
1: k ← 4nM

RT log n
2: S ← ∅
3: while the stream persists do
4: if S is empty then ▷We have cycled through all n experts once
5: S ← [n]

6: Let P be the first k indices of S
7: S ← S \ P
8: while P ̸= ∅ do
9: For each following day, choose the outcome output by the majority of the experts in P

10: Delete the incorrect experts on that day from P

We now prove the correctness and space complexity of Algorithm 2.578

Proof of Theorem 3.1. We first remark that the algorithm can make at most log k ≤ log n mistakes579

over the lifespan of each pool of size k := 2nM
RT log n because each time the algorithm makes a580

mistake, at least half of the pool must be incorrect and deleted, so the size of the pool decreases by581

at least half with each mistake the algorithm mistakes. Note that k ≤ n for R ≥ 4M logn
T , so the582

algorithm is well-defined.583

Since each pool P has size k and there are n experts, then there are at most 4n
k pools before the entire584

set S, which is initialized to n, is depleted. Thus, there are at most 4n
k pools to iterate through the585

entire set of experts. Moreover, each time the algorithm has iterated through the entire set of experts,586

each expert must have made at least one mistake. This is because an expert is only deleted from the587

pool P when it has made a mistake and since all experts have been deleted from P , then all experts588

have made at least one mistake.589

Since the best expert makes at most M mistakes, then the best expert can be deleted from the pool P590

at most M times. In other words, the algorithm can cycle through the entire set of n experts at most591

M + 1 times.592

Hence, the total number of mistakes by the algorithm is at most593

2n

k
· log n · (M + 1) ≤ 4n

k
· log n ·M ≤ 4nRT

4nM log n
· log n ·M = RT,

so the algorithm achieves regret at most R. Since the algorithm selects a subset of k = 4nM
RT log n594

experts, then the space complexity follows.595

D Proofs of the Lower Bounds for Arbitrary-Order Streams596

In this section, we give space lower bounds for the experts problem on arbitrary-order streams. As597

a warm-up, we first show in Section D.1 a general space lower bound for randomized algorithms598

when the best expert makes a “small” number of mistakes. We then give our main lower bound result599

in Section D.2, showing that any deterministic algorithm achieving regret R must use space Ω
(
nM
RT

)
600

when the best expert makes M mistakes.601

D.1 Warm-up: Lower Bound for Accurate Best Expert602

In this section, we show that any randomized algorithm that achieves regret R must use Ω
(

n
RT

)
603

space, even when the best expert makes Θ(RT ) mistakes. In contrast, [49] give an Ω
(

n
R2T

)
space604

lower bound:605
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Theorem D.1 (Memory lower bound; Theorem 1 of [49]). Let R > 0, p < 1
2 be fixed constants, i.e.,606

independent of other input parameters. Any algorithm that achieves R regret for the experts problem607

with probability at least 1− p must use at least Ω
(

n
R2T

)
space.608

Furthermore, this lower bound holds even when the costs are binary, and expert predictions, as well609

as the correct answers, are constrained to be i.i.d. across the days, albeit with different distributions610

across the experts.611

The proof of this lower bound exploits a construction where the best expert makes Θ(T ) mistakes.612

Thus, it is not clear how the space complexity of the problem behaves when the best expert makes a613

smaller number of mistakes. In fact, [49] also give an algorithm that uses Õ
(

n
RT

)
space when the614

best expert makes O(RT ) mistakes, bypassing the aforementioned lower bound.615

We now prove that in this small mistake regime, this algorithm is tight. Towards this goal, we first616

define the ε-DIFFDIST problem that reduces to the experts problem. It was proposed by [49] to prove617

memory lower bounds for the expert problem in random order stream.618

Definition D.2 (The ε-DIFFDIST Problem). We have T players, each of whom holds n bits, indexed619

from 1 to n. We must distinguish between two cases, which we refer to as “V = 0" and “V = 1". Let620

µ0 be a Bernoulli distribution with parameter 1
2 , i.e., a fair coin, and let µ1 be a Bernoulli distribution621

with parameter 1
2 + ε.622

• (NO Case, “V = 0") Every index for every player is drawn i.i.d. from a fair coin, i.e., µ0.623

• (YES Case, “V = 1") An index L ∈ [n] is selected arbitrarily—the L-th bit of each player624

is chosen i.i.d. from µ1. All other bits for every player are chosen i.i.d. from µ0.625

Any protocol that successfully solves the ε-DIFFDIST problem with a constant probability greater626

than 1
2 must use at least Ω

(
n
ε2

)
communication, a result due to [49]:627

Lemma D.3 (Communication complexity of ε-DIFFDIST; Lemma 3 of [49]). The communication628

complexity of solving the ε-DIFFDIST problem with a constant 1− p probability, for any p ∈ [0, 0.5),629

is Ω
(

n
ε2

)
.630

The proof of Theorem D.1 by [49] uses n coin flips across each of the T players to form the n expert631

predictions over each of the T days. In the NO case, each expert will be correct on roughly T
2 days,632

while in the YES case, a single expert will be correct on roughly T
2 + εT days, so that an algorithm633

with regret R = O(ε) will be able to distinguish between the two cases. There is a slight subtlety634

in the proof that uses a masking argument to avoid “trivial” algorithms that happen to succeed on a635

“lucky” input, but for the purposes of our proof in this section, the masking argument is not needed.636

It then follows that the total communication is Ω
(

n
R2

)
across the T players, so that any streaming637

algorithm must use at least Ω
(

n
R2T

)
bits of space.638

Suppose we instead consider the ε-DIFFDIST problem over RT players, representing RT days in639

the experts problem. Moreover, suppose we set ε = Θ(1) in the ε-DIFFDIST problem, so that in640

the NO case, each of the experts will be correct on roughly RT
2 days, while in the YES case, a641

single expert will be correct on roughly RT
2 + CRT days, for some constant C > 0. Suppose we642

further pad all of the experts with incorrect predictions across an additional T −RT days, so that the643

total number of days is T , but the number of correct expert predictions remains the same. Then an644

algorithm achieving regret O(R) will be able to distinguish between the two cases, so that the total645

communication is Ω
(
n
R

)
, so that any streaming algorithm must use at least Ω

(
n
RT

)
bits of space.646

Corollary D.4. Let R, p < 1
2 be fixed constants, i.e., independent of other input parameters. Any647

algorithm that achieves R regret for the experts problem with probability at least 1 − p must use648

at least Ω
(

n
RT

)
space even when the best expert makes as few as Θ(RT ) mistakes. This lower649

bound holds even when the costs are binary and expert predictions, as well as the correct answer, are650

constrained to be i.i.d. across the days, albeit with different distributions across the experts.651

Proof. The claim follows from setting T = RT and R = Θ(1) in the proof of Theorem D.1.652
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D.2 Lower Bound for Deterministic Algorithms653

We now prove our main space lower bound for deterministic algorithms (Theorem 1.3). We first set654

up some basic notations and introduce a hard distribution.655

Let T be any fixed positive integer. Let D(n)
NO be the distribution over matrices A with size T × n656

such that all entries of the matrix are i.i.d. Bernoulli with parameter 1
2 , i.e., each entry of A is 0657

with probability 1
2 and 1 with probability 1

2 . Let D(n)
YES be the distribution over matrices M with size658

T × n such that there is a randomly chosen column L ∈ [n], which is i.i.d. Bernoulli with parameter659 (
1− M

T

)
and all other columns are i.i.d. Bernoulli with parameter 1

2 . Let BIASDETECTn be the660

problem of detecting whether A is drawn from D(n)
YES or D(n)

NO , so that BIASDETECTn is simply the661

ε-DIFFDIST problem with ε = 1
2 −

M
T .662

Let Π be a communication protocol for BIASDETECTn that is correct with probability at least663

1− exp(−Θ(T )). Since D(n)
NO is a product distribution across columns, then it can be written as ζn,664

where ζ is the distribution over a single column such that all entries of the column are i.i.d. Bernoulli665

with parameter 1
2 . Let BIASDETECT1 denote the problem of distinguishing between D(1)

NO and D(1)
YES666

on a single column, i.e., n = 1. Using D(n)
NO as the hard distribution, we have the following direct667

sum theorem.668

Lemma D.5 (Direct sum for BIASDETECT). The information complexity of BIASDETECTn satisfies669

ICD(n)
NO ,2−Θ(T )(BIASDETECTn) ≥ n · ICD(1)

NO ,2−Θ(T )(BIASDETECT1).

Proof. By definition, D(n)
NO = ζn is a product distribution over n columns. The lemma follows from670

the standard direct sum lemma of information cost (Lemma B.5).671

With the above direct sum theorem for BIASDETECTn, it now suffices to provide a single-coordinate672

information cost lower bound against BIASDETECT1. The proof is delayed to Section D.3.673

Lemma D.6 (Single-coordinate information cost lower bound). Let c ∈ (0, 1) and Π be any protocol674

with error δ = 2−Θ(T ) for BIASDETECT1. We have that the information cost of Π with respect to ζ675

is at least676

I(Π(C1, C2, . . . , CT );C1, C2, . . . , CT ) ≥ Ω (M) , (D.1)

where the bits Ci ∼ ζ are i.i.d. single coordinates.677

Combining Lemma D.6 with the direct sum theorem (Lemma D.5), we immediately get the following678

information complexity lower bound for BIASDETECTn:679

Theorem D.7 (n-Coordinate information complexity lower bound). Let c ∈ (0, 1). Then

ICD(n)
NO ,2−Θ(T )(BIASDETECTn) = Ω(nM).

Proof. This follows by applying the direct sum theorem (Lemma D.5) to the single-coordinate bound680

Lemma D.6.681

This implies that any algorithm with R regret and success rate at least 1− 2−Θ(T ) requires Ω
(
nM
RT

)
682

memory, where M is the mistake bound on the best expert.683

Theorem D.8 (Memory lower bound for expert learning). Let R,M be fixed and independent of684

other input parameters. Any streaming algorithm that achieves R regret for the experts problem685

with probability at least 1− 2−Θ(T ) must use at least Ω(nMRT ) space, for n = o
(
2T

)
, where the best686

expert makes M mistakes.687

Proof. We now consider the problem BIASDETECTn on a matrix of size RT × n. Note that in the688

NO case, at any fixed column i ∈ [n], the probability that there are more than 3RT
5 −

M
2 instances of689

0, for M ≤ RT
8 , is at most 2 exp(−c1RT ), for a sufficiently small constant c1 ∈ (0, 1). Thus, by a690

union bound, the probability that there exists an index i ∈ [n] with more than 3RT
4 −

M
2 instances of691

0 is at most 2n exp(−c1RT ).692
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Similarly in the YES case, the probability that there are fewer than 4RT
5 − M

2 instances of 0 for a693

fixed i ∈ [n] and for M ≤ RT
8 is at most 2 exp(−c2RT ), for a sufficiently small constant c2 ∈ (0, 1)694

and so by a union bound, the probability that there exists an index i ∈ [n] with fewer than 3RT
4 −

M
2695

instances of 0 is at most 2n exp(−c2RT ). Hence, for n = o(2T ), there exists a constant c ∈ (0, 1)696

such that any algorithm that achieves total regret at most RT
5 with probability at least 1− exp(−cT )697

can distinguish between the YES and NO cases with probability 1− exp(−Θ(T )).698

By Theorem D.7 and Lemma B.6, the total communication across the RT players must be at least699

Ω(nM). Therefore, any streaming algorithm that achieves average R regret for the experts problem700

with probability at least 1− 2−Θ(T ) must use at least Ω(nMRT ) space.701

D.3 Proof of the Single-Coordinate Information Cost Lower Bound702

We now show the single-coordinate lower bound of Lemma D.6.703

Proof of Lemma D.6. Consider a protocol that is correct with probability 1 − 2−Θ(T ) and let704

(C1, C2, . . . , CT ) ∼ ζT be a single column drawn from the NO case, where each coordinate is705

i.i.d. Bernoulli with parameter 1/2. For notational convenience, let Π = Π(C1, · · · , CT ) denote706

the transcript given the input (C1, C2, · · · , CT ). We consider the one-way message-passing model,707

where each player Pi holds the input Ci. For all i < T , let Mi denote the message sent from player708

Pi to player Pi+1.709

By the chain rule of mutual information, the information cost of the transcript, the left-side of710

Equation D.1 that we need to bound, can be written as711

I(Π;C1, C2, . . . , CT ) =

T∑
j=1

I (Mj ;C1, C2, . . . , CT |M<j) . (D.2)

By the independence of one-way communication, we have712

I (Mj ;C1, C2, . . . , CT |M<j) = I (Mj ;Cj |M<j) . (D.3)

Combining the two equalities above, the information cost equals713

I(Π;C1, C2, . . . , CT ) =

T∑
j=1

I (Mj ;Cj |M<j) . (D.4)

We now lower bound the right-side. First, we make the following definition. For any i ∈ [T ], we say714

that (Mi,M<i) is informative for i with respect to the input C and the transcript Π = (M1, . . . ,MT )715

if716

|Pr(Ci = 0 |Mi,M<i)− Pr(Ci = 1 |Mi,M<i)| ≥ c (D.5)
for some constant c > 0; and uninformative otherwise. Intuitively, an informative index i with respect717

to (Mi,M<i) means that conditional on the past messages M<i, the message Mi reveals much718

information about Ci. Hence, in this case, I(Mi, Ci |M<i) would be large. Now for all i ∈ [T ], let719

pi be the probability that (Mi,M<i) is informative (for i with respect to C and Π).720

Conceptually, we need to show that
∑

i pi is large, since then there would be sufficiently many721

informative messages, and so the information cost in the left-side of Equation D.4 is high. We722

formalize this idea in the following lemma.723

Lemma D.9. In the setting above, where c > 0 is a constant, the information cost can be lower724

bounded by725

I(Π;C1, C2, . . . , CT ) =

T∑
j=1

I (Mj ;Cj |M<j) ≥ Ω

 T∑
j=1

pj

 (D.6)

Proof. We start by expanding the definition of the mutual information terms. For each j ∈ T , we726

have727

I (Mj ;Cj |M<j) = H (Cj |M<j)−H (Cj |Mj ,M<j) (D.7)
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For the first term, notice that Cj and M<j are independent by one-way communication. Moreover,728

by definition Cj is Bernoulli with parameter 1/2. Therefore,729

H(Cj |M<j) = H(Cj) = H(1/2) = 1.

For the second term,730

• either (Mj ,M<j) is informative, which holds with probability pj , and in this case, the731

conditional entropy is upper bounded by H (Cj |Mj ,M<j) ≤ H(1/2 + c/2);732

• or (Mj ,M<j) is uninformative, and in this case, we trivially upper bound the conditional733

entropy by H (Cj |Mj ,M<j) ≤ 1;734

Putting the observations together and using Equation D.7, it follows that735

I (Mj ;Cj |M<j) = H (Cj |M<j)−H (Cj |Mj ,M<j)

≥ 1− (pj ·H(1/2 + c/2) + (1− pj) · 1)
= pj − pj ·H(1/2 + c/2)

≥ pj

(
1− (1− c2)1/ ln 4

)
.

where the last step uses the upper bound of Lemma B.1. Then we have736

I (Mj ;Cj |M<j) ≥ pj

(
1− (1− c2)1/ ln 4

)
≥ c3 · Ω(pj),

where the last step follows since 1 − (1 − x2)1/ ln 4 ≥ x3/100 for x ∈ [0, 1]. Summing over737

j = 1, 2, . . . , T in Equation D.6 finishes the proof.738

To prove the claimed information cost inequality Equation D.1, we show that
∑

i pi = Ω(M).739

Lemma D.10. There exists a constant γ > 0 such that740

T∑
j=1

pj > γ ·M.

Proof. Suppose by way of contradiction that
∑T

j=1 pj = o(M). Let A be a protocol that sends741

(possibly random) messages M1, . . . ,MT on a random input C ∈ {0, 1}T ∼ ζT drawn uniformly742

from the NO distribution, i.e., each coordinate of C := C1, . . . , CT is picked to be 0 with probability743
1
2 and 1 with probability 1

2 . Moreover, suppose A is a protocol that distinguishes between a YES744

instance and a NO instance with probability at least 1− e−cT 2−T

8 , for some constant c > 0.745

Since pi is the probability that Mi is informative, then by assumption, the expected number of746

informative indices i over the messages M1, . . . ,MT is f(M) for some f(M) = o(M). Thus by747

Markov’s inequality, the probability that the number of informative indices is at most 10f(M) =748

o(M) with probability at least 9
10 . Let S be the set of the uninformative indices so that |S| =749

T − 10f(M) = T − o(M). Let C ′ be an input that agrees with C on the informative indices [T ] \ S750

and is chosen arbitrarily on uninformative indices S, so that C ′i = Ci for i ∈ [T ] \ S.751

By definition, each uninformative index only changes the distribution of the output by a (1± c) factor.752

In particular, for c ∈ (0, 1/2), the probability that the protocol A generates Π on input C ′ is at least753

(1− c)T ≥ e−2cT times the probability that the protocol A generates Π on input C. However, since754

C can differ from C ′ on S, then C can differ from C ′ on |S| = T − 10f(M) = T − o(M) indices.755

Now since each coordinate of C is picked to be 0 with probability 1
2 and 1 with probability 1

2 , then756

the probability that C contains more than T −M zeros is at least 1 − TM · 1
2T
≥ 1 − 2T/2 for757

sufficiently large T . But then there exists a choice of C ′ that contains fewer than M
2 zeros such that758

A will also output Π with probability at least e−cT

2 . Since C ′ contains fewer than M
2 , then C ′ is more759

likely to generated from a YES instance and indeed a YES instance will generate C with probability760
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2−T . On the other hand, since Π corresponds to a transcript for which A will output NO, then the761

probability that A is incorrect on C ′ is at least e−cT

4 , which contradicts the claim that A succeeds762

with probability 1− e−cT 2−T

8 . Thus it follows that
∑T

j=1 pj = Ω(M), as desired.763

Now we combine Lemma D.9 and Lemma D.10. This implies that the information cost can be lower764

bounded by765

I(Π;C1, C2, . . . , CT ) ≥ Ω

 T∑
j=1

pj

 ≥ γM, (D.8)

for a constant γ > 0. This completes the proof.766

E An Alternative Proof in the Large Mistake Regime767

We give another analysis of the information cost when M = Ω(T ), where M is the number of768

mistakes of the best expert.769

Lemma E.1 (Single-Coordinate Information Cost Lower Bound). Let c ∈ (0, 1) and Π be any770

protocol with error δ = 2−T for BIASDETECT1. Suppose that the best expert makes M = c′T771

mistakes for some constant c′. We have that the information cost of Π with respect to ζ is at least772

I(Π(C1, · · · , CT );C1, · · · , CT ) ≥ Ω
(
(1− c)2T

)
, (E.1)

where Ci ∼ ζ are i.i.d. single coordinates.773

Applying direct sum theorem (Lemma D.5), we get the following information complexity lower774

bound for BIASDETECTn:775

Theorem E.2 (n-Coordinate Information Complexity Lower Bound). Let c ∈ (0, 1) and assume
M = c′T for some constant c′. Then

ICD(1),2−Θ(T )(BIASDETECTn) = Ω
(
(1− c)2nT

)
.

By an argument similar to Theorem D.8, we have:776

Theorem E.3 (Memory lower bound for expert learning). Let M = c′T for some constant c′. Any777

streaming algorithm that achieves constant regret for the experts problem with probability at least778

1− 2−Θ(T ) must use at least Ω(n) space, where the best expert makes M mistakes.779

For the purpose of proving Lemma E.1, we need some technical lemmas.780

Lemma E.4 (Lemma 3.5 of [39]). Consider any communication protocol Π where each player781

receives one bit and condition on any fixed input b ∈ {0, 1}T . Each player i can be implemented782

such that, if the other players receive input b−i, player i only observes their input with probability783

dTV(Πb,Πb⊕ei).784

Lemma E.5 (Lemma 3.6 of [39]). Let c ∈ (0, 1), p ∈ (0, 1−c
2 ) and γc = 1

c log(e/c) . For a set of785

binary random variables Y1, Y2, · · · , Yk such that E [
∑

i Yi] = pk, there exists a set S ⊂ [n] of size786

ck such that Pr(Yj = 0,∀j ∈ S) > e−k/γc−1.787

Proof of Lemma E.1. Let (C1, C2, · · · , Cn) ∼ ζn be a single column drawn from the NO case,788

where each coordinate is i.i.d. Bernoulli with parameter 1/2. Let M = c′T for some constant c′. We789

consider the one-way message-passing model, where for all i < T , Mi denotes the message sent790

from player Pi to player Pi+1. It suffices to lower bound791

I(Π;C1, · · · , CT ) =

T∑
j=1

I(Π;Cj |C<j).

by the chain rule of mutual information. We claim that for any j792

I(Π;Cj |C<j) = I(Π;Cj |C−j).
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First, by data processing and the one-way nature of the protocol793

I(Π;Cj |C<j) = I(M≤j ;Cj |C<j).

for any j. Now we just need to show that794

I(M≤j ;Cj |C<j) = I(Π;Cj |C−j).

By chain rule of mutual information, we can write the right-hand side as795

I(Π;Cj |C−j) = I(M≤j ;Cj |C−j) + I(M>j ;Cj |M≤j , C−j)
= I(M≤j ;Cj |C−j) + I(M>j ;Cj |M≤j , C>j)

Observe that M>j and Cj are independent, conditional on M≤j and C>j . Hence,796

I(M>j ;Cj |M≤j , C>j) = 0

and this proves the claim.797

Let Πb be the distribution of the protocol transcript when the input is fixed to be b ∈ {0, 1}n and ⊕798

denote the binary XOR. Now we can bound799

I(Π;C1, · · · , CT ) =

T∑
j=1

I(Π;Cj |C<j)

=

T∑
j=1

I(Π;Cj |C−j)

≥ 1

8

1

2T

∑
b∈{0,1}T

T∑
j=1

d2TV(Πb⊕ej ,Πb)

≥ 1

8

1

2T

∑
b∈{0,1}T

∑
j:bj=0

d2TV(Πb⊕ej ,Πb). (E.2)

Conditioned on an input b ∈ {0, 1}T , let k = |{i : bi = 0}| and assume for the sake of a contradiction800

that801 ∑
i:bi=0

dTV(Πb⊕ei ,Πb) = kp, (E.3)

where p < 1−c
2 . Let pi = dTV (Πb⊕ei ,Πb) for every player i ∈ [T ]. Lemma E.4 implies that the802

protocol can be equivalently implemented such that if the other players receive b−i, player i only803

looks at their input with probability pi. If the player i does not look at their bit, then their message804

Mi is independent of their input bit. Let Yi denote the indicator random variable for the event that805

player i looks at their input in this equivalent protocol.806

It follows from our assumption (E.3) that if the input is b, then E
[∑

i:bi=0 Yi

]
=

∑
i pi = kp. By807

the definition of Yi, if for any set S, Yi = 0 for all i ∈ S, then all players in S do not look at their808

input bits. Let ES denotes the event that Yi = 0 for all i ∈ S, for some S ⊆ {i : bi = 0}. Then since809

the players in S do not look at their input bits,810

dTV(Πb⊕eS |ES ,Πb|ES) = 0.

In particular, using this and the law of total probability, we get that811

dTV(Πb⊕eS ,Πb) = Pr(ES) · dTV(Πb⊕eS |ES ,Πb|ES) + Pr(ES) · dTV(Πb⊕eS |ES ,Πb|ES)

≤ Pr(ES). (E.4)

By our assumption, E
[∑

i:bi=0 Yi

]
= kp for p < 1−c

2 . Applying Lemma E.5, we obtain that812

there exists a set S ⊆ {i : bi = 0} with |S| = ck such that Pr(ES) ≥ e−k/γc−1. For any813

k < (T − 2)γc < T − 2, we have Pr(ES) > eδ, and so Pr(ES) < 1 − eδ. By Eqn. (E.4),814

dTV(Πb⊕eS ,Πb) < 1− eδ. Observe that b⊕ eS differs from b by having |S| = ck more 1’s; and they815

have same value at all other coordinates. Recall that in a typical single-coordinate YES instance, there816

are T −M number of 1’s, which is T/2−M more than a typical NO instance. Now suppose this817
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gap T/2−M < ck; then solving BIASDETECT1 is at most as hard as distinguishing b and b⊕ eS .818

Hence, if we choose c′ such that M = c′T > T/2− ck, then the protocol Π fails with probability819

greater than δ. This is a contradiction.820

Thus, for any b such that ck = c · |{i : bi = 0}| > T/2−M ,821 ∑
i:bi=0

dTV(Πb⊕ei ,Πb) ≥ Ω

(
(1− c)T

2

)
.

From (E.2) and Jensen’s inequality,822

I(Π;C1, · · · , CT ) ≥ Ω
(
(1− c)2T

)
.

This finishes the proof.823
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