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Abstract

Graph Anomaly Detection (GAD) is essential in fields ranging from network
security, and bioinformatics to finance. Previous works often adopt auto-encoders
to compute reconstruction errors for anomaly detection: anomalies are hard to
reconstruct. In this work, we revisit the first principle for anomaly detection,
i.e., the Neyman-Pearson rule, where the optimal anomaly detector is based on
the likelihood of a data point given the normal distribution of data. However, in
practice, the distribution is often unknown and the estimation of the distribution
of graph-structured data may be hard. Moreover, the likelihood computation of a
graph-structured data point may be challenging as well. In this paper, we propose a
novel approach GAD-EBM that can estimate the distribution of graphs and compute
likelihoods efficiently by using Energy-Based Models (EBMs) over graphs. GAD-
EBM approaches the likelihood of a rooted subgraph of node v, and further can
leverage the likelihood to accurately identify whether node v is anomalous or not.
Traditional score matching for training EBMs may not be used to apply EBMs
that model the distribution of graphs because of the complicated discreteness and
multi-modality of graph data. We propose a Subgraph Score Matching (SSM)
approach, which is specifically designed for graph data based on a novel framework
of Subgraph State-Spaces. Experimentation conducted on six real-world datasets
validates the effectiveness and efficiency of GAD-EBM and the source code for
GAD-EBM is openly available.

1 Introduction

Graph Anomaly Detection (GAD) is a critical area of research [25, 47] that has a wide range of
applications, spanning social network analysis [42, 38, 46, 32, 13], financial fraud detection [44, 5,
4, 14, 37, 34, 7, 29, 10, 41], cybersecurity [40, 19], and many more. The aim of GAD is to identify
anomalous substructures, nodes, or edges within a graph that deviate significantly from the norm,
indicating potential irregularities or issues. These anomalies could represent, for instance, fake users
in a social network, compromised nodes in a computer network, or fraudulent financial transactions.
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Given the complexity and multi-modality characteristics of graph data, graph anomaly detection
poses unique challenges, requiring sophisticated methodologies and algorithms to accurately and
effectively identify anomalies.

There have been several approaches for GAD, which can be categorized into feature-based meth-
ods, structure-only methods, and deep-learning methods that considers both structure and feature
information, and we will give a detailed review of them in Section 2. Most of them are based on
heuristics. If we revisit the first principle of detecting anomalies, the optimal detection, based on the
Neyman-Pearson rule (NP rule) [27], should be decided by the likelihood of a data point to be detected
given the normal distribution of data. The lower the likelihood is, the more likely to be anomaly such
a data point is. Although this rule is fundamental, it is hard to be directly used in practice, because the
normal distribution of data is often unknown. Moreover, even if the normal distribution of the data
can be estimated, whether the likelihood can be easily computed is another challenge. For example,
VAEs [17], GANs [12], and diffusion models [16] can estimate the distribution given an empirical
dataset, but the likelihood of a data point based on the distribution estimated by these models is
hard to compute. Normalizing flow, another model possibly used to estimate a distribution, is able to
compute the likelihood efficiently. However, normalizing flow, due to the requirement of reversible
encoding, imposes massive constraints on the model architecture, which may be hard to accurately
estimate the normal distribution for complex multi-modal graph-structured data. These observations
motivate us to think about what should be the best model that can estimate the data distribution,
compute likelihood efficiently and be expressive enough to capture subtle patterns of multi-modal
graph-structured data in the same time.

The above question motivates us to investigate Energy-Based Models (EBMs) for GAD tasks.
EBMs can tackle the above challenges by learning an unnormalized probability density function
of the underlying data distribution [33]. Given a data point of interest, EBMs can directly compute
its unnormalized likelihood. Although the normalization constant for an EBM is generally hard to
compute, for anomaly detection tasks, the constant is not necessary. This is because such normalization
constant is shared across different candidates and the ranking of anomalous labels of different
candidates will be kept regardless of the constant. Moreover, EBMs often do not add constraints
to their data encoders, which have the potential to accurately model the complex distribution of
graph-structured data.

Albeit the decent properties of EBMs for GAD tasks, EBMs are often hard to train. Maximum likeli-
hood estimation, score-matching, and contrastive divergence are the possible training approaches [33].
Among them, maximum likelihood estimation requires Markov Chain Monte Carlo (MCMC) sam-
pling to estimate the normalization constant of the currently learned model [28]. Such a sampling
procedure often takes a large number of iterations to converge. In contrast, score-matching [15]
is often more efficient to train EBMs. Score in score-matching methods is defined as the gradient
of the log probability density function, so score-matching-based training is typically applied to
learn continuous distributions. However, graphs consist of nodes and edges that encapsulate discrete
relationships, and they do not naturally reside in continuous spaces. Such discreteness impedes the
use of conventional score-matching methods to train EBMs for GAD.

Present work: To efficiently and effectively train an EBM for GAD, in this work, we proposed
Subgraph-Score Matching (SSM). SSM is to train an EBM with a graph neural network as the data
encoder that models an unnormalized probability density function over (sub)graphs. Then, given
the subgraph round one node in the observed graph, the learned EBM can compute unnormalized
likelihood of this subgraph, which indicates the anomalous level and further indicates whether the
center node is an anomaly or not.

SSM’s efficient training is inspired by the recent idea of concrete score matching [26]. Concrete score
defines a surrogate of the gradient to train EBMs in discrete spaces. It defines a state-space graph
whose nodes correspond to all possible states (values) of a random variable in the discrete space and
are connected via some pre-defined edges in the state-space graph. Note that this state-space graph is
a math abstract, which is different from the graphs or subgraphs in data. Given this state-space graph,
the directional difference between the likelihoods of a node and of its neighbors in this state-space
graph provides an analogy of the gradient in the continuous space.

In SSM, we define a novel Subgraph State-Space whose nodes essentially correspond to subgraphs
in the observed graph-structured data, the EBM measures the likelihoods of these subgraphs. We
define edges (or the neighboring relations) in the Subgraph State-Space when one subgraph can be
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transformed into another via edge addition, edge deletion, or feature shuffle. Therefore, in our EBM,
the directional changes of the likelihoods between the subgraphs directly connected in the Subgraph
State-Space give the concrete scores in our case. With these concrete scores, we are able to use
concrete score matching [26] to efficiently train the EBM that ultimately estimates the likelihoods of
subgraphs. Concrete score matching provably learns the ground truth distribution if the state-space
graph is connected, which can be proved for our defined Subgraph State-Space. As each subgraph
state in our Subgraph State-Space may have exponentially many neighbors, we also propose a random
sampling procedure over the Subgraph State-Space so that the training objective of concrete score
matching can be åefficiently estimated. The contributions of our work can be summarized as follows:

• In this study, we introduce GAD-EBM, the first approach that utilizes Energy-Based Models
(EBM) for Graph Anomaly Detection (GAD).

• We address the challenge of training Energy-Based Models in the discrete space of graphs
by introducing a subgraph score-matching objective with a surrogate of the gradient at the
subgraph level.

• We propose a novel State Space Graph which enables efficient training of Energy-Based
Models via subgraph score-matching to learn the likelihood of the ego-subgraph of a target
node that determines its anomaly label.

• Empirically, we showed that our model GAD-EBM may show competitive performance
with baseline models in benchmark GAD datasets and can distinguish between normal and
anomaly nodes.

2 Related Works

2.1 Graph Anomaly Detection

Early approaches for GAD often focused on contextual and structural anomalies where the con-
textual anomalies are featurewise different from other nodes and structural anomalies are densely
connected [22]. The GAD methods can be broadly categorized into two groups. The first group
of methods handles graph structure and node attributes independently. For example, feature-only
approaches [1, 21, 31] only consider node features and perform well in detecting contextual anoma-
lies whereas approaches that only consider network structure find success in detecting structural
anomalies [45]. The second group of strategies identifies contextual and structural anomalies using a
unified framework where generative-model-based approaches are the most popular. Auto-Encoders,
Generative Adversarial Networks (GAN), normalizing flow, and diffusion models all belong to gener-
ative model-based approaches, which have been extensively used for anomaly detection [6, 18, 2, 11].
However, autoencoders try to use reconstruction error of links for detecting anomalies, GANs offer
a means to detect anomalies but they may suffer from the unstable adversarial training procedure,
thus leading to unstable and biased anomaly detection. Normalizing flow-based approaches depends
on the inversion of learnable function whereas diffusion models consider the difference between the
input data and denoised data to detect anomalies. These approaches find it difficult to accurately
represent the true underlying data distribution and not principled for detecting anomalies.

2.2 Energy-Based Models

The Energy-Based Model (EBM) is a kind of generative model to directly model the unnormalized
probability density function of the underlying data distribution, which has been used in different
domains including image [9, 8], video [39], and text [24]. In the graph domain, EBM has been
applied for tasks including OOD detection [43], molecular graph generation [23], scene-graph
generation [35]. Several approaches are mentioned in the literature to train energy-based models [33]
namely maximum likelihood via MCMC sampling [28], score-matching [36], denoising score-
matching [20], and contrastive divergence [30]. The gradient of the log probability density function
is defined as the score of the underlying data distribution. In score-matching-based approaches, the
goal is to learn a distribution with the objective of minimizing the fisher divergence between the
score of learned and true data distribution. With gradient not being defined in the discrete space, it
becomes challenging to utilize the score-matching technique for training energy-based models in
graphs. However, defining a surrogate of gradient concrete score-matching approach [26] for training
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energy-based models is a promising direction to train energy-based models for graph-like discrete
data.

3 Preliminaries

3.1 Graph Anomaly Detection

The primary objective of this study is to identify anomalous nodes within a graph. We denote a
undirected graph as G = {V,E,X}, where V = {1, 2, . . . , N} denotes the node list and E ∈ V ×V
denotes the edge list. We use X ∈ R|V |×d to represent the attribute matrix and xv ∈ Rd to denote the
feature of node v and evu denotes the edge between node v and u. The study targets an unsupervised
anomaly detection problem. Each node v is associated with an anomaly label y where y = 0
designates the node as normal and y = 1 implies node v is anomalous. These labels, however, are
unknown during the training process. The goal of this study is to estimate the likelihood of the
ego-subgraph Gsub

v rooted at a target node v and use the computed likelihood as the anomaly score
for each node, where Gsub

v denotes the induced subgraph of the root vertex v in the graph G. The task
is to learn a likelihood mapping function f(Gsub

v ) : Gsub
v → {0, 1}, v ∈ V that leverages the local

structural information (Gsub
v ) of a target node v to measure the likelihood of v to be an anomaly.

3.2 Energy-Based Models and Score Matching

Energy-Based Models (EBM) are known to model the unnormalized probability density of a data
distribution and can be trained without the restriction of the traceability of an unknown normalizing
constant which makes them flexible to model a more expressive family of probability distributions.
The density of a data distribution over data samples x given by the EBMs are

pθ(x) =
exp(−Eθ(x))

Zθ

where Eθ is a non-linear real-valued function parameterized by θ and Zθ is the nomralizing constant.

Score-matching is one of the ways to train EBMs where the first-order gradient of the log probability
density function is known as the score of a distribution. By converting the equivalent distribution to
an equivalent score, it is easy to match the scores to train the EBMs ∇x log pθ(x) = −∇xEθ(x) not
involving any normalizing constant Zθ. The problem of learning subgraph distribution can also be
modeled using EBMs using score-matching as the training strategy.

Let the random variable Gsub denote a subgraph and pdata(G
sub) be an unknown subgraph distribution

over the subgraph space Gsub. We have the observed subgraphs {Gsub
v }Nv=1 ∼ pdata(G

sub) where Gsub
v

denote a subgraph centered at node v. The goal of score-matching is to learn a probability distribution
pθ(G

sub) that can be written as a form of energy Eθ(G
sub):

pθ(G
sub) =

exp(−Eθ(G
sub))

Zθ
(1)

where energy Eθ(G
sub) is a non-linear function parameterized by θ . Zθ is the normalizing constant

satisfying Zθ =
∫
exp(−Eθ(G

sub))dGsub. Unfortunately, Zθ is a function of θ so the evaluation and
differentiation of log-likelihood with respect to model parameters involve an intractable integral.

Instead of approximating the intractable normalizing constant, score matching aims at approximating
the score function, estimating the sθ(G

sub) = ∇Gsub log pθ(G
sub), the gradient of the log probability

density of the learned subgraph distribution. This is valid because when f(Gsub) and g(Gsub) are
log density with equal first derivatives, the normalization requirement

∫
exp(f(Gsub))dGsub =∫

exp(g(Gsub))dGsub = 1 guarantees that we have f(Gsub) ≡ g(Gsub) [33] . Therefore, by mini-
mizing the following fisher divergence:

Df (pdata(G
sub)||pθ(Gsub)) = Epdata(Gsub)[||∇Gsub log pdata(G

sub)−∇Gsub log pθ(G
sub)||22] (2)

where pdata(G
sub) is the underlying subgraph distribution and pθ(G

sub) is the learnable subgraph
distribution parameterized by θ ∈ Θ. pdata(G

sub) is unknown during training so that a tractable
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objective function [26] is derived as:

Epdata(Gsub)

[
1

2
||sθ(Gsub)||22 − tr(∇Gsubsθ(G

sub))

]
(3)

where sθ(Gsub) is the score network parameterized by θ. However, when the data is a graph, standard
gradient-based score-matching techniques may not apply directly because the gradient is not explicitly
defined for graph data. That is to say, ∇Gsub is not well defined in the above equation. Therefore, we
target to design a surrogate of the gradient in the graph domain so that we can train EBM with such
surrogate score matching.

4 Preliminaries

4.1 Graph Anomaly Detection

The primary objective of this study is to identify anomalous nodes within a graph. We denote a
undirected graph as G = {V,E,X}, where V = {1, 2, . . . , N} denotes the node list and E ∈ V ×V
denotes the edge list. We use X ∈ R|V |×d to represent the attribute matrix and xv ∈ Rd to denote the
feature of node v and evu denotes the edge between node v and u. The study targets an unsupervised
anomaly detection problem. Each node v is associated with an anomaly label y where y = 0
designates the node as normal and y = 1 implies node v is anomalous. These labels, however, are
unknown during the training process. The goal of this study is to estimate the likelihood of the
ego-subgraph Gsub

v rooted at a target node v and use the computed likelihood as the anomaly score
for each node, where Gsub

v denotes the induced subgraph of the root vertex v in the graph G. The task
is to learn a likelihood mapping function f(Gsub

v ) : Gsub
v → {0, 1}, v ∈ V that leverages the local

structural information (Gsub
v ) of a target node v to measure the likelihood of v to be an anomaly.

4.2 Energy-Based Models and Score Matching

Energy-Based Models (EBM) are known to model the unnormalized probability density of a data
distribution and can be trained without the restriction of the traceability of an unknown normalizing
constant which makes them flexible to model a more expressive family of probability distributions.
The density of a data distribution over data samples x given by the EBMs are

pθ(x) =
exp(−Eθ(x))

Zθ

where Eθ is a non-linear real-valued function parameterized by θ and Zθ is the nomralizing constant.

Score-matching is one of the ways to train EBMs where the first-order gradient of the log probability
density function is known as the score of a distribution. By converting the equivalent distribution to
an equivalent score, it is easy to match the scores to train the EBMs ∇x log pθ(x) = −∇xEθ(x) not
involving any normalizing constant Zθ. The problem of learning subgraph distribution can also be
modeled using EBMs using score-matching as the training strategy.

Let the random variable Gsub denote ego-subgraph and pdata(G
sub) be an unknown subgraph dis-

tribution over the subgraph space Gsub . We have the observed subgraphs {Gsub
v }Nv=1 ∼ pdata(G

sub)
where Gsub

v denote a subgraph centered at node v. The goal of score-matching is to learn a probability
distribution pθ(G

sub) that can be written as a form of energy Eθ(G
sub):

pθ(G
sub) =

exp(−Eθ(G
sub))

Zθ
(4)

where energy Eθ(G
sub) is a non-linear function parameterized by θ . Zθ is the normalizing constant

satisfying Zθ =
∫
exp(−Eθ(G

sub))dGsub. Unfortunately, Zθ is a function of θ so the evaluation and
differentiation of log-likelihood with respect to model parameters involve an intractable integral.

Instead of approximating the intractable normalizing constant, score matching aims at approximating
the score function, estimating the sθ(G

sub) = ∇Gsub log pθ(G
sub), the gradient of the log probability

density of the learned subgraph distribution. This is valid because when f(Gsub) and g(Gsub) are
log density with equal first derivatives, the normalization requirement

∫
exp(f(Gsub))dGsub =
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∫
exp(g(Gsub))dGsub = 1 guarantees that we have f(Gsub) ≡ g(Gsub) [33] . Therefore, by mini-

mizing the following fisher divergence:

Df (pdata(G
sub)||pθ(Gsub)) = Epdata(Gsub)[||∇Gsub log pdata(G

sub)−∇Gsub log pθ(G
sub)||22] (5)

where pdata(G
sub) is the underlying subgraph distribution and pθ(G

sub) is the learnable subgraph
distribution parameterized by θ ∈ Θ. pdata(G

sub) is unknown during training so that a tractable
objective function [26] is derived as:

Epdata(Gsub)

[
1

2
||sθ(Gsub)||22 − tr(∇Gsubsθ(G

sub))

]
(6)

where sθ(Gsub) is the score network parameterized by θ. However, when the data is a graph, standard
gradient-based score-matching techniques may not apply directly because the gradient is not explicitly
defined for graph data. That is to say, ∇Gsub is not well defined in the above equation. Therefore, we
target to design a surrogate of the gradient in the graph domain so that we can train EBM with such
surrogate score matching.

5 Methodology

In this section, we describe our model GAD-EBM that aims at the computation of the likelihood of
a target node’s neighborhood to determine its anomaly label with the help of energy-based models.
We designed Subgraph State-Space , defined as a network structure of ego-subgraphs that provides
the flexibility to design a training strategy for energy-based models in discrete data-like graphs. We
leverage the idea of Concrete Score [26] which defines a surrogate of the gradient by considering the
likelihood change rate in a neighborhood structure in the discrete space.

5.1 Concrete Score Matching

Given the subgraph space G and the function mapping termed as the neighborhood structure
NG : G → GK from each observed subgraph Gsub

v ∈ G to its neighborhood subgraphs
{Gsub

1 , Gsub
2 , · · · , Gsub

K }, the concrete-score cpdata(Gv;NG) over the distribution of subgraphs
pdata(G

sub) is defined as follows

cpdata(Gv;NG) ≜

[
pdata(Gsub

1 )−pdata(G
sub
v )

pdata(Gsub
v ) , . . . ,

pdata(Gsub
K )−pdata(G

sub
v )

pdata(Gsub
v )

]T
(7)

The intuition of concrete score is to find the local directional changes of likelihood between a observed
subgraph Gsub

v and its neighbor subgraphs {Gsub
1 , Gsub

2 , · · · , Gsub
K }, which can be considered as a

surrogate of the gradient for discrete space. The concrete score is constrained by the requirement of
the neighborhood structure NG to be connected.

However, the extension of the concrete score to the graph domain is by no means an easy task. Graphs
encapsulate relationships between nodes and edges, and the discrete, combinatorial structure of these
relationships may not align well with learning EBMs with the concrete score objective. Additionally,
the assumptions underlying the use of concrete score are more straightforward in the predefined
neighborhood structure of discrete feature space but do not hold in the more complex setting of graph
data where both structure and feature information are available. Therefore, designing a score that can
leverage the intricate dependencies and interactions within graph data is of great importance.

5.2 Subgraph-State-Space

To propose a score for the subgraph setting that will facilitate the training of Energy-Based Models on
the subgraph distribution, we will first define a neighborhood structure subgraph-state-space. Before
we define the Subgraph-state space, it is necessary to first introduce some prerequisite definitions that
will be used in its characterization.
Definition 1. (Ego-neighborhood). Given a target node v, its 1-hop neighborhood Gsub

v =
{{v, u}, {xv, xu}, {evu}|dG(u, v) = 1, u ∈ V } is defined as the ego-neighborhood of node v.
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Definition 2. (Subgraph State-Space). The Subgraph State-Space is defined as a set of ego-
neighborhoods {vG, uG1 , · · · , uGΩ}, which are composed of one observed ego-neighborhood of
target node v, denoted as vG (vG ≡ Gsub

v ) and Ω ego-neighborhoods as the neighbor node set of vG,
denoted as NvG , where Ω is the number of all possible ego-neighborhoods. Each ego-neighborhood
uG ∈ NvG is constructed from vG by applying a collection of operations: 1) edge-addition: connect-
ing node v with any nodes w ∈ V , 2) edge-deletion: disconnecting v with any nodes w ∈ Nv and 3)
feature shuffle: shuffling the features of nodes in vG with any node features in X .
Definition 3. (Neighbor Subgraphs). We define two subgraphs as neighbor subgraphs in the subgraph
space if one of them can be converted into another by performing either one of the edge-addition,
edge-deletion, and feature-shuffle operations. As in definition 3, we can see vG is connected to every
uG ∈ NvG .

Neighborhood 
state-space 
graph of 

𝑣

𝐺

𝑣

𝑣!

𝑣

𝑣

𝑣

𝒩"!

Figure 1: Example of a Subgraph State-Space

Due to the way we produce the negative
neighbors in a Subgraph State-Space, the
quantity of them is exponentially large.
In practice, we only sample some of
them in a Subgraph State-Space for com-
putational efficiency, e.g., |NvG | = l,
where l ≪ |Ω|. An example of a Sub-
graph State-Space can be found in Fig-
ure 1, where l = 2 as produce two neigh-
bor states in the Subgraph State-Space
by perturbing the neighborhood structure
and shuffling features.

5.3 The Subgraph Score

With the previously established definitions in place, we can now align the surrogate of gradient
and the likelihood differences of state subgraph, akin to the directional derivative in concrete score
matching. Utilizing this concept of the “gradient”, we formulate the subgraph score as the rate of
change of the likelihood with respect to the observed subgraph, as detailed below.

Definition 4. (Subgraph Score). The subgraph score of an ego-neighborhood rooted at node v is
defined as bpdata(vG) : Gsub → (0, 1)NvG for a given distribution pdata(Gv).

bpdata(vG) ≜

[
· · · , pdata(uG)− pdata(vG)

pdata(vG)
, · · ·

]
uG∈NvG

(8)

Subgraph score is a valid surrogate of the gradient for score matching only when it enables us to
uniquely identify the bpdata(vG). The following Corollary 1 guarantees that this identification can be
achieved. Before that, we need to define the connectivity between subgraphs, which is the prerequisite
of the corollary.

For the Figure 1, the subgraph score bpdata(vG) : Gsub → (0, 1)2 which will act as the surrogate of the
gradient by computing the ratio of the difference of the neighbor state likelihood and observed state
likelihood in the Subgraph State-Space to the likelihood of observed state.
Corollary 1. (Theorem 1 in [26]) Let pdata(vG) be a distribution of the observed subgraph vG in a
Subgraph State-Space of node v. The subgraph score constructed on pdata(vG) and pθ(vG) of node
v is denoted as bpdata(vG) and bθ(vG) respectively, where pθ(vG) is a learnt empirical distribution
parameterized by θ ∈ Θ. Due to the connectivity of the vG and uG ∈ NvG , we can conclude that
bpdata(vG) = bθ(vG) implies that pdata(vG) = pθ(vG).

Proof sketch : The way we produce neighbors in the state-space graph by shuffling features among the
nodes in the state-space graph and via edge addition/deletion we can conclude that we can produce any
observed subgraph as a neighbor state in the state-space graph. From the concrete score-matching [26]
idea, we have that if the neighboring structure is connected the learned data distribution becomes
equal to the true data distribution. Therefore, we can conclude that our strategy of producing a state
in the Subgraph State-Space can reach all possible states in the Subgraph State-Space. This implies
that the Subgraph State-Space is connected resulting in pdata(vG) = pθ(vG).
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5.4 Connection to Concrete Score

We leverage the idea of calculating a surrogate score based on directional changes of input in a discrete
feature domain of images. In detail, we measure (p(uG)−p(vG))/p(vG) as a surrogate score function,
where uG ∈ NvG . However, the Concrete score [26] was developed to handle general discrete cases.
But because of the complex topological structure of graph data, concrete score matching is unable to
handle such discreteness. The subgraph score is designed specifically for graph data. It recognizes
and handles the inherent intricacies of graphs, accommodating the local structural information that is
key to understanding the behavior of a target node and thus recovering the likelihood successfully.

5.5 Subgraph Score Matching objective

We apply the fisher divergence that is commonly used in the score matching [33] objective function.

LSSM (θ) =
∑
vG∈V

pdata(vG)||bθ(vG)− bpdata(vG)||22 (9)

where bθ(vG) is a subgraph score model parameterized by θ ∈ Θ. In the experiment, we use a 1-layer
GNN to approximate the true score bpdata(vG). However, bpdata(vG) is unknown during the training so
the objective function Eq.(9) is intractable.

Theorem 1. Optimizing objective function in Equation (9) is equivalent to optimizing the following:

LSSM (θ) =
∑

vG∈V

pdata(vG)
(
∥bθ(vG)∥22 + 2∥bθ(vG)∥

)
︸ ︷︷ ︸

J1

−
∑

vG∈V

||bθ(vG)||
∑

uG∈NvG

2pdata(uG)

︸ ︷︷ ︸
J2

(10)

The proof of Theorem 1 is deferred to the Appendix in Section 8.

In the objective function, we can view that in the first term J1 is minimized which essentially mini-
mizes ||bθ(vG)||22 i.e. according to the definition of subgraph score the objective function maximizes
the likelihood of the observed ego-subgraph pdata (vG) present in the network while decreasing the
likelihood of the ego-subgraphs pdata(uG) present as a neighbor in the state-space graph. For the
second term J2, the optimizer will push this term to be as large as possible to minimize the objective
function. So, we use the inverse of the equation bθ(uG)

2 to increase the pdata(vG) and decrease the
pdata(uG) which matches our intuition that the likelihood of the ego-subgraph will be higher whereas
the likelihood of anomaly node’s subgraphs will be comparatively low.

5.6 Experimental Settings

Our first experimental settings follow the benchmark outlier node detection paper (BOND) [22]. To
estimate the pdata, we experimented with different types of GNN architectures e.g. GCN, Graph-
SAGE, GIN. Other than shuffling the node features, we perturbed the structure of the ego-subgraph
of each target/centered node by adding/removing c percentage of edges and experimented with
c = {5%, 10%, 15%, 20%}. We also tuned the number of neighbors in the state-space graph,
l = 1, 2, 5, 10, 20. We optimize the parameters of GAD-EBM using Adam optimizer with different
learning rates {0.001, 0.01, 0.1} and regularization co-efficient {0.01, 0.1, 1.0, 10.0}.

5.7 Evaluation Metric

We utilized the area under the Receiver Operating Characteristic (ROC) curve as our metric for
evaluation. The ROC curve is constructed by plotting the true positive rate versus the false positive
rate at different threshold levels. In our experiment, the anomaly nodes are treated as the positive
class, and the Area Under the Curve (AUC) is calculated accordingly. An AUC value of 1 signifies
that the model has achieved perfect prediction, while an AUC value of 0.5 indicates that the model
lacks any discriminatory power. Unlike accuracy, AUC is preferred for evaluating anomaly detection
tasks, as it remains insensitive to the imbalanced class distribution often present in the data.
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Algorithm Weibo Reddit Disney Books Enron DGraph
LOF 56.5 ± 0.0 (56.5) 57.2 ± 0.0 (57.2) 47.9 ± 0.0 (47.9) 36.5 ± 0.0 (36.5) 46.4 ± 0.0 (46.4) TLE

IF 53.5 ± 2.8 (57.5) 45.2 ± 1.7 (47.5) 57.6 ± 2.9 (63.1) 43.0 ± 1.8 (47.5) 40.1 ± 1.4 (43.1) 60.9 ± 0.7 (62.0)
MLPAE 82.1 ± 3.6 (86.1) 50.6 ± 0.0 (50.6) 49.2 ± 5.7 (64.1) 42.5 ± 5.6 (52.6) 73.1 ± 0.0 (73.1) 37.0 ± 1.9(41.3)
SCAN 63.7 ± 5.6 (70.8) 49.9 ± 0.3 (50.0) 50.5 ± 4.0 (56.1) 49.8 ± 1.7 (52.4) 52.8 ± 3.4 (58.1) TLE
Radar 98.9 ± 0.1 (99.0) 54.9 ± 1.2 (56.9) 51.8 ± 0.0 (51.8) 52.8 ± 0.0 (52.8) 80.8 ± 0.0 (80.8) OOM_C

ANOMALOUS 98.9 ± 0.1 (99.0) 54.9 ± 5.6 (60.4) 51.8 ± 0.0 (51.8) 52.8 ± 0.0 (52.8) 80.8 ± 0.0 (80.8) OOM_C
GCNAE 90.8 ± 1.2 (92.5) 50.6 ± 0.0 (50.6) 42.2 ± 7.9 (52.7) 50.0 ± 4.5 (57.9) 66.6 ± 7.8 (80.1) 40.9 ± 0.5 (42.2)

DOMINANT 85.0 ± 14.6 (92.5) 56.0 ± 0.2 (56.4) 47.1 ± 4.5 (54.9) 50.1 ± 5.0 (58.1) 73.1 ± 8.9 (85.0) OOM_C
DONE 85.3 ± 4.1 (88.7) 53.9 ± 2.9 (59.7) 41.7 ± 6.2 (50.6) 43.2 ± 4.0 (52.6) 46.7 ± 6.1 (67.1) OOM_C

AdONE 84.6 ± 2.2 (87.6) 50.4 ± 4.5 (58.1) 48.8 ± 5.1 (59.2) 53.6 ± 2.0 (56.1) 44.5 ± 2.9 (53.6) OOM_C
AnomalyDAE 91.5 ± 1.2 (92.8) 55.7 ± 0.4 (56.3) 48.8 ± 2.2 (55.4) 62.2 ± 8.1 (73.2) 54.3 ± 11.2 (69.1) OOM_C

GAAN 92.5 ± 0.0 (92.5) 55.4 ± 0.4 (56.0) 48.0 ± 0.0 (48.0) 54.9 ± 5.0 (61.9) 73.1 ± 0.0 (73.1) OOM_C
GUIDE OOM_C OOM_C 38.8 ± 8.9 (52.5) 48.4 ± 4.6(63.5) OOM_C OOM_C
CONAD 85.4 ± 14.3 (92.7) 56.1 ± 0.1 (56.4) 48.0 ± 3.5 (53.1) 52.2 ± 6.9 (62.9) 71.9 ± 4.9 (84.9) 34.7±1.2 (36.5)

GAD-EBM 93.16 ± 1.84 58.50 ± 1.58 74.52 ± 0.57 64.30 ± 0.92 80.94 ± 1.42 60.26 ± 2.48
Table 1: Performance comparison (ROC-AUC) of GAD-EBM with baseline models mentioned in BOND
paper [22] on six different real-world graph anomaly detection datasets.
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Figure 2: Likelihood change of observed and neighbor subgraphs (top) and normal and anomaly nodes (bottom)
plotted after every five epochs for Disney, Books, Reddit and Weibo dataset respectively

5.8 Anomaly Detection Performance

In table 1, we present the performance of GAD-EBM to detect benchmark anomalies in six real-
world graph anomaly detection datasets. From the results, we can observe that GAD-EBM can
outperform baseline models in four datasets Reddit, Disney, Books, and Enron while showing the
second-best performance in Weibo and DGraph datasets. From the results, it is evident that our
design of the Subgraph State-Space to optimize the subgraph score-matching objective is suitable for
differentiating between the normal and anomaly nodes by learning the likelihood of the ego-subgraph.
Our objective function increases the likelihood of the observed ego-subgraphs vG in a state-space
graph while decreasing the likelihood of neighbor ego-subgraphs uG ∈ NvG which eventually results
in differentiating the normal and anomaly nodes

5.9 Average likelihood comparison

In Figure 2, we plot the likelihood change for every five epochs for the observed and neighbor ego-
subgraph of a target node (top) as well as for normal and anomaly nodes (bottom) in the state-space
graph for the Disney, Books, Enron, and Weibo datasets. From the likelihood change plot between
the observed and neighbor ego-subgraph in the state-space graph, we can observe that the likelihood
of the observed ego-subgraph depicted with the green band increases whereas the red band suggests
that the likelihood of the neighbor ego-subgraph in the state-space graph doesn’t improve consistently
with epochs. This behavior supports our intuition that the subgraph score-matching objective function
creates a contrastive difference between the likelihood of the observed ego-subgraph and the neighbor
ego-subgraphs. The average likelihood comparison plot between normal and anomaly nodes also
supports our intuition. The average likelihood of normal nodes is always higher than Disney, Books,
and Reddit datasets whereas we can observe some fluctuation for the Weibo dataset. The fact that
the normal nodes get a higher likelihood than the anomaly nodes makes it easier for the model to
differentiate between normal and anomaly nodes, resulting in the better performance of GAD-EBM.
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5.10 Running Time Efficiency
Algorithm 10 100 200 300 400

LOF 0.10 0.10 0.10 0.10 0.10
IF 0.09 0.09 0.09 0.09 0.09

MLPAE 0.04 0.46 0.82 1.37 1.74
SCAN 0.02 0.02 0.02 0.02 0.02
Radar 0.02 0.10 0.19 0.34 0.36

ANOMALOUS 0.02 0.09 0.17 0.26 0.36
GCNAE 0.06 0.49 0.96 1.45 1.94

DOMINANT 0.08 0.70 1.41 2.10 2.79
DONE 0.08 0.77 1.53 2.30 3.08

AdONE 0.10 0.91 1.81 2.71 3.62
AnomalyDAE 0.43 0.64 1.28 1.92 2.55

GAAN 0.06 0.49 0.98 1.47 1.97
GUIDE 50.77 51.92 53.40 54.27 55.21
CONAD 0.11 1.04 2.07 3.07 4.10

GAD-EBM 0.09 0.62 1.24 1.89 2.47
Table 2: Running time (in seconds) comparison of baseline
GAD-models with GAD-EBM for five different number of
epochs. Total time is reported for the non-iterative algorithms,
i.e. LOF, IF, and SCAN.

In Table 2, we compare the running time
of GAD-EBM with other baseline GAD
models. From the comparison we can
observe that the running time efficiency
of GAD-EBM is comparable to other
baseline GAD approaches. The reason
behind such efficiency is the flexible de-
sign of GAD-EBM’s framework to pro-
duce neighbors in the state-space graphs.
We adopt a full-batch implementation
of the objective function by applying
row shuffle in the feature matrix X and
adding/removing a certain percentage of
edges w.r.t. node degree which results in
a faster pipeline of GAD-EBM.

6 Conclusion

In this work, we proposed GAD-EBM to explicitly evaluate the likelihood of normal and anomalous
nodes to address the graph anomaly detection problem with an energy-based model. We propose a
novel framework Subgraph State-Space to train the energy-based model that is flexible to estimate the
likelihood of ego-subgraph present in the network. We introduce a subgraph score that is a surrogate
of the gradient by the change of likelihood between the observed and neighbor ego subgraph in
the Subgraph State-Space. The subgraph score-matching objective help GAD-EBM to differentiate
between the normal and anomaly nodes. With extensive experimental analysis, we have shown that
GAD-EBM achieves superior performance compared with SOTA baselines in real-world benchmark
graph anomaly detection datasets.
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8 Appendix

Proof of Theorem 1.

LSSM (θ) =
∑

vG∈Gsub

pdata(vG)||bθ(vG)− bpdata(vG)||22

argmin
θ

JSSM(θ)

= argmin
θ

∑
vG∈Gsub

pdata(vG)||bθ(vG)− bpdata(vG)||22

= argmin
θ

∑
vG∈Gsub

pdata (vG)[∥bθ(vG))∥22 − 2bθ(vG)bpdata(vG) + ∥bpdata(vG)∥
2
2]

= argmin
θ

∑
vG∈Gsub

pdata (vG)[∥bθ(vG)∥22 − 2bθ(vG)bpdata
(vG)]

= argmin
θ

∑
vG∈Gsub

pdata(vG)
(
∥bθ(vG)∥22 + 2∥bθ(vG)∥

)
︸ ︷︷ ︸

J1

−
∑

vG∈Gsub

||bθ(vG)||
∑

uG∈NvG

2pdata(uG)︸ ︷︷ ︸
J2

= argmin
JSSM(θ)

Time Complexity of GAD-EBM: For each node v we need to calculate the subgraph score for its
ego neighborhood. To do that, we calculate the pdata(vG) for the observed ego-neighborhood for
node v and also pdata(uG) for the ego-neighborhood for the l neighbors in the Subgraph State-Space.
To generate a neighborhood, we can produce it by randomly adding or removing c percentage of
edges from the observed subgraph which can be done in O(N2). The feature shuffling can be done by
shuffling the feature matrix which can be done in O(N). Next, we run GNN to calculate the pdata(vG)
and pdata(uG) for observed and neighborhood subgraphs which can be parallelized and takes the
time complexity O(LNF 2 + L|E|F ) where L is the number of layers in the graph neural network,
N is the number of nodes, |E| is the size of the edge set and F is the size of the dimension [3]. Since
we are only dealing with ego-neighborhood or a 1st order neighborhood so number of layers in the
GNN is 1 which results in a fast pipeline of GAD-EBM.
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