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A DISCRETIZATION OF THE SEMICONDUCTOR EQUATIONS

Typically, the finite volume method (or the box method) (Laux & Grossman, 1985) is applied to
convert the differential operator into the algebraic form. Then, the equation is converted into a
collection of algebraic equations, which are evaluated at many sampling points (called vertex nodes).
Since the original set is nonlinear with respect to n, p, and φ, the converted algebraic equations are
also nonlinear. The Newton-Raphson method is applied to the resultant set of equations. In this
section, the discretization of the semiconductor equations, (1) and (3), is sketched.

It is observed that both equations have a common form of

∇ · F− s = 0, (8)

where F is the flux term and s is the source term. In order to get a discretized form of the above
equation at a certain grid point, we integrate the equation over a finite volume (or a box) surrounding
the point. For example, in a grid shown in Figure 8, the discretized equation for the center point can
be obtained by the integration over the red pentagon. With help of the divergence theorem (Jackson,
1999), we have ∮

Surface

F · da−
∫
Box

sd3x = 0. (9)
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Figure 8: Grid points (Blue circles) and a finite volume surrounding the center point (A red pen-
tagon).

Every node except for the terminal nodes contributes the residual vector following (9). We must also
consider the boundary conditions at the terminal nodes. For the electron density (n) and the hole
density (p), we have

n− neq = 0, (10)

p− peq = 0, (11)

where neq and peq are the carrier densities at the equilibrium condition. These densities do not
depend on the applied terminal voltages. However, the boundary condition for the electrostatic
potential (φ) reads

φ− φeq − Vterminal = 0, (12)

where φeq is the equilibrium potential and Vterminal is the applied terminal voltage. When the
applied terminal voltage changes, si’s in (5) at the terminal nodes change accordingly.

B BIAS RAMPING

The set of discretized equations in (5) is highly nonlinear and the iterative Newton-Raphson method
is used to solve the system. Although a nonlinear relaxation scheme to avoid the full Newton-
Raphson method (Meinerzhagen et al., 1991) has been proposed, the full Newton-Raphson method
is still preferred due to its robustness.
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Let us consider a typical case, where a user want to know the drain current at VG = VD = VDD. VDD

is the maximum voltage which can be applied to the MOSFET. For example, VDD is 1.1 V in our
example. The drain current at this bias condition is called as the ON current and the ON current
represents the current-driving performance of the MOSFET. Since the ON current is of interest, it
would be most desirable to calculate the ON current immediately. However, an appropriate initial
guess to start the Newton-Raphson method at VG = VD = VDD is not available.

When VG = VD = 0 V, the device is in its equilibrium condition. In this special case, an effective
way to generate the initial guess is well known (Jungemann & Meinerzhagen, 2003). It is based
upon the charge neutrality condition, where p − n + N+

dop = 0 is imposed locally. Unfortunately,
this method cannot be applied to non-zero terminal voltages. No established method for directly
solving the equation at high terminal voltages exists. In order to overcome such a difficulty, the bias
ramping technique is typically adopted. Starting from the equilibrium operating condition with all
zero terminal voltages, many intermediate steps toward the target terminal voltages are introduced.
Based upon the converged solution at the previous condition as an initial guess, the next step is
solved with the Newton-Raphson method.

In this conventional solution method, the overall simulation time, τconv , can be written as

τconv =

Nstep∑
i=1

τ iconv =

Nstep∑
i=1

N i
newtonτsingle = Nstep ×Nnewton × τsingle, (13)

where Nstep is the number of the entire bias conditions, τ iconv is the simulation time for the i-th
bias condition, N i

newton is the number of the Newton iterations for the i-th bias condition, τsingle
is the time spent for a single Newton iteration, and Nnewton is the average number of the Newton
iterations. The bias ramping heavily increases the simulation time, because it introduces a large
Nstep.

In this work, we propose to solve the equation set at the target terminal voltages directly without the
bias ramping. The overall simulation time with the proposed method based upon the neural network,
τnn, can be written as

τnn = Ndirect
newton × τsingle, (14)

where Ndirect
newton is the number of the Newton iterations at the target bias condition. Two numbers,

Nnewton and Ndirect
newton, may be comparable. It is noted that Nstep in (13) does not appear any more

in the above equation. The reduction factor of the simulation time, which is defined as τconv/τnn,
can be approximated with Nstep, as shown in (6).

C DEVICE SIMULATOR

In this work, the device simulator in Han & Hong (2019) has been used to obtain the simulation
results. As it is free from the license issue, several simulation runs can be performed simultaneously.
The Poisson equation, (3), the electron continuity equation, (1), and the hole continuity equation are
coupled and solved self-consistently. A rectangular grid with varying spacing is adopted. Therefore,
every finite volume for a grid point has four faces. The device template is implemented to accept
the device parameters (such as LG, tox, Nsd, and Nsub) as input parameters. When the Netwon-
Raphson method is used, we must solve the following matrix equation:

Ju = −r, (15)

where J is the Jacobian matrix, u is the update vector, and r is the residual vector. It is noted that the
Jacobian matrix is very sparse in the semiconductor device simulation. In order to solve the above
equation, a sparse matrix solver, the UMFPACK library (Davis, 2004), is used.

D MORE INFORMATION ON DATASET

More information on the dataset is provided.

Each data point is specified with parameters of LG, tox, Nsd, Nsub, VG, and VD and their ranges are
summarized in Table 2.
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Table 2: Ranges of input parameters

Parameter Range

Gate length, LG 90 nm ∼ 170 nm
Oxide thickness, tox 2 nm ∼ 4 nm

Source/drain doping density, Nsd 5 × 1019 cm−3 ∼ 5 × 1020 cm−3

Substrate doping density, Nsub 5 × 1017 cm−3 ∼ 5 × 1018 cm−3

Gate voltage, VG 0 V ∼ 1.1 V
Drain voltage, VD 0 V ∼ 1.1 V

We curate the dataset with 10,112 instances that are randomly selected. as shown in Figure 9a. The
training and validation errors are measured as a function of the learning epoch as shown in Figure
9b.
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Figure 9: (a) Distribution of the selected devices in the Lg-tox plane. (b) Training and validation
errors as functions of the learning epoch.
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