
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOF

Theorem. 1 If two MDPs Mx and My , Mx ⪰My and My ⪰Mx, then their tasks have isomorphic
reward machine Rx

PSA and Ry
PSA.

Proof. Theorem 1 can be proven by showing both necessity and sufficiency.

1. Proof of necessity: If Mx ⪰ My and My ⪰ Mx, then their tasks have isomorphic reward
machines.

Let there exist semi-reductions rx→y = (ϕx→y, ψx→y) fromMx toMy and ry→x = (ϕx→y, ψy→x)
from My to Mx. According to Definition 1, these semi-reductions satisfy the πw-optimality and y-
dynamic conditions for all beliefs and world-states.

We now construct bijections h : Px → Py and g : U§ → U† as follows:

h(pxi) = Γ−1
y (ϕx→y(w

x
i)) = Γ−1

y (wy
i) = pyi ,

g(uxi) = Θ−1
y (ψx→y(b

x
i)) = Θ−1

y (byi) = uyi .

Since ϕx→y and ψx→y are functions, so are their inverses. Besides, and Γ and Θ are bijections.
According to the transitivity of bijections. These bijections also satisfy the conditions of the iso-
morphic reward machines in Theorem 5, as both semi-reductions preserve the πw-optimality and
y-dynamic properties.

2. Proof of sufficiency: If the tasks have isomorphic reward machines, then Mx ⪰ My and My ⪰
Mx.

Given the isomorphic reward machines Rx
PSA and Ry

PSA with established bijections h : Px → Py

and g : Ux → Uy , we will prove that Mx ⪰My and My ⪰Mx.

Define mapping functions ϕx→y(w
x
i) = Γy(h(p

x
i)) and ψx→y(b

x
i) = Θy(g(u

x
i)). Since the

task structures are isomorphic, these mappings can be used to construct the semi-reduction
(ϕx→y, ψx→y) from Mx to My that satisfies the πw-optimality and y-dynamic conditions in Defini-
tion 1, thus showing that Mx ⪰My .

Similarly, use the inverse of given bijections for the semi-reduction ry→x = (ϕy→x, ψy→x). That is,
set ϕy→x(w

y
i) = Γx(h

−1(pyi)) = Γx(p
x
i) = wx

i and ψy→x(b
y
i) = Θx(g

−1(uyi)) = Θx(u
x
i) = bxi .

Since h and g are bijections, their inverses exist and are also bijections. By using these mappings, we
can construct a semi-reduction from My to Mx that satisfies the conditions in Definition 1, showing
that My ⪰Mx.

Having proven both necessity and sufficiency, we conclude the proof of Theorem 1.

Theorem. 2 If two MDPsMx andMy ,My ⪰Mx orMx ⪰My , then their tasks have homomorphic
reward machine Rx

PSA and Ry
PSA.

Proof. To prove Theorem 2, we need to show both necessity and sufficiency:

1. Proof of necessity: If My ⪰ Mx or Mx ⪰ My , then their tasks have homomorphic reward
machines.

Assume Mx ⪰ My . Let there exist a semi-reduction rx→y = (ϕx→y, ψx→y) from Mx to My . Ac-
cording to Definition 1, these semi-reductions satisfy the πw-optimality and B-dynamic conditions
for all beliefs and world-states.

We now construct injection h : Px → Py and g : Ux → Uy as follows:

h(pxi) = Γ−1
y (ϕx→y(w

x
i)) = Γ−1

y (wy
i) = pyi ,

g(uxi) = Θ−1
y (ψx→y(b

x
i)) = Θ−1

y (byi) = uyi .

12

Under review as a conference paper at ICLR 2024

Since ϕx→y and ψx→y are functions, so are their inverses. Besides, and Γ and Θ are bijections.
According to the transitivity of bijections. These bijections also satisfy the conditions the homo-
morphic reward machines in Theorem 6 because semi-reductions preserve the πw-optimality and
B-dynamic properties.

2. Proof of sufficiency: If the tasks have homomorphic reward machines, then My ⪰ Mx or
Mx ⪰My .

Given the homomorphic reward machines Rx
PSA and Ry

PSA that satisfy the established injections
h : Px → Py and g : Ux → Uy , we will prove that either My ⪰Mx or Mx ⪰My .

Assume without loss of generality that |Py| ≤ |Px| and |U†| ≤ |U§|. Then we can define mapping
functions ϕx→y(w

x
i) = Γy(h(p

x
i)) = Γy(p

y
i) = wy

i for every element in the domain of h. Similarly,
define ψx→y(b

x
i) = Θy(g(u

x
i)) = Θy(u

y
i) = byi for all elements in the domain of g

These mappings can be used to construct a semi-reduction (ϕx→y, ψx→y) from Mx to My that
satisfies the πw-optimality and B-dynamic conditions in Definition 1. Thus, Mx ⪰My .

Having proven both necessity and sufficiency, we conclude that if two MDPs Mx and My , My ⪰
Mx or Mx ⪰ My , then their tasks have homomorphic reward machine Rx

PSA and Ry
PSA. This

completes the proof of Theorem 2.

A.2 LEARNING RM BY LLM

A.2.1 FRAMEWORK

In this section, we present a methodology for reward machine learning, utilizing a large language
model (LLM) informed by domain-specific knowledge, such as task manuals. As depicted in Fig-
ure 8, the language model is initially provided with a few-shot learning strategy to acquaint it with
reward machine design principles. This comprises establishing the sets of propositional symbols P
and reward machine states U , devising an event extraction function for the environment incorpo-
rating the reward machine, and formulating the transition function δu along with the state reward
function δr.

Subsequently, the LLM is endowed with domain knowledge encompassing both reward machine
definitions and environmental descriptions retrieved from the task manual. Afterward, user-
generated queries are fielded by the LLM, which employs its acquired knowledge to respond and
facilitate the construction of the reward machine. Given the intricate nature of reward machine
development, we adopt a chain of thought framework to enhance the reasoning capabilities of the
LLM.

A.2.2 EXAMPLE OF LEARNING RM BY LLM

Reward Machine Description:

You are familiar with automata theory. A reward machine is defined as following:

Given a set of propositional symbols P , a set of (environment) states S, and a set of actions A, a
reward machine (RM) is a tuple RPSA =< U, u0, F, δu, δr >, where U is a finite set of states,
u0 ∈ U is an initial state, F is a finite set of terminal states (where U ∩ F = ∅, terminal states are
not existed in U), δu is the state-transition function, U × 2P → U ∪ F , δr is the reward-transition
function, U → [U × U → R]

A reward machineRPSA starts in state u0, and at each subsequent time is in some state ut ∈ U ∪ F .
At every step t, the machine receives as input a truth assignment σt, which is a set that contains
exactly those propositions in P that are currently true in the environment. For example, in an open
door and get the key game, σt = {e} if the agent opens the door e, while σt = {k} if the agent
gets the key k. Then the machine moves to the next state ut+1 = δu(ut, σt) according to the
state-transition function, and outputs a reward function rt = δr(ut) according to the state-reward
function. This process repeats until the machine reaches a terminal state. Note that reward machines
can model never-ending tasks by defining F = ∅.

#Trail 1:HalfCheetah

13

Under review as a conference paper at ICLR 2024

Language ModelQuestion

Thought

Thought

......

COT

Answer

User

Few shot
Examples

RM Description Env Description

Figure 8: An overview of the framework to learn reward machine by large language model through
domain knowledge.

Environment Description: HalfCheetah is part of the Mujoco environments. This environment
is based on the work by P. Wawrzyński in ”A Cat-Like Robot Real-Time Learning to Run”. The
HalfCheetah is a 2-dimensional robot consisting of 9 body parts and 8 joints connecting them (in-
cluding two paws). The goal is to apply a torque on the joints to make the cheetah run forward
(right) as fast as possible, with a positive reward allocated based on the distance moved forward
and a negative reward allocated for moving backward. The torso and head of the cheetah are fixed,
and the torque can only be applied to the other 6 joints over the front and back thighs (connecting
to the torso), shins (connecting to the thighs), and feet (connecting to the shins). The robot needs
to go through 5 checkpoints c(x position=2), e(x position=4), f(x position=6), g(x position=8), and
a(x position=10). The agent gets a reward of 1000 when it reaches a and the control penalization
(CP) otherwise. Agent can get its current location by calling self.info[’x position’].

Question: Design the set of propositional symbols P for HalfCheetah environment.

Think: To design the set of propositional symbols P , first I need to find the key events in
the environment. The robot need to go through 6 checkpoints c(x position=2), e(x position=4),
f(x position=6), g(x position=8), and a(x position=10). I can use them as the propositional sym-
bols, if the agent reach some checkpoint, it will reach a new reward machine state. Besides, I need
to consider situations when agent don’t reach the checkpoints.

Answer: The set of propositional symbols can be a set including checkpoints in HalfCheetah-v3
and situations not reaching the next checkpoints . P = {c, !c, e, !e, f, !f, g, !g, a, !a}
Question: Design the get event function for the HalfCheetah with reward machine.

Think: Here events is depended on the propositional symbols, so the events including reach the
checkpoints, and call self.info[’x position’] can get the agent’s current x position. Compare it with
checkpoints’ x position, we can get the events.

Answer:

def get_events(self):
events = ’’
if self.info[’x_position’] < -10:

events += ’b’
if self.info[’x_position’] > 10:

14

Under review as a conference paper at ICLR 2024

events += ’a’
if self.info[’x_position’] < -2:

events += ’d’
if self.info[’x_position’] > 2:

events += ’c’
if self.info[’x_position’] > 4:

events += ’e’
if self.info[’x_position’] > 6:

events += ’f’
if self.info[’x_position’] > 8:

events += ’g’
return events

Question: Design the reward machine for the HalfCheetah environment.

Think: To design the reward machine. I need to verify the reward machine states first. As
P = {c, !c, e, !e, f, !f, g, !g, a, !a}. The reward machine including 5 states. As the agent reach
checkpoint a, the game is finished. So these is one terminal state. Thus the reward machine state is
{0, 1, 2, 3, 4, 5} based on P . Besides, as the agent gets a reward of 1000 when it reaches a and the
control penalization (CP) otherwise. The δr can be designed based on it.

Answer:

0 # initial state

[5] # terminal state

(0, 0,′ !c′,RewardControl())

(0, 1,′ c′,RewardControl())

(1, 1,′ !e′,RewardControl())

(1, 2,′ e′,RewardControl())

(2, 2,′ !f ′,RewardControl())

(2, 3,′ f ′,RewardControl())

(3, 3,′ !g′,RewardControl())

(3, 4,′ g′,RewardControl())

(4, 4,′ !a′,RewardControl())

(4, 5,′ a′,ConstantRewardFunction(1000))

#Trail 2:Freeway

Environment Description: Freeway is part of the Atari environments. The objective in Freeway
is to score as many points as you can by guiding your chicken across the ten lanes of traffic as many
times as possible in limited steps. We use b-k to express the ten lanes, and a as the start point. Here
is their coordinates: a(6), b(22), c(38), d(54), e(70), f(86), g(102), h(118), i(134), j(150), k(166).
The agent gets a reward of 1000 when it crosses the ten lanes and 0 otherwise. After crossing the
lanes, the agent will return to the start point and begin a new round.

Question: Design the set of propositional symbols P for Freeway environment.

Think: To design the set of propositional symbols P , first I need to find the key events in the
environment. The chicken has to cross ten lanes of traffic (b-k) and return to the start point a. I can
use them as the propositional symbols if the agent reaches a lane or crosses all lanes and returns to
the start point. Besides, I need to consider situations when the agent doesn’t reach any checkpoints.

Answer: The set of propositional symbols can be a set including the start point and lanes in the
Freeway environment and situations not reaching the next checkpoints.

P = {a, !a, b, !b, c, !c, d, !d, e, !e, f, !f, g, !g, h, !h, i, !i, j, !j, k, !k}
Question: Design the get event function for the HalfCheetah with reward machine.

15

Under review as a conference paper at ICLR 2024

Think: Here events are dependent on the propositional symbols, so the events include reaching the
start point or lanes. We can use the coordinates to detect the chicken’s position. The chicken get
agent position x by calling self.info[’x position’], then compare it with the coordinates of start point
and lanes.

Answer:

def get_events(self):
events = ’’
x_position = self.info[’x_position’]

if x_position == 6:
events += ’a’

elif x_position == 22:
events += ’b’

elif x_position == 38:
events += ’c’

elif x_position == 54:
events += ’d’

elif x_position == 70:
events += ’e’

elif x_position == 86:
events += ’f’

elif x_position == 102:
events += ’g’

elif x_position == 118:
events += ’h’

elif x_position == 134:
events += ’i’

elif x_position == 150:
events += ’j’

elif x_position == 166:
events += ’k’

return events

Question: Design the reward machine for the Freeway environment.

Think: To design the reward machine, I first need to identify the states, which correspond to
the chicken’s position (a-k) and inviable areas (!a-!k). There are 11 checkpoints (start point and
lanes), and since the agent has to keep crossing lanes, there are no terminal states. The reward
machine states should be numbered according to the propositional symbols, making the state set
{0, 1, . . . , 10}. Whenever the agent crosses all lanes and returns to the start point a, the reward is
1000, otherwise, the reward is 0.

16

Under review as a conference paper at ICLR 2024

Answer:

0 # initial state

[] # terminal state

(0, 0,′ !a′,ConstantRewardFunction(0))

(0, 1,′ a′,ConstantRewardFunction(0))

(1, 1,′ !b′,ConstantRewardFunction(0))

(1, 2,′ b′,ConstantRewardFunction(0))

(2, 2,′ !c′,ConstantRewardFunction(0))

(2, 3,′ c′,ConstantRewardFunction(0))

(3, 3,′ !d′,ConstantRewardFunction(0))

(3, 4,′ d′,ConstantRewardFunction(0))

(4, 4,′ !e′,ConstantRewardFunction(0))

(4, 5,′ e′,ConstantRewardFunction(0))

(5, 5,′ !f ′,ConstantRewardFunction(0))

(5, 6,′ f ′,ConstantRewardFunction(0))

(6, 6,′ !g′,ConstantRewardFunction(0))

(6, 7,′ g′,ConstantRewardFunction(0))

(7, 7,′ !h′,ConstantRewardFunction(0))

(7, 8,′ h′,ConstantRewardFunction(0))

(8, 8,′ !i′,ConstantRewardFunction(0))

(8, 9,′ i′,ConstantRewardFunction(0))

(9, 9,′ !j′,ConstantRewardFunction(0))

(9, 10,′ j′,ConstantRewardFunction(0))

(10, 10,′ !k′,ConstantRewardFunction(0))

(10, 0,′ k′,ConstantRewardFunction(1000))

We further visualize the generated reward machine from LLM in Figure. 9. Compared with the
hand defined reward machine shown in Figure. 11 and Figure. 12, LLM has shown a strong ability
to uncover task structure of reinforcement leanring.

!c (RC)

c (RC)

!e (RC)e (RC)!f (RC)

f (
RC

)

!g (RC)

g (RC)

!a (RC) a (1000)

u0

u1u2

u3

u4 f_0

(a) HalfCheetah

!a (0)

a (0)

!b (0)

b (0)

!c (0)
c (0)

!d (0)

d (0)

!e (0)

e (
0)

!f (0)

f (0)

!g (0)

g (0)

!h (0)

h (0)

!i (0) i (0)
!j (0)

j (0
)

!k (0)

k (
10

00
)

u0

u1

u2
u3

u4

u5

u6

u7

u8
u9

u10

(b) Atari-Freeway

Figure 9: The generated reward machine by LLM.

17

Under review as a conference paper at ICLR 2024

A.3 EXPERIMENT DETAILS

Start Target

A BCD G

(a) NChain (n=5)

Start Target

A BCD G

(b) NChain (n=9)

(c) Reward Machine for NChain

Figure 10: NChain(n=5) to NChain(n=9). Their corresponding reward machines are isomorphic as
they can use the same reward machine.

A B C D E F

A B C D E FJ I H G

Figure 11: Cartpole to Halfcheetah. Their corresponding reward machine is homomrphic. And
MDPs Mx from Cartpole and MDPs My from Halfcheetah hold Mx ⪰My .

A B C D E F

F

E

D

C

B

A

K

J

I
H

G

Figure 12: HalfCheetah to Atari-Freeway. Their corresponding reward machine is also
homomrphic. But MDPs Mx from HalfCheetah and MDPs My from Atari-Freeway hold

My ⪰Mx.

NChain(n=5) to NChain(n=9): which has been shown in Figure. 10, where the state reward func-
tion transferred from NChain(n=5) to NChain(n=9) to examine the effectiveness of NRT under iso-
morphic reward machines. In NChain, where n is the length of the chain, and the agent starts in the
middle and can choose among the actions A = {left,right,grab}, where grab does not change the
state, but let the agent grab the provided flag if the agent is located at the position of the flag. The

18

Under review as a conference paper at ICLR 2024

state is the current coordinates of the agent. The reward is sparse as the reward is 0 except the agent
successfully grabs the flag. If the agent grab the flag, it will get the reward as 10×(1−Nsteps)

Nmax
. where

Nsteps means the used step numbers for the agent to reach and grab the flag, and Nmax is the max
horizon which is 20 for 5-Chain and 40 for 9-Chain games.

Cartpole to HalfCheetah: which has been shown in Figure. 4, where the state reward function
transferred from Cartpole to HalfCheetah to examine the effectiveness of NRT under homomrphic
reward machines as MDPs Mx from Cartpole and MDPs My from Atari-Freeway hold Mx ⪰ My .
For Cartpole, the action and state setting is the same as Cartpole-V3 in Openai-Gym (Brockman
et al., 2016), and we change the reward as if the car reach the edge of the screem, it will get the
reward as 1000. HalfCheetah use the same setting as HalfCheetah-V3 in Openai-Gym (Brockman
et al., 2016).

HalfCheetah to Atari-Freeway: which has been shown in Figure. 1(b), where the state reward
function transferred from HalfCheetah to Atari-Freeway to further examine the effectiveness of NRT
under homomrphic reward machines as MDPs Mx from HalfCheetah and MDPs My from Atari-
Freeway hold My ⪰ Mx. HalfCheetah holds the same setting as before. For Atari-Freeway, the
setting is the same as FreewayDeterministic-v4 in Openai-Gym (Brockman et al., 2016), where the
agent will get reward r = 1 when crossing all the lanes of traffic. The target is to crossing all lanes
as much as possible within 2048 steps.

19

	Introduction
	Related Works
	Domain transfer in Reinforcement Learning
	Reward Machine

	Semi-Alignable MDPs
	Neural Reward Translation
	Reward Machine

	Experiment
	Evaluation Protocol
	Results

	Conclusion
	Appendix
	Proof
	Learning RM by LLM
	Framework
	Example of Learning RM by LLM

	Experiment Details

