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Abstract
Eliciting information to reduce uncertainty about
a latent entity is a critical task in many appli-
cation domains, e.g., assessing individual stu-
dent learning outcomes, diagnosing underlying
diseases, or learning user preferences. Though
natural language is a powerful medium for this
purpose, large language models (LLMs) and ex-
isting fine-tuning algorithms lack mechanisms for
strategically gathering information to refine their
own understanding of the latent entity. To har-
ness the generalization power and world knowl-
edge of LLMs in developing effective informa-
tion gathering strategies, we propose an adaptive
elicitation framework that actively reduces un-
certainty on the latent entity. Since probabilistic
modeling of an abstract latent entity is difficult,
our framework adopts a predictive view of un-
certainty, using a meta-learned language model
to simulate future observations and enable scal-
able uncertainty quantification over complex nat-
ural language. Through autoregressive forward
simulation, our model quantifies how new ques-
tions reduce epistemic uncertainty, enabling the
development of sophisticated information gather-
ing strategies to choose the most informative next
queries. In experiments on the twenty questions
game, dynamic opinion polling, and adaptive stu-
dent assessment, our method consistently outper-
forms baselines in identifying critical unknowns
and improving downstream predictions, illustrat-
ing the promise of strategic information gathering
in natural language settings.

1. Introduction
The performance of many valuable services and systems
depends on the ability to efficiently elicit information and
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reduce uncertainty about a new environment or problem
instance. For example, before an optimal lesson plan can
be prepared for a particular student, information must first
be gathered about their underlying skills and abilities. Simi-
larly, a patient’s health status must be quickly assessed upon
intake, while an online service seeking retention aims to
gain a fast understanding of a new customer’s preferences.

Notably, in these (and many other) cases, the object of in-
terest is latent, meaning it cannot be directly measured or
observed but can only be queried indirectly. This makes
gathering information particularly challenging, as it requires
carefully designed strategies to infer the latent entity’s char-
acteristics through indirect signals. To achieve efficiency,
these strategies must be adaptive, dynamically tailoring sub-
sequent queries based on the information gained so far. In
the context of student assessment, an adaptive approach
might start with broad math questions covering multiple
skills. If the student gets a question wrong, the system
would then drill down into each relevant skill individually,
asking questions of varying difficulty to determine the limits
of their proficiency. By progressively refining its queries
in this way, the system efficiently maps out the student’s
knowledge boundaries and thus reduces uncertainty about
their individual skill profile (see Figure 6).

As natural language is a particularly powerful and flexible
medium for eliciting such latent information, one might
assume that modern large language models (LLMs) (Brown
et al., 2020; Bai et al., 2022; DeepSeek-AI et al., 2025)
could be helpful in such dynamic information gathering ef-
forts. However, LLMs and existing fine-tuning algorithms
often treat uncertainty passively, and lack mechanisms for
strategically gathering information to refine their own un-
derstanding of the latent entity. While existing LLMs are
often trained to instill as much static world knowledge as
possible (Hendrycks et al., 2021), this world knowledge can-
not directly be used to reduce uncertainty about new, unseen
individuals that the model has little information about.

To harness the generalization power and world knowledge of
LLMs to address the renewed uncertainty that arises when-
ever a new environment or individual is encountered, we
introduce an adaptive elicitation framework that uses natural
language to actively reduce uncertainty by simulating future
responses. Crucially, our approach leverages meta-learning,
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whereby the model is trained on diverse historical question–
answer trajectories spanning many latent entities. This meta-
trained foundation enables the model to handle new, unseen
entities—such as a brand-new student—whose responses
are initially unknown and thus create fresh epistemic uncer-
tainty. By aligning a language model’s perplexity objective
with the goal of predicting all possible (yet unobserved)
answers to the questions we might ask, we transform the
challenge of directly modeling a latent entity into a sim-
pler and more scalable problem of predicting masked future
observations (Ye et al., 2024; Fong et al., 2023). As the
model observes each new answer from the individual, it
systematically sharpens its beliefs, distinguishing between
uncertainty it can reduce with further data (epistemic) and
the inherent noisiness or variability that remains (aleatoric).
Our framework enables a wide range of exciting and im-
pactful applications, e.g., constructing a dynamic diagnostic
questionnaire that maximizes the information gained about
a patient’s health or generating a personalized set of test
questions that yield the most insight into a student’s learning
needs (see Figure 1).

Contribution In the remainder of this paper, we intro-
duce our novel framework for latent uncertainty reduction
using natural language and demonstrate its effectiveness
across several key applications. Our work contributes a key
conceptual and algorithmic insight to the accelerating field
of LLMs: by obviating the need for directly modeling a
distribution over the latent entity and instead employing a
predictive view of uncertainty, we enable the development
of adaptive information gathering strategies that naturally
scale with LLM performance, improving as models become
more capable. Our adaptive elicitation framework can be
applied directly on top of existing LLMs, enabling the use
of internet-scale linguistic knowledge to comprehend uncer-
tainty. Through experiments on tasks such as dynamic opin-
ion polling and adaptive student assessments, we illustrate
the versatility and significant potential of our framework to
enable more efficient and targeted information elicitation in
critical domains and applications. Overall, we aim to lay
the foundation for future research into rigorous uncertainty
quantification and adaptive decision-making using LLMs,
highlighting the promise of active, context-aware strategies
in solving real-world problems.

2. Adaptive Elicitation Framework
In this section, we present an approach to uncertainty quan-
tification and adaptive question selection in natural language
settings where the latent entity cannot be directly modeled.
We adopt a predictive view of uncertainty: rather than speci-
fying a direct prior or complete model of the latent entity,
we focus on how well the model can predict and quantify un-
certainty over future observations of that entity. Our method:

(1) Meta-learns a predictive language model from histor-
ical question–answer data. (2) Uses this model to quan-
tify uncertainty about future or unobserved answers from
new, unseen latent entities, using autoregressive forward
simulation to efficiently distinguish between epistemic and
aleatoric uncertainty. (3) Accurately quantifies and sharp-
ens beliefs given new information, and dynamically adapts
question selection to elicit information that optimally re-
duces uncertainty. A key advantage of our method is that
we can apply our meta-learning method directly on existing
pre-trained LLMs, augmenting uncertainty quantification
with internet-scale world knowledge.

2.1. Problem Formulation

We consider an unobservable latent entity U ∈ U (e.g., a
student’s skill profile or a patient’s health status). We query
U by posing a question X ∈ X (in natural language) and
observing an answer Y ∈ Y drawn from

Answer Y ∼ Q(·| Question X, Latent U), (1)

where Q is the ground truth distribution. Our two primary
goals are to: (1) Quantify our uncertainty about U based on
observed question–answer pairs. (2) Reduce that uncertainty
by adaptively choosing which questions X to ask next.

Pre-Training We assume that we have an abundance of
historical data, where a model can learn from past trajecto-
ries to inform adaptive elicitation about new, unseen individ-
uals from which we wish to gather data. We have a collec-
tion of entities U ∈ Utrain. For each latent entity U we have
access to a sequence of questions and answers (X(U)

1:T , Y
(U)
1:T )

produced by it. Then our historical pre-training data con-
sists of: Dtrain := {X(U)

1:T , Y
(U)
1:T : U ∈ Utrain}. For example,

an online tutoring service may have an abundance of data
about previous students that they may utilize.

Test-Time Adaptive Selection After pre-training, we
wish to quantify and reduce uncertainty about new, unseen,
latent entities Unew (e.g. a new student or patient). For each
Unew we have T rounds where we can sequentially ask ques-
tions and receive responses. At each t = 0, 1, ...T − 1, the
model can adaptively choose a question Xt+1 ∈ Xt+1 based
on previous feedback Ht := (XUnew

1:t , Y Unew
1:t ) and receives an

answer Yt+1 ∈ Yt+1.

We will evaluate the model on its ability to predict unob-
served answers YT+1:∞ generated by the latent entity to any
future questions XT+1:∞. For example, we may conduct a
survey where we can only include 5 questions, but we wish
to know the answer to 1000 additional questions. Being able
to predict YT+1:∞ requires the ability to adaptively collect
relevant information Y1:T , which in turn requires the ability
to both quantify and reduce remaining uncertainty about
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the entity Unew. We detail our approach in the following
sections.

2.2. Quantifying Uncertainty Using a Predictive Model

Traditional approaches to model uncertainty may try to
model U directly (e.g. by assigning a probability distri-
bution over a structured latent space) (Blei et al., 2003;
Salakhutdinov & Mnih, 2007). However, specifying such
models for complex human-generated responses can be both
restrictive and infeasible. For example, it is unclear how to
define an explicit parametric model to represent an individ-
ual’s political opinions. Instead, we adopt a predictive view
of uncertainty that avoids the need to directly model latent
variables. This approach allows us to train autoregressive
models directly in the space of natural language, enabling
flexible and scalable modeling of its full complexity.

Define the epistemic uncertainty to be uncertainty that can
be reduced with more information, and the aleatoric uncer-
tainty to be uncertainty due to random noise or variation
that cannot be reduced by observing more data. Our key
observation is that if we were to observe infinite data Y1:∞
produced by the entity, all epistemic uncertainty about the
entity would disappear. Intuitively, if a teacher could ob-
serve a student’s answers to a very large set of questions,
that teacher could probably completely predict a student’s
future answers with errors only due to aleatoric variation.
Examples of this aleatoric uncertainty could include random
noise or intrinsic uncertainty in the student’s own decision
process. This idea is in line with classical views that treat
latent variables as unobserved data (Rubin, 1976; Lindley,
1965; Hill, 1968; Dawid, 1984), as well as more modern
treatments (Fong et al., 2023; Ye et al., 2024; Zhang et al.,
2024).

Under this view, epistemic uncertainty is naturally the un-
certainty due to missing data: specifically, the uncertainty
about unobserved future responses Yt+1:∞ given the current
information Y1:t. Thus, our objective is to provide accu-
rate uncertainty estimates over missing data Yt+1:∞. In
order to quantify uncertainty about Yt+1:∞, we first build
off the notion of entropy. Given a distribution P with den-
sity p(·), the entropy and conditional entropy over an an-
swer Y ∈ Y are defined as HP (Y ) =

∑
y∈Y p(y) log p(y),

HP (Y | · ) =
∑

y∈Y p(y | · ) log p(y | · ).

Next, let

P (Yt+1 = y | X1:t, Y1:t, Xt+1 = x) = pt(y | X1:t, Y1:t),

which also induces the conditional entropy
HP (Yt+1 | X1:t, Y1:t). Using this notation, we are
interested in measuring the uncertainty over missing data

Uncertainty (Future Answers | Current Info) =
HP (Yt+1:∞ | X1:t, Y1:t).

(2)

Figure 1. Our algorithm can adaptively elicit information from
a latent entity via natural language interaction. For example, in
assessing a new student, the system may ask questions in areas
where the student’s abilities are not yet known, to maximize the
information gained from each question and efficiently reduce un-
certainty about the student’s individual skill profile.

Once we have this estimate, we can adaptively choose ques-
tions that reduce the greatest amount of uncertainty about
the missing data Yt+1:∞ (see Section 2.4 for more details).
Notice that this approach to uncertainty quantification works
directly in the space of observables X1:∞, Y1:∞, and does
not require any explicit modeling of the latent U . If we have
a predictive distribution over future answers Yt+1:∞ given
previous observations X1:t, Y1:t for every t,

P (Yt:∞ | X1:t, Y1:t) = P (Future Answers | Current Info),

then we can exactly calculate the entropy term in Equa-
tion (2). Thus, we directly train an autoregressive predictive
model pθ(Yt+1:∞ | X1:t, Y1:t) by optimizing the parame-
ters θ ∈ Θ in order to model these quantities.

2.3. Meta-Learning an Autoregressive Predictive Model

To obtain the most accurate estimates of uncertainty, the
ideal strategy would be to use the ground-truth answer distri-
bution Q in Equation (1) as the predictive distribution over
future observations. In particular, we aim to approximate the
conditional distribution q(Yt+1:∞ | X1:t, Y1:t) induced by
Q, which represents the true distribution over future answers
given past interactions. Under this setup, the corresponding
conditional entropy HQ(Yt+1:∞ | X1:t, Y1:t) would yield
exact measures of uncertainty. Since Q is unknown in prac-
tice, our goal becomes to approximate the conditional Q
as closely as possible by training a model pθ in order to
produce reliable uncertainty estimates.

To approximate Q, we assume access to historical data
from a collection of latent entities Utrain. Each entity U ∈
Utrain is associated with a sequence of question–answer
pairs {(X(U)

1:T , Y
(U)
1:T )}, where Y ∼ Q(· | X,U) and U is
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sampled from a prior distribution. Our first step is to meta-
train an autoregressive language model pθ on this historical
data consisting of sequences of questions and answers from
various latent entities

Dtrain := {X(U)
1:T , Y

(U)
1:T : U ∈ Utrain}.

In the student assessment example, Dtrain may be a historical
dataset of past students, each with an associated sets of test
questions and answers. For simplicity, we assume that each
sequence is of length T , but our framework is agnostic to
differing sequence lengths.

Objective Define a sequence of previous observations
Ht := {X1:t, Y1:t}. We train our autoregressive language
model pθ, parameterized by θ ∈ Θ, to output one-step proba-
bilities over future answers conditioned on previous observa-
tions (i.e., question/answer pairs) pθ(Yt+1| Ht, Xt+1 = x),
inducing a joint distribution over future outcomes

pθ(Yt+1:∞|Ht, Xt+1 = xt+1, Xt+2 = xt+2, ...) =
∞∏

s=t+1

pθ(Ys|Hs−1, Xs = xs).
(3)

The training objective for our model is then to optimize
the joint log likelihood/marginal likelihood of the observed
sequence within the historical dataset

maxθ∈Θ

{
1

|Utrain|
∑
U∈U

T∑
t=1

log pθ(Y
U
t |Ht−1, X

U
t = xt)

}
.

(4)
After optimizing our model pθ, we can now use it to approx-
imate the uncertainty estimates HQ(Yt+1:∞ | X1:t, Y1:t) ≈
Hpθ

(Yt+1:∞ | X1:t, Y1:t). To show that optimizing this
objective is optimal for approximating Q, we first note
that maximizing the objective in Equation (4) is equiva-
lent to optimizing an empirical version of the cross entropy
EQ[log pθ(Y1:T |X1:t)]. Expanding this loss, we can see that

max
θ

EQ[log pθ(Y1:T |X1:T )] =

max
θ

{EQ[log q(Y1:T |X1:T )]− DKL(Q∥pθ)} =

EQ[log q(Y1:T |X1:T )],

where DKL(Q∥Q) = 0. An equivalent interpretation of max-
imizing the joint log likelihood is that we are minimizing
the KL divergence between pθ and Q, leading to accurate
downstream uncertainty estimates. By optimizing this ob-
jective over historical data, our aim is for the model to learn
meta-learn structures and patterns that will be useful for
adaptive testing over new, unseen entities.

Training. For training, we process each sequence of ques-
tions and answers {X(U)

1:N , Y
(U)
1:N } corresponding to a latent

entity U by sequentially arranging them into one long nat-
ural language string (X

(U)
1 , Y

(U)
1 , X

(U)
2 , Y

(U)
2 , ...). We as-

sume that the probability of a response to a question is inde-
pendent of the ordering of the earlier questions and answers,
and we randomly permute the order of the question/answer
pairs within each entity’s sequence during training. Then
we optimize a language model to predict each answer Yt

conditioned on the current question Xt and previous ob-
servations Ht−1. To do so, we apply a gradient mask that
masks out tokens which do not correspond to any Yi. We
use stochastic gradient descent procedures to optimize the
training loss.

2.4. Adaptive Question Selection by Future Simulation

Having trained a predictive model pθ from historical data,
we can use this model to quantify uncertainty about future
observations generated by the latent entity, and take actions
to reduce said uncertainty. Given a new latent entity Unew,
we may also be interested in different targets of uncertainty:
for example, the full sequence of future answers (Z =
Y1:∞), a specific subset of questions, or the answer to a
particular question (Z = Y ). To make our notation more
general, we notate Z as the object we wish to understand.
Our goal is to reduce uncertainty about Z by sequentially
choosing questions X that are most informative — i.e., those
that will optimally reduce the model’s uncertainty about Z
(See Figure 6). For example a tutor may be interested in
understanding which questions will reveal the most about
the student’s understanding.

Setup As described in Section 2.1, we operate in an adap-
tive setting at test time. At each round t = 0, 1, ..., T − 1,
we may select a question Xt+1 ∈ Xt+1 based on the inter-
action history so far, Ht := (XUnew

1:t , Y Unew
1:t ), and receive an

answer Yt+1 ∈ Yt+1.

To quantify informativeness, we define the information gain
from a question-answer pair (Xt+1, Yt+1) as:

IGt(Z; (Xt+1, Yt+1)) =

H(Z|Ht)−H(Z|Ht ∪ (Xt+1, Yt+1)).
(5)

This measure quantifies the reduction in entropy about
Z after observing a new interaction, by quantifying the
difference between the current uncertainty Hpθ

(Z | Ht)
and the uncertainty after observing (Xt+1, Yt+1), H(Z |
Ht ∪ (Xt+1, Yt+1)). Since we do not yet know Yt+1 when
choosing xt+1, we can instead quantify the expected reduc-
tion in uncertainty by simulating potential answers using
our meta-learned model pθ. This idea leads to the Expected
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Information Gain (EIG) (Chaloner & Verdinelli, 1995):

EIGt(Z;xt+1) =

Hpθ
(Z | Ht)− E[Hpθ

(Z | Ht ∪ (xt+1, Yt+1))],
(6)

where we use our meta-learned model pθ(·) to simulate Z
and Yt+1 ∼ pθ(·|Ht, Xt+1 = xt+1) in the expectation. To
calculate the EIG for multiple choices of x, we have

EIGt(Z; (xt+1, xt+2, ..., xt+K)) =

Hpθ
(Z | Ht)− E[Hpθ

(Z | Ht

t+K⋃
i=t+1

(xi, Yi))],
(7)

where we autoregressively simulate Yt+1:t+K from our
meta-learned model. This quantity naturally quantifies the
amount of epistemic uncertainty we expect to reduce by
choosing a set of questions. If the EIG is very small, then
this implies that the reduction in entropy is small and there-
fore this information is not informative. This could be
because there is a lot of aleatoric uncertainty, such that the
information gathered is very noisy, or due to the fact that the
information gathered is not relevant to the object of interest.

Question Selection Policies To select the optimal ques-
tion at each time t, we would ideally like to choose a ques-
tion selecting policy π : H 7→ X , where Xt+1 ∼ π(·|Ht),
such that we maximize

argmax
π

EX∼π(·)
[
EIGt(Z;Xt+1:T )

]
, (8)

where EIGt(Z;Xt+1:T ) is defined in Equation (7). To ap-
proximate this quantity, we use our meta-learned model
pθ to autoregressively simulate possible future answers
Yt+1:T ∼ pθ, and the chosen policy π to simulate ques-
tion choices Xt+1:T ∼ π(·). Through autoregressive future
simulation, we can optimize for our question selection pol-
icy π. While it is possible to calculate the discrete optimal
xt:T that maximizes this objective, it can be intractable as
simulating Xt+1:T , Yt+1:T is combinatorial in the number
of steps. Instead, we introduce two procedures that show
strong practical performance while having feasible compu-
tational cost.

Greedy Selection. A simple question selection policy
πgreedy is to first enumerate the candidate questions x ∈
{x1, ..., xk}. Then for each xj , calculate the one-step ex-
pected information gain EIGt:t+1(Z;xj). Finally, choose
the xj that maximizes this quantity. Concretely,

πgreedy
t := argmax

x
EIGt:t+1(Z;x).

Although greedy, this policy often performs well in practice
and is computationally simpler than globally optimal plan-
ning. We establish the theoretical validity of this procedure

in Section B, where Proposition B.3 bounds the performance
gap between a full combinatorial planning approach and the
greedy selection procedure.

Lookahead / Monte Carlo Planning. To account for
multi-step effects (e.g., a question that might not imme-
diately reduce much uncertainty but paves the way for more
informative follow-ups) and to better approximate the com-
binatorial quantity in Equation (8), we can apply standard
Monte Carlo Tree Search (MCTS) techniques from rein-
forcement learning (Browne et al., 2012; Silver et al., 2016).
We use a simple instantiation with strong empirical perfor-
mance and leave more complex variants to future explo-
ration.

With an MCTS policy πMCTS, we sample entire simulated
question–answer sequences using the meta-learned model
pθ up to depth d to estimate the cumulative information gain.
In order to simulate future responses, we use πgreedy to select
questions and the Information Gain (5) as proxy rewards.
Starting at time t, we first calculate EIGt:∞(Z;Xt+1:∞)
for each x ∈ Xt, and choose the top K questions. For
each of the K questions, we then simulate N futures up
to depth d. For each sample path i ∈ [N ], we receive
reward r(i)(x) = IGt

(
Z; (X

(i)
t+1:t+d, Y

(i)
t+1:t+d)

)
, where

questions are sequentially selected using πgreedy and answers
are simulated using the meta-learned model pθ. Finally, the
MCTS policy chooses an action as

πMCTS := argmax
x∈Xt

1

N

N∑
i=1

IGt

(
Z; (X

(i)
t+1:t+d, Y

(i)
t+1:t+d)

)
.

Though more expensive computationally, we find that
πMCTS can find better long-horizon query strategies.

3. Experiments
To rigorously benchmark adaptive information gathering
strategies for LLMs, we require datasets that (i) capture
diverse latent entities or hidden factors, (ii) provide many
possible queries about these entities, and (iii) for each entity,
link some queries to corresponding ground-truth answers.
Such an experimental setup allows us to assess the abil-
ity of an LLM and/or particular algorithm to strategically
select questions in order to reduce uncertainty about the
latent entity. Ideally, each dataset reflects the real-world
complexities of human-generated responses, while still pro-
viding enough structure for robust evaluation of different
query selection policies. In practice, a large pool of possi-
ble questions with many ground truth answers is essential,
since it allows an adaptive strategy to actively and deeply
explore the latent entity along many dimensions, while still
leaving unobserved data for evaluation. Then, each latent
entity (e.g., a survey respondent’s political stance, a stu-
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dent’s hidden skill profile, or the identity of a secret object)
can be progressively unveiled by observing how it answers
newly selected queries. Such design criteria enable con-
trolled, quantitative evaluations of LLMs under interactive,
information gathering scenarios.

Our experiments focus on three applications: the “Twenty
Questions” game (using our novel and publicly available
dataset, described below), opinion polling, and student as-
sessment. In each scenario, the objective is to adaptively
select questions that reveal as much information as possi-
ble with respect to a separate (though potentially overlap-
ping) set of target questions. Questions are chosen one at a
time, and each new question–answer pair is appended to the
LLM’s context before proceeding. For every experiment, we
start with a dataset containing a collection of latent entities
U , each associated with a set of questions XU and answers
Y U . To train our meta-learned model pθ, we split each
dataset by groups of latent entities into training, validation,
and test sets. We first meta-learn pθ on question–answer
pairs corresponding to the training entities, after which we
evaluate how effectively the model quantifies and reduces
epistemic uncertainty about observations generated by test
entities. Further details regarding the datasets, training pro-
cedure, baseline comparisons, and evaluation metrics are
provided below.

3.1. Twenty Questions Dataset

The classic “Twenty Questions” game epitomizes our core
goal of reducing uncertainty about a hidden entity through
targeted queries. Specifically, the object (such as an animal,
a musical instrument, or any of a wide range of other con-
cepts) serves as the latent factor U that cannot be directly
observed. A player (or model) must identify U by posing
a sequence of questions and observing the corresponding
answers (e.g., “no,” “maybe,” or “yes”). Hence, the game in-
herently captures the essence of characterizing a latent entity
by uncovering how it generates answer to different possible
questions. To operationalize this game for benchmarking,
we construct a novel “Twenty Questions” dataset from a
curated set of objects in the THINGS database (Hebart et al.,
2019), each serving as a potential hidden entity. For each
object, we produce a diverse set of candidate questions (e.g.,
“Does it have four legs?”, “Is it edible?”, “Is it used for
entertainment?”) together with the corresponding answers,
generated by a top-quality LLM (Claude-3.5-Sonnet). In
total, the dataset contains 800 objects, each with answers
to a set of 1200 questions. By treating each object as a
distinct latent entity, we capture a broad spectrum of scenar-
ios, ranging from everyday items (“banana,” “telephone”)
to more uncommon concepts (“violin,” “canoe”). We note
that the absolute correctness of Claude’s answers is not cru-
cial, as our goal is for our model to learn the underlying
data-generating process governing which answers appear,

given specific questions and objects. Our dataset is publicly
available,1 including the complete set of objects, curated
questions, generated answers, and relevant metadata.

3.2. Other Datasets

OpinionQA (Santurkar et al., 2023) Originally created
to evaluate the alignment of LLM opinions to those of 60
US demographic groups, this dataset contains 1498 multiple
choice political questions answered by a diverse collection
of survey respondents. These questions target various polit-
ical issues ranging from abortion to automation. For each
question X , the multiple choice answer corresponds to the
observable feedback Y , and the survey respondent’s latent
political preference corresponds to the unobservable U .

EEDI Tutoring Dataset (Wang et al., 2020) EEDI is an
online educational and tutoring platform that serves mil-
lions of students around the globe. This dataset includes a
collection of 938 math questions focusing on various areas
such as algebra, number theory, and geometry, as well as
individual responses from many students. Each question is
a multiple choice question with four answers that includes a
visual diagram as well as associated text. The student’s true
mathematical ability U generates the student’s answer Y to
the math question X .

3.3. Meta-Training Details

We first split the training datasets by entity into train, val-
idation, and test with a 70%, 15%, 15% split. To meta-
train our model, we initialize a pre-trained Llama-3.1-8B
model in FP16 precision and use LoRA (Hu et al., 2021)
to finetune our model with parameters α = 24, rank= 8,
and dropout= 0.1. Additional details are shown in Ap-
pendix C.1

3.4. Baselines

Here we describe the baselines to which we compare our al-
gorithm; each consists of an approach to model fine-tuning,
and an approach to question selection. As in our method,
each chosen question–answer pair is appended to the LLM
context for predicting unseen answers.

Base LLM First, we consider a simple baseline. For an
LLM we use Llama-3.1-8B, from which our meta-trained
model is initialized, with no additional fine-tuning; question
selection is performed randomly.

In-Context Tuning (ICT) Next, we consider a typical
in-context learning (ICL) baseline. First, we meta-train the

1https://huggingface.co/datasets/
namkoong-lab/TwentyQuestions
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Figure 2. Accuracy (top) and perplexity (bottom) of our adaptive elicitation framework compared to baseline methods across three datasets:
OpinionQA, EEDI student assessment, and Twenty Questions. The x-axis represents the number of questions selected. Our method works
best to gather information and accurately characterize the latent in each case. Each plot is the average of 10,000 simulations across unseen
entities.

model via In-Context-Tuning (Chen et al., 2022), where
the objective is to predict the label for a query example
given some number of in-context support examples. Then,
questions are selected based on embedding similarity to the
target questions that we aim to answer (Liu et al., 2021).
We use the same model and parameters as described in
Section 3.3, and we use Alibaba-NLP/gte-large-en-v1.5 as
our embedding model.

3.5. Evaluation

To evaluate how well each method can ask targeted ques-
tions to reduce uncertainty about the latent entity, we per-
form 10,000 trials, where on each trial we randomly select
an entity and apply our algorithm (and baselines). For each
trial and its corresponding entity, we randomly select a pool
of N candidate questions from which the methods can se-
quentially choose questions to ask, and randomly select K
held-out target questions. The objective is to sequentially
choose optimal questions from the candidate questions to
reduce the most uncertainty about the held-out target ques-
tions for the entity. In our experiments, we choose N = 20
and K = 5, but we include ablations that vary these quan-
tities in Section 4.5. We evaluate the performance on the
target questions with four metrics: (1) Accuracy, (2) Per-
plexity (Jelinek et al., 1977), (3) Expected Calibration Error
(Guo et al., 2017), and (4) Brier Score (Brier, 1950).

4. Results and Discussion
In this section, we empirically study the following questions:
(1) Can our framework be used to adaptively select ques-
tions to reduce uncertainty and elicit information about the

latent entity? (2) Do we generate reasonable posterior prob-
ability updates and reduce uncertainty as more information
is gathered? (3) When is this adaptive procedure particularly
helpful, and when is advanced planning (i.e., MCTS) most
important? (4) How crucial is our training procedure for
producing actionable uncertainty quantification? (5) Does
the performance of our framework improve with a better
underlying LLM? Throughout, we connect these findings to
the paper’s broader motivation: the importance of adaptive
strategies to eliciting information efficiently in real-world
scenarios.

4.1. Overall Gains from Adaptive Elicitation

Overall results for our method and 2 baselines across all
3 datasets are shown in Figure 2. The top row of plots
record accuracy on the target questions, while the bottom
row record perplexity (or negative log-likelihood loss). The
Base LLM is omitted on bottom for ease of visualization.
Our framework is applied using the greedy EIG strategy. In
both figures, the X-axis records the number of questions
that have been selected so far.

Across all 3 datasets and both metrics, our algorithm most
effectively characterizes the latent entity by predicting the
answers to target questions (we show similar results for Brier
Score in Figure 7). Further, our algorithm consistently im-
proves its characterization as more information is gathered,
whereas gathering more questions based on embedding dis-
tance does not always help. Overall, our adaptive elicitation
framework proves effective in gathering information and
reducing uncertainty across 3 diverse domains.
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Figure 3. Reliability diagrams comparing confidence and accuracy after different numbers of selected questions (and observed answers).
Our model maintains well-calibrated uncertainty estimates, increasing both confidence and accuracy as more questions are asked.

4.2. Uncertainty Quantification

A cornerstone of our approach is using predictive perplexity
as an indicator of uncertainty to guide the adaptive strategy;
this makes sense only if our model’s probabilities correctly
reflect confidence about unseen data. To assess this, we
examine calibration, or the extent to which the model’s
confidence reflects its prediction accuracy.

For each dataset, we plot reliability diagrams (Guo et al.,
2017) of confidence vs. accuracy, where perfect calibration
lies on the y = x line, and record Expected Calibration Error
(ECE). Both the reliability diagram and ECE are produced
by separating predictions into 10 bins by confidence, and
comparing the average confidence and accuracy for each bin.
Results are shown after 1, 4, and 8 questions are selected,
and the far left subfigure displays overall average confidence
and accuracy for each setting.

Results for OpinionQA are shown in Figure 3, while EEDI
and Twenty Questions are shown in Appendix Figures 8
and 9. For all 3 datasets, we observe that the predicted prob-
abilities lie close to the diagonal of perfect calibration—our
model’s confidence aligns well with actual accuracy. As
more questions are observed, the model’s average confi-
dence (and accuracy) both go up, confirming that uncer-
tainty diminishes in an intuitive way. In the motivating
student-assessment scenario, this means that by asking just
a few strategically chosen questions, the model not only
improves its predictions but also becomes more certain in
them. For a high-stakes application such as medical diag-
nostics or skill placement exams, it is crucial to know when
a model has enough data to be sure in its predictions, versus
when it is still uncertain; these calibration results confirm
our framework performs well in this sense.

4.3. When is Adaptivity Most Helpful?

Having established that our adaptive question selection
method is generally effective at quantifying uncertainty and
eliciting information about some latent, we next examine
when such a procedure is most helpful. In particular, we

hypothesize that adaptive strategies are especially important
in characterizing features of the latent which are relatively
rare in the population. As a concrete example, while many
students may have overlapping weaknesses (e.g., many get
the same test question wrong), it can be harder to learn that
a particular student is struggling in an area where other stu-
dents generally do not. An adaptive strategy could help by
selecting a test question that most find easy but this student
may answer incorrectly.

To investigate this hypothesis, we specify two different sub-
groups of questions as targets by running an evaluation
where for each target question in the subgroup, the en-
tity’s answer must have probability less than either 50%
(“medium”) or 30% (“hard”) across the population. We use
our meta-trained model with random, EIG, and MCTS ques-
tion selection, and record results after N questions have been
selected. Results are shown in Figure 4. For each question
subgroup (as well as all questions from the previous exper-
iment), we record on the y-axis the relative accuracy gain
from using EIG or MCTS, compared to random selection.

First, we notice that the more advanced MCTS planning
strategy outperforms EIG in all cases, and both always out-
perform random. Intuitively, while a greedy strategy picks
the single next question that locally maximizes immediate
information gain, it may miss questions whose short-term
yield seems small but that pave the way for far more re-
vealing follow-up queries. By looking multiple steps ahead,
MCTS better accounts for how each query reshapes future
options, often enabling it to find more globally optimal ques-
tioning strategies. This means that given a good model for
uncertainty quantification, we can improve our results by
spending more compute, indicating good scaling behavior
in our algorithm.

Next, we observe trends across different subgroups of ques-
tions. In all 3 example applications, adaptivity and planning
have a massive impact on the ability to answer hard ques-
tions compared to random question selection. For EEDI
and Twenty Questions the percent gain over random with
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Figure 4. Relative accuracy gain from adaptive question selection (EIG and MCTS) over random selection for different subsets of target
questions: all, medium difficulty (answer observed in < 50% of the population), and hard (answer observed in < 30%). Adaptivity
provides the greatest benefits when identifying rare latent traits, demonstrating when strategic question selection is most advantageous.

Figure 5. Comparison of performance gains from planning (EIG-
based selection) using different models.

EIG or MCTS is more than 10x higher for hard questions
than for all questions; for OpinionQA, it is 5x higher. We
thus have strong evidence that our adaptive information elic-
itation strategy is most important when characterizing the
latent features which are most atypical with respect to the
population. If the latent entity exhibits atypical behavior
(a student struggles with a concept that most find easy, or
an opinion respondent holds a rare viewpoint), an adaptive
method can target precisely those concepts that discriminate
such cases. Conversely, random or fixed questionnaires fail
to unearth those nuances within a limited query budget.

4.4. Training Ablation

Our results in Figure 2 confirm the effectiveness of our
end-to-end adaptive elicitation framework, while Figure 4
demonstrates the significant gains from planning-based
question selection over random selection. Now, we
turn to understanding the remaining component—meta-
training—by evaluating how planning performs when ap-
plied to our model versus the ICT model and base LLM. We
use the Twenty Questions dataset, and the same splits of all,
medium, and hard questions as the previous experiment. For
each setting and each of 3 underlying models, (Base, ICT,
and ours), we record the accuracy on target questions after

selecting 3 questions with either random selection or the
EIG strategy. To measure what is gained from planning, we
record the ratio of target question accuracy with planning to
that with random selection (a value above 1 indicates some
accuracy gain from planning).

Results are shown in Figure 5. First, we see that planning
performs poorly using the Base LLM, reducing accuracy
almost 15% on hard questions compared to random question
selection. The ICT model performance is largely unchanged
by planning, across all 3 question types. On the other hand,
our model’s performance is greatly improved when ques-
tion selection is guided by planning, highlighting that our
training procedure is essential to enable such strategic infor-
mation gathering with LLMs.

4.5. Other Ablations

We first ablate the number of candidate and target questions
to choose from. Our experiments were run with the models
being able to select from 20 questions in order to accurately
predict 5 targets. In Table 2 in Appendix E, we find that our
method gains more accuracy as the question bank becomes
larger. In Table 1, we find that performance stays roughly
the same as the number of target questions changes. Finally,
we study the effect of the base model for our meta-training
procedure. We test GPT2, Llama-3.2-1B, and Llama-3.1-
8B, and find in Table 3 that performance increases as the
model is larger.

5. Conclusion
In this work, we propose an adaptive elicitation framework,
based on the missing-data view, that actively reduces un-
certainty on the latent entity by simulating counterfactual
responses. There is a rich body of literature on topics re-
lated to latent entity modeling and its applications, of which
we are only able to give a limited overview here. See Ap-
pendix A for a thorough discussion of related research.
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Figure 6. An example of how adaptive elicitation (bottom) can improve over static strategies (top) in new student assessment. Each
question asked to the student is marked green (answered correctly) or red (answered incorrectly). Once a student answers incorrectly,
the adaptive strategy is able to search over the high-dimensional question space, and present the student with a series of more granular
examples that resolve uncertainty about specific abilities in the high-dimensional space representing the student’s latent abilities. In this
case, active question selection reveals that the student is strong in division, but struggles with decimal points. A static assessment, on the
other hand, fails to resolve this uncertainty.

Reproducibility
Our code is available at https://github.com/namkoong-lab/adaptive-elicitation.

A. Related Work
Latent Uncertainty Modeling and Decision Making Traditional works that attempt to model latent uncertainty to
make robust decisions often pose explicit Bayesian models that directly specify a latent parameter. Classical multi-armed
bandits such as Thompson Sampling-based methods (Russo, 2020; Grover et al., 2018; Chapelle & Li, 2011; Agrawal
& Goyal, 2013; Lattimore & Szepesvári, 2019; Jun et al., 2016; Li et al., 2010) specify a Bayesian model as a prior,
which can be used to draw explicit posterior samples. Examples of Bayesian models include Gaussian and Bernoulli
distributions, as well as Bayesian linear or logistic regression (Russo et al., 2020). Bayesian Optimal Experimental Design
(BOED) methods (Ghavamzadeh et al., 2015; Chaloner & Verdinelli, 1995; Ryan et al., 2016) follow a similar paradigm by
quantifying information gain using explicit Bayesian models to make sequential decisions.
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Other lines of work include more sophisticated probabilistic modeling. Active collaborative filtering methods (Boutilier
et al., 2003) specify probabilistic models of user preference data. Bayesian Optimization techniques (Frazier et al., 2008;
Frazier, 2018; Gonzalez et al., 2016; Jiang et al., 2020; Jones et al., 1998) apply acquisition functions such as Expected
Improvement (Jones et al., 1998) and Knowledge Gradient (Frazier et al., 2008) on top of Gaussian Processes. While these
traditional methods are statistically principled, the need to specify explicit models means they often struggle to model
very high-dimensional spaces such as the space of natural language. For example, (Frazier, 2018) mentions that Bayesian
Optimization methods are best suited to dimensionality ≤ 20, while natural language embeddings are often thousands of
dimensions.

To overcome these limitations, recent works have focused on representing uncertainty over high dimensions augmented by
the representation power of neural networks. One line of works explicitly uses neural network representations to represent
the underlying uncertainty, where decision making algorithms are applied on top of Bayesian Neural Networks (BNNs)
or the last layer representation (Snoek et al., 2015; Riquelme et al., 2018; Osband et al., 2016; 2018; Piech et al., 2015).
Another strand of works uses ensembles to represent the underlying uncertainty (Qin et al., 2022), or more efficient variants
such as Epistemic Neural Networks (Wen et al., 2021; Osband et al., 2022; 2023b). We offer a different approach by
directly modeling the uncertainty surrounding future predictions using language models. Methods that explicitly represent
uncertainty in terms of ensembles or through specified parameters still struggle to operate in the discrete, high-dimensional
space of natural language, whereas our perspective is able to directly represent uncertainty in natural language predictions.
Additionally, our meta-learning method does not require new architectures and can be applied on top of powerful pre-trained
language models, allowing the use of internet-scale language understanding in comprehending uncertainty.

Computerized Adaptive Testing Our work is closely related to Computerized Adaptive Testing (CAT) methods, a form
of educational testing that adapts to a student’s ability level. Classical CAT methods attempt to capture a student’s latent
ability level through simple parametrized models. Item Response Theory, also known as Latent Response Theory, includes a
family of simple mathematical models such as a one parameter logistic regression or Item Response Function to model
a student’s latent ability (Liu et al., 2024; Embretson & Reise, 2013). The Diagnostic Classification Model (DCM) is
designed to measure proficiency across a wide array of specific knowledge concepts. A prominent example includes the
DINA method (Torre, 2009; de la Torre, 2011) which uses a probabilistic binary matrix model to represent these concepts.
Knowledge Tracing techniques, which train machine learning methods to model the latent knowledge of students as they
interact with coursework, traditionally use Hidden Markov Models (HMMs) (Corbett & Anderson, 1994) or Partially
Observable Markov Decision Processes (POMDPs) (Rafferty et al., 2011) to model the latent state. More modern treatments
use deep learning models such as a Recurrent Neural Network (Piech et al., 2015) to represent latent knowledge.

Reinforcement Learning with Sequence Models A number of works propose to train or use powerful pre-trained models
in order to solve complex reinforcement learning (RL) tasks, focusing on how these models can make decisions using vast
amounts of offline data (Janner et al., 2021; Yang et al., 2023; Chen et al., 2021; Du et al., 2024; Lee et al., 2022). Another
line of works show that using meta-learned sequence models to predict the next action can approximate standard bandit
algorithms (Lin et al., 2024a; Lee et al., 2023; Zhang et al., 2024). We extend these ideas to natural language while focusing
on how our meta-learned model can quantify uncertainty to make a decision.

Uncertainty Quantification over Natural Language. There has been a recent class of works focusing on developing
uncertainty measures to augment the reliability of model responses. (Kuhn et al., 2023; Lin et al., 2024b; Malinin &
Gales, 2021; Duan et al., 2024) focus on predictive entropy measures with off-the-shelf language models, while other
approaches focus on self-consistency in the generation space (Lin et al., 2022; Si et al., 2023; Kadavath et al., 2022; Diao
et al., 2023). Another class of works focuses instead on detecting epistemic uncertainty from aleatoric uncertainty in
model outputs (Yadkori et al., 2024; Osband et al., 2023a; Hou et al., 2024; Glushkova et al., 2021). Our meta-learning
uncertainty quantification framework is complementary to these works, as these measures are designed to be applied on top
of pre-trained foundation models.

Planning and Information Gathering with LLMs Our work is related to Uncertainty of Thoughts (UoT) (Hu et al.,
2024) and OPEN (Handa et al., 2024). While these methods build elicitation procedures on top of off-the-shelf language
models, we use a meta-learning procedure in order to accurately quantify uncertainty over new environments. Other works
introduce methods to enhance general reasoning or planning capabilities by using natural language reasoning steps (Wei
et al., 2022; Wang et al., 2022; Yao et al., 2023).
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Personalization with Language Models With the recent success of Large Language Models (LLMs), a natural question
is whether these models can be tailored and personalize to various users. There has been a nascent series of works that
propose benchmarks and methods for personalized language modeling. (Zollo et al., 2025; Kirk et al., 2024; Castricato
et al., 2024) propose new testbeds and evaluation criteria that target various dimensions of personalization through synthetic
and real data. (Jang et al., 2023) proposes to merge model parameters to personalize models, while (Li et al., 2024b; Poddar
et al., 2024) propose new personalized fine-tuning and Reinforcement Learning from Human Feedback (RLHF) techniques.
In the context of opinion polling, (Li et al., 2024a) steers model outputs to different personas by using embeddings from
collaborative filtering, while (Park et al., 2024) demonstrates that language models can successfully be adapted to individual
responses.

B. Theoretical Validity
We now detail two propositions that provide insight into our meta-learning framework. The first proposition lower bounds
performance of our model in terms of the performance in the ideal simulation as well as the difference between the true and
simulated distribution. The second proposition quantifies the performance gap between a greedy and full combinatorial
method, showing the losses one might expect to incur.

First, let XT = (x1, ..., xT ). Define X ∗ to be the optimal set of questions X that maximizes the log likelihood of the object
of interest Z under the meta-learned distribution pθ,

X ∗ := argmax
XT

Epθ
[log pθ(Z | XT )].

This is the set of questions we would ask if we could perfectly optimize in our simulated environment. Next, let q be the true
distribution and pθ our meta-learned model. Using these definitions, we state our first proposition

Proposition B.1. For any pθ,

Eq[log pθ(Z | X ∗)] ≥ Epθ
[log pθ(Z | X ∗)]−

√
Epθ

[log2 pθ(Z | X ∗)]χ2(q(Z) ∥ pθ(Z | X ∗)). (9)

Eq[log pθ(Z | X ∗)] represents the cross entropy of Z between pθ and the ground truth distribution q. The lower bound first
involves Epθ

[log pθ(Z | X ∗)], which is the likelihood of the data under our simulated distribution. The second term involves
both the likelihood under the simulated distribution Epθ

[log2 pθ(Z | X ∗)] as well as the distance between q and p through
χ2(q(Z) ∥ pθ(Z | X ∗)). This bound tells us that if pθ has high likelihood under the simulator and has little distance to q,
then we are guaranteed to achieve good test-time performance. However, since the difference χ2 is scaled by the likelihood,
simply having high likelihood in the simulated distribution is not enough. In fact, if χ2(q∥p) is large, then having high
likelihood in the simulation can exacerbate this error in the second term. We prove this in Appendix B.2.

Bound for Greedy Policy Next, we bound the performance gap between the questions collected from the optimal policy
X ∗ with those collected from the greedy policy

xgreedy
i = argmax

xi

Epθ
[log pθ(Z | (x1, ...xi−1) ∪ xi)],

where Xgreedy = (xgreedy
1 , ..., xgreedy

T ). First we define the concept of submodularity:

Definition B.2 (Submodularity). f : 2Ω → R is submodular if ∀X ⊆ Y ⊆ Ω and ∀z /∈ Y we have

f(X ∪ {z})− f(X) ≥ f(Y ∪ {z})− f(Y )

Then we state our proposition:

Proposition B.3. Under the assumption that the entropy over Z produced by the meta-learned model pθ is submodular,

Epθ
[log pθ(Z | X ∗)]− Epθ

[log pθ(Z | Xgreedy)] ≤
1

e
EIG(Z;X ∗).

We prove this statement in Appendix B.3. This proposition states that the difference in achieving the optimal log likelihood
under the simulated environment and using the greedy strategy is bounded by 1

eEIG(Z;X ∗). We can then use this bound
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and substitute in Proposition B.1 to quantify the performance lower bound for the greedy policy. In this proposition, we have
to assume submodularity of our meta-learned model because it is not guaranteed in practice due to training instabilities or
errors. Empirically we find that the entropy of our meta-learned model behaves submodularly, as evidenced by the perplexity
graphs in Figure 2.

B.1. Summary

Our framework provides a data-driven, natural-language-based alternative to parametric modeling of latent entities. It
proceeds by: (1) Meta-training a language model on diverse question–answer sequences, (2) Interpreting the model’s
predictive distribution over future answers as an uncertainty measure about new entities, and (3) Iteratively selecting
questions to optimally reduce that uncertainty. We show theoretically that our procedure gives strong performance, even
under a simple and efficient greedy planning strategy. Next, we explore the empirical performance of our framework in a
series of adaptive information gathering scenarios.

In this section, we show the theoretical validity of using a greedy procedure to select actions with the highest expected
information gain. We wish to quantify and reduce our uncertainty about some object Z by choosing the optimal questions X
to query the latent entity U . First we define the expected information gain of asking a set of questions Xt := (x1, ..., xt) ⊆ X ,

EIG(Z;Xt) = H(Z) − Et

[
H
(
Z |

t⋃
s=1

(xs, Ys)
)]
.

Note that each Ys in the history is a random variable, and we use our meta-learned model pθ to simulate possible answers
Ys ∼ pθ(·|Hs−1, Xs = xs). Similarly, Z ∼ pθ(·) as well. Ultimately, our goal is to choose a set of designs Xt = x1:t that
yields the largest amount of information gain possible. First to set notation, define q to be the ground truth underlying
question and answer distribution. Let p be the distribution induced by the meta-learned model, and p(Z|Xt) be the
conditional distribution over Z after marginalizing out the feedback Y1:t corresponding to the questions Xt, where Y1:t

comes from the ground truth distribution such that Y1:t ∼ q(·).

First, define X ∗ to be the optimal set of questions X that maximizes the log likelihood of the object of interest Z under the
meta-learned distribution P ,

X ∗ := argmax
Xt

Ep[log p(Z | Xt)].

B.2. Proof of Proposition B.1

We restate our proposition for clarity.

Eq[log p(Z | X ∗)] ≥ Ep[log p(Z | X ∗)]−
√
Ep[log

2 p(Z | X ∗)]χ2(q(Z) ∥ p(Z | X ∗)).

Proof. We can decompose the difference between the cross entropy term Eq[log p(Z | X ∗)] and entropy term Ep[log p(Z |
X ∗)] as

− Eq[log p(Z | X ∗)] + Ep[log p(Z | X ∗)]

=

∫
(p(z|X ∗)− q(z)) log p(z | X ∗)dz

=

∫
(1− q(z)

p(z | X ∗)
) log p(z | X ∗)p(z | X ∗)dz

≤

√(∫
(1− q(z)

p(z | X ∗)
)2p(z | X ∗)dz

)(∫
log2(p(z | X ∗))p(z | X ∗)dz

)
=

√
Ep[log

2 p(Z | X ∗)]χ2(q(Z) ∥ p(Z | X ∗)).

where the second to last line follows from the Cauchy-Schwartz inequality and the last line follows from the definition of
the χ2 divergence. Then by flipping the sign, we obtain the stated inequality.
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B.3. Proof of Proposition B.3

We first define submodularity for clarity:

Definition B.4 (Submodularity). f : 2Ω → R is submodular if ∀X ⊆ Y ⊆ Ω and ∀z /∈ Y we have

f(X ∪ {z})− f(X) ≥ f(Y ∪ {z})− f(Y )

In order to show that the greedy procedure is able to perform close to the optimal solution, we rely on the following
assumption, that the entropy calculated from our meta-learned model is submodular:

Assumption B.5 (Submodularity of Entropy). Let Ht ⊆ H′

t. Then for any (Xt+1, Yt+1) /∈ H′
t,

H(Z | Ht ∪ (Xt+1, Yt+1))−H(Z | Ht) ≥ H(Z | H′
t ∪ (Xt+1, Yt+1))−H(Z | H′

t).

We first show that the Expected Information Gain (EIG) is submodular. If the entropy is submodular, then the Information
Gain is also submodular. Define the Information Gain as

f(Ht) = IG(Z;Ht) = H(Z)−H(Z | Ht).

Then, for any history set Ht and any additional observation (Xt+1, Yt+1) /∈ Ht, the marginal gain of adding (Xt+1, Yt+1)
is given by

f(Ht ∪ {(Xt+1, Yt+1)})− f(Ht) =
[
H(Z)−H(Z | Ht ∪ {(Xt+1, Yt+1)})

]
−

[
H(Z)−H(Z | Ht)

]
= H(Z | Ht)−H(Z | Ht ∪ {(Xt+1, Yt+1)}).

Now, consider two history sets Ht ⊆ H′
t and the same observation (Xt+1, Yt+1) /∈ H′

t. By our submodularity assumption
on the entropy, we have

H(Z | Ht)−H(Z | Ht ∪ {(Xt+1, Yt+1)}) ≥ H(Z | H′
t)−H(Z | H′

t ∪ {(Xt+1, Yt+1)}).

In terms of the Information Gain function, this inequality becomes

f(Ht ∪ {(Xt+1, Yt+1)})− f(Ht) ≥ f(H′
t ∪ {(Xt+1, Yt+1)})− f(H′

t).

Thus, by definition the Information Gain is submodular. Since this is true for all Xt+1, Yt+1, then the Expected Information
Gain (EIG) is also submodular. Then by (Nemhauser et al., 1978), we have that

EIG(Z;Xgreedy) ≥ (1− 1

e
)EIG(Z;X ∗),

implying that

EIG(Z;Xgreedy)− EIG(Z;X ∗) ≤ 1

e
EIG(Z;X ∗). (10)

Finally, to prove the bound we can note that

Ep[log p(Z | X ∗)]− Ep[log p(Z | Xgreedy)] = EY [EZ [log p(Z | X ∗,Y∗))]]− EY [EZ [log p(Z | Xgreedy,Ygreedy)]]

= EY [H(Z | X ∗,Y∗)]− EY [H(Z | Xgreedy,Ygreedy)]

= EY [H(Z | X ∗,Y∗)]−H(Z) +H(Z)− EY [H(Z | Xgreedy,Ygreedy)]

= EIG(Z;Xgreedy)− EIG(Z;X ∗)

≤ 1

e
EIG(Z;X ∗),

where the last line follows from an application of Equation (10). This completes the proof.
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Figure 7. Brier score results in our overall setting across 3 datasets.

Figure 8. Calibration results with EEDI.

C. Experiment Details
C.1. Meta-Training Details

We initialize the AdamW (Loshchilov & Hutter, 2019) optimizer with learning rate of 0.0001 and β = (0.9, 0.95), weight
decay of 0.1, and we use a linear warmup for the learning rate after which we use a cosine scheduler. We train our model for
10, 000 epochs with a batch size of 4 and block size of 1024, after which we take the checkpoint with the lowest validation
loss.

D. Experiment Results
Here we include additional experiment results. Figure 7 shows results for the overall experiments with the Brier Score
metric. Figure 8 shows calibration results for EEDI, and Figure 9 shows calibration results for Twenty Questions.

E. Ablations
Additional ablations are shown in Table 1 (number of target questions), Table 2 (number of candidate questions), Table 3
(base model).

Table 1. Ablating number of target questions on EEDI; accuracy conditioned on 4 Questions

Accuracy 1 5 10 20

Base 0.6042 0.6005 0.6066 0.5987
Ictx 0.6269 0.6278 0.6295 0.6255
Ours 0.6759 0.6784 0.6871 0.6832
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Figure 9. Calibration results with Twenty Questions.

Table 2. Ablating number of candidate questions on OpinionQA; accuracy conditioned on 4 Questions

Accuracy 10 15 20 25
Base 0.4030 0.4042 0.4089 0.4093
Ictx 0.4988 0.4993 0.5023 0.5009
Ours 0.5933 0.5953 0.5987 0.6068

Table 3. Ablating base model: Twenty Questions accuracy using our framework conditioned on 4 questions

GPT2 Llama-3.2-1B Llama-3.1-8B
Accuracy 0.5201 0.6131 0.7382
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