
A Appendix001

This appendix complements the main paper with002

detailed materials supporting our framework for003

forecasting student engagement levels. Section A.1004

lists the 28 non-cognitive questions and sample005

responses used to derive qualitative longitudinal006

features, showcasing the data’s experiential rich-007

ness. Section A.2 provides an extended discussion008

of related work, covering prior efforts in LLMs,009

time-series forecasting, and educational analytics.010

Section A.3 elaborates on limitations, addressing011

dataset constraints, imputation dependencies, and012

computational factors, enhancing transparency and013

reproducibility.014

A.1 Non-Cognitive Questions and Response015

Options016

Below is the complete list of 28 non-cognitive (NC)017

questions used to collect weekly student engage-018

ment data. Each question includes its prompting019

rule and response options.020

• Q1: How much are you looking forward to021

your CS1 class lecture today?022

Rule: Prompted every Monday, Wednesday,023

and Friday at 12:01 PM (timeout 9240s)024

Options:025

1. I am really looking forward to it026

2. I am kind of looking forward to it027

3. I am not really looking forward to it028

4. I am not planning to attend today’s lec-029

ture030

• Q2: How well do you feel you understood the031

lecture material today?032

Rule: Prompted every Monday, Wednesday,033

and Friday at 3:25 PM on departure from the034

lecture hall (GPS-based, timeout 9240s)035

Options:036

1. I understood all of it well037

2. I understood most of it well038

3. There were some parts I didn’t under-039

stand well040

4. There were many parts I couldn’t under-041

stand well042

• Q3: What are the (up to 2) most important043

reasons for your experience?044

Rule: If Q2 response is 1-4 (timeout 9240s)045

Options:046

1. The clarity (or lack of it) of the presenta- 047

tion 048

2. The interestingness (or lack of it) of the 049

content 050

3. The amount that I prepared 051

4. Something else 052

• Q4: You answered “Something else”. Would 053

you like to tell us more? 054

Rule: If Q3 response is 4 (timeout 9240s) 055

Options: 056

1. FillText 057

• Q5: Reflecting on the CS1 class today, which 058

statement best describes your feelings? 059

Rule: Prompted every Monday, Wednesday, 060

and Friday at 7:00 PM (timeout 9240s) 061

Options: 062

1. I thoroughly enjoyed it 063

2. I mostly enjoyed it 064

3. I enjoyed it for some parts of it 065

4. I did not enjoy the lecture 066

5. I was bored at the lecture 067

6. I did not attend the lecture 068

• Q6: What are the (up to 2) most important 069

reasons for your response? 070

Rule: If Q5 response is 1-3 (timeout 9240s) 071

Options: 072

1. I love learning new things 073

2. I am doing well in the class 074

3. I like to be with my friends in the class 075

4. I am not doing well but I like being with 076

my friends 077

5. I feel respected in the class 078

• Q7: What are the (up to 2) most important 079

reasons for your response? 080

Rule: If Q5 response is 4-5 (timeout 9240s) 081

Options: 082

1. I don’t like learning new things 083

2. I am not doing well in the class 084

3. I don’t like to be around my classmates 085

4. I don’t have any friends in the class 086

5. My friends don’t go 087

6. I don’t feel respected 088

• Q8: Select an answer that best describes your 089

reflection on your CS1 lab. 090
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Rule: Prompted every Monday on departure091

from lab (GPS-based, timeout 9240s)092

Options:093

1. I was able to complete all tasks094

2. I was able to complete most tasks095

3. I was unable to complete some tasks096

4. I was unable to complete most tasks097

5. I did not go to the lab today098

• Q9: What are the (up to 2) most important099

reasons for your response?100

Rule: If Q8 response is 3-4 (timeout 9240s)101

Options:102

1. I did not study the relevant topics103

2. I studied but tasks were too difficult104

3. I did not seek help from lab assistants105

4. I did not get help from lab assistants106

5. I did not attend past lectures107

6. I don’t have a partner108

• Q10: What are the (up to 3) most important109

reasons for your response?110

Rule: If Q8 response is 5 (timeout 9240s)111

Options:112

1. Physically unwell113

2. Don’t like being in lab114

3. Didn’t study relevant topics115

4. Don’t get help from assistants116

5. Did not attend past lectures117

6. No partners118

7. Can do tasks alone119

8. Attended another day120

• Q11: Select up to 3 responses that best de-121

scribe your experience with classmates in the122

last 2 days.123

Rule: Prompted every Tuesday and Thursday124

at 12:01 PM (timeout 9240s)125

Options:126

1. Learned something new127

2. Students near me work well together128

3. Learned something personal129

4. Comfortable asking for help130

5. Classmates respect my opinions131

6. Opinions not respected132

7. Didn’t feel like talking133

8. Worked by myself134

• Q12: Select up to 3 responses that best de- 135

scribe your experience with your instructor in 136

the last 2 days. 137

Rule: If Q11 response is 1-8 (timeout 9240s) 138

Options: 139

1. Instructor knows my name 140

2. Instructor cares about me 141

3. Acquainted with instructor 142

4. Spoke informally 143

5. Comfortable asking for help 144

6. Not comfortable asking 145

7. Instructor respects opinions 146

8. Opinions not respected 147

9. Didn’t feel like talking 148

• Q13: How strongly do you feel you belong at 149

UNL? 150

Rule: Prompted every Tuesday and Thursday 151

on departure from areas on campus where 152

students usually gather outside of their classes 153

or labs (GPS-based, timeout 9240s) 154

Options: 155

1. Really belong 156

2. Bit like I belong 157

3. Could belong 158

4. Little out of place 159

5. Don’t belong 160

• Q14: How strongly do you feel you belong in 161

the CS1 class? 162

Rule: If Q13 response is 1-5 (timeout 9240s) 163

Options: 164

1. Really belong 165

2. Bit like I belong 166

3. Could belong 167

4. Little out of place 168

5. Don’t belong 169

• Q15: What strategy do you typically use for 170

solving assignments and lab problems? (Up 171

to 3) 172

Rule: Prompted every Tuesday and Thursday 173

at 7:00 PM (timeout 9240s) 174

Options: 175

1. Use concepts from lectures/labs 176

2. Categorize problems 177

3. Solve without prior context 178

4. Ask friends 179
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5. Search online180

• Q16: Which statement best describes your181

experience? (Up to 2)182

Rule: If Q15 response is 1-5 (timeout 9240s)183

Options:184

1. Attempt extra problems185

2. Ask instructor for more186

3. Only required problems187

4. Feel anxious188

5. Struggle with required problems189

• Q17: What are the (up to 2) most important190

reasons?191

Rule: If Q16 response is 1-2 (timeout 9240s)192

Options:193

1. Love challenging problems194

2. Increase grade195

3. Be ahead196

4. Impress instructor197

5. Impress friends198

• Q18: What grade do you think you might199

earn in CS1?200

Rule: Prompted every Saturday at 12:01 PM201

(timeout 9240s)202

Options:203

1. A204

2. B205

3. C206

4. D207

5. Not pass208

• Q19: How confident are you in completing209

CS1 requirements?210

Rule: If Q18 response is 1-5 (timeout 9240s)211

Options:212

1. Very confident213

2. Confident214

3. Somewhat confident215

4. Little confident216

5. Not confident217

• Q20: How confident are you in excelling in218

CS1?219

Rule: If Q19 response is 1-5 (timeout 9240s)220

Options:221

1. Very confident222

2. Confident223

3. Somewhat confident 224

4. Little confident 225

5. Not confident 226

• Q21: How satisfied are you with your perfor- 227

mance in this class? 228

Rule: Prompted every Saturday at 7:00 PM 229

(timeout 9240s) 230

Options: 231

1. Very satisfied 232

2. Satisfied 233

3. Somewhat satisfied 234

4. Little satisfied 235

5. Not satisfied 236

• Q22: How do you think other students are 237

performing compared to you? 238

Rule: If Q21 response is 1-5 (timeout 9240s) 239

Options: 240

1. Much better 241

2. Little better 242

3. I’m a little better 243

4. I’m much better 244

• Q23: How worried are you about your perfor- 245

mance? 246

Rule: If Q22 response is 1-4 (timeout 9240s) 247

Options: 248

1. Not at all 249

2. Little 250

3. Somewhat 251

4. Worried 252

5. Very worried 253

• Q24: How much do you see yourself as a 254

future engineer or scientist? 255

Rule: Prompted every Sunday at 12:01 PM 256

(timeout 9240s) 257

Options: 258

1. Well suited 259

2. Like but unsure 260

3. Want to like but doubt 261

4. Not for me 262

• Q25: How much do others see you as a future 263

engineer/scientist? 264

Rule: If Q24 response is 1-4 (timeout 9240s) 265

Options: 266

1. Very much 267
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2. A lot268

3. Somewhat269

4. A little270

5. Not at all271

• Q26: How important is CS1 for your future272

career?273

Rule: If Q25 response is 1-5 (timeout 9240s)274

Options:275

1. Very important276

2. Important277

3. Somewhat important278

4. Little important279

5. Not important280

• Q27: How important is doing well in college281

classes for a good life?282

Rule: If Q26 response is 1-5 (timeout 9240s)283

Options:284

1. Very important285

2. Important286

3. Somewhat important287

4. Little important288

5. Not important289

• Q28: What type of on-campus extracurricular290

activities are you involved in?291

Rule: Prompted every Sunday at 7:00 PM292

(timeout 9240s)293

Options:294

1. Fraternity/sorority295

2. Social club296

3. Sports team297

4. None298

A.2 Related Work299

This research sits at the intersection of LLMs, time-300

series forecasting, and educational analytics, with301

a particular focus on handling missing data and fea-302

ture selection in LE sequences. Below, we review303

prior work in these areas, highlighting gaps that304

our LLM-based framework addresses.305

LLMs for Time-Series and Sequential Data.306

Transformer-based LLMs have revolutionized NLP,307

excelling in tasks like text generation and classifica-308

tion (Bommasani et al., 2021). Recent efforts have309

extended their application to sequential data be-310

yond text, such as time-series forecasting. Models311

like TimeGPT (Garza et al., 2024) and Prompt- 312

Cast (Xue and Salim, 2024) leverage LLMs’ se- 313

quence modeling capabilities to predict numeric 314

trends, often by verbalizing time-series into textual 315

prompts. Research in this domain can be broadly 316

categorized into model-centric and data-centric ap- 317

proaches (Sun et al., 2023). 318

Data-centric methods emphasize transforming 319

time-series into representations suitable for pre- 320

trained LMs, using embedding techniques to align 321

time-series tokens with LM text spaces (Sun et al., 322

2023), augmenting embeddings with prompts con- 323

taining dataset context or task instructions (Jin 324

et al., 2024), two-stage fine-tuning (Chang et al., 325

2023), and zero-shot preprocessing of numeric 326

data (Gruver et al., 2023). Model-centric ap- 327

proaches adapt LMs to time-series by fine-tuning 328

specific layers (e.g., embedding, normalization) 329

while freezing others (?), incorporating designs 330

like time-series decomposition and soft prompts 331

(Cao et al., 2023), framing forecasting as question- 332

answering (Xue and Salim, 2024), or using prompt- 333

tuning with few-shot learning (Liu et al., 2023). 334

While we adopt a model-centric approach by 335

fine-tuning LLMs for forecasting, our work di- 336

verges by targeting experiential, qualitative LE 337

data rather than numeric time-series. Unlike soft- 338

prompt methods (Cao et al., 2023), we employ 339

discrete prompts, and our focus on subjective en- 340

gagement attributes in education addresses a do- 341

main where temporal dependencies and missing- 342

ness remain underexplored by existing LLM-based 343

time-series models. 344

Student Engagement Forecasting in Educa- 345

tional Analytics. Educational data mining has 346

long explored student engagement through longi- 347

tudinal data, often using cognitive metrics (e.g., 348

grades) or behavioral logs (e.g., clickstreams) 349

(Wang et al., 2014; Li et al., 2020). Machine learn- 350

ing methods like LSTMs and random forests have 351

been applied to predict engagement or performance 352

(Xu and Ouyang, 2022), but they typically rely on 353

numeric features and struggle with the subjective, 354

textual responses prevalent in LE data. Recent 355

studies have incorporated non-cognitive (NC) fac- 356

tors—such as self-efficacy and motivation—using 357

survey-based datasets (Fredricks, 2014; Sinatra 358

et al., 2015), yet these efforts rarely address tem- 359

poral dynamics or missingness systematically. Our 360

approach differs by focusing on weekly NC tra- 361

jectories, verbalizing them for LLM processing, 362
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and forecasting binary engagement shifts, offering363

a novel bridge between educational analytics and364

NLP.365

Imputing Missing Data in LE Sequences.366

Missing data is a pervasive challenge in longitu-367

dinal studies, with implications for model accu-368

racy and generalizability. Rubin’s taxonomy classi-369

fies missingness as missing completely at random370

(MCAR), missing at random (MAR), or missing371

not at random (MNAR), with MNAR being par-372

ticularly problematic due to its correlation with373

unobserved factors (e.g., disengagement) (Rubin,374

1976). Traditional statistical methods, such as mul-375

tiple imputation by chained equations (MICE) (van376

Buuren and Groothuis-Oudshoorn, 2011) and fully377

conditional specification (Van Buuren et al., 2006),378

estimate missing values based on observed data379

distributions. However, these approaches assume380

MCAR or MAR, require complete training sets,381

and struggle with LE data’s qualitative heterogene-382

ity and MNAR patterns, such as students skipping383

questions due to disinterest (Muzellec et al., 2020).384

Machine learning has advanced imputation with385

generative models. GAIN (Yoon et al., 2018) uses386

Generative Adversarial Networks (GANs) to im-387

pute numeric values, while MIWAE (Mattei and388

Frellsen, 2019) extends importance-weighted au-389

toencoders for MAR data. Transformed Distribu-390

tion Matching (TDM) (Zhao et al., 2023) aligns in-391

complete batches distributionally, excelling across392

missingness types. These methods, however, fal-393

ter with LE sequences’ textual NC features and394

MNAR missingness, where context-aware solu-395

tions are needed. Techniques like LOCF (Liu,396

2016) are inadequate, ignoring behavioral causes397

of missingness. Transformer-based approaches398

like TabMT (Gulati and Roysdon, 2023) and LLM399

pre-training on tables (Yang et al., 2024) show400

promise but overlook LE-specific patterns. Our401

LLM-informed imputation uses GPT-4o to gener-402

ate textual descriptors, capturing MNAR context403

without numeric estimation.404

Feature Selection for Qualitative High-405

Dimensional Data. Feature selection—identifying406

the most relevant features from high-dimensional407

datasets—is critical for enhancing model perfor-408

mance, reducing computational complexity, and409

improving interpretability (Guyon and Elisseeff,410

2003). In domains like LE data, with its rich,411

qualitative NC attributes, effective feature selec-412

tion is paramount yet challenging. Traditional413

methods include statistical techniques like vari- 414

ance thresholding and correlation-based selection 415

(Jain et al., 2000), alongside machine learning ap- 416

proaches such as feature importance from tree- 417

based models (e.g., random forests) and regulariza- 418

tion (e.g., LASSO) (Hastie et al., 2009). Recently, 419

deep learning has introduced automated feature se- 420

lection via attention mechanisms and feature mask- 421

ing, learning relevance within neural architectures 422

(Ying et al., 2024; Cherepanova et al., 2023). 423

These methods, however, often rely on statistical 424

or linear assumptions, which may fail to capture the 425

nuanced, non-linear, and semantically driven rela- 426

tionships in qualitative LE data (e.g., self-reported 427

engagement). For instance, correlation-based se- 428

lection might overlook features with subtle contex- 429

tual importance, while deep learning approaches 430

typically require large, labeled datasets—scarce in 431

educational settings. We propose a novel zero-shot 432

feature selection approach using GPT-4o, leverag- 433

ing its advanced reasoning and world knowledge 434

to assess the semantic relevance of NC features 435

for predicting student engagement. Unlike tradi- 436

tional and deep learning methods, our LLM-based 437

strategy excels in high-dimensional, textual data, 438

offering a scalable, context-aware alternative that 439

aligns with LE data’s subjective nature and en- 440

hances downstream forecasting. 441

While prior studies apply LLMs to time-series, 442

impute missing values, or select features in struc- 443

tured data, none address the combined challenges 444

of qualitative LE sequences, MNAR missingness, 445

and engagement forecasting in education. Our 446

three-tier framework—imputation, zero-shot fea- 447

ture selection, and fine-tuned forecasting—extends 448

NLP techniques to this domain, emphasizing LLM- 449

based feature selection as a key innovation, and 450

outperforms traditional and generative baselines 451

by embracing LE data’s textual richness. 452

A.3 Limitations 453

While our LLM-based framework demonstrates 454

the promise of LLMs in forecasting student en- 455

gagement levels from qualitative longitudinal data, 456

several limitations warrant consideration. First, 457

our dataset, comprising 960 trajectories from stu- 458

dents within a single university’s introductory pro- 459

gramming courses, is modest in size compared to 460

typical NLP corpora. This scale might limit the 461

robustness and the generalizability of our findings 462

to diverse academic disciplines or educational set- 463
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tings. Furthermore, the domain-specific nature of464

student engagement and the verbalization of non-465

cognitive features might mean that the observed466

performance advantages, such as those of encoder-467

only LLMs (e.g., RoBERTa) over numeric base-468

lines, may weaken with different distributions of469

non-cognitive features or variations in verbaliza-470

tion styles. This sensitivity to feature quantity and471

modality was also suggested by our ablation stud-472

ies. The limited dataset size could also impact473

the model’s ability to generalize to non-academic474

longitudinal experiential data, such as workplace475

engagement.476

Second, our approach relies on GPT-4o for im-477

puting missing data exhibiting MNAR patterns.478

While this zero-shot strategy effectively leverages479

the model’s contextual understanding, it introduces480

a dependency on an external, proprietary model,481

potentially raising concerns about reproducibility482

and cost. Moreover, there is a risk that the textual483

patterns generated by GPT-4o could introduce a484

bias, potentially skewing downstream forecasting485

if these patterns do not perfectly align with the486

true underlying engagement signals. For our base-487

line comparisons, we employed zero-imputation488

for missing values in the numeric data. While489

straightforward, this method might undervalue the490

potential of traditional ML models, as more so-491

phisticated imputation techniques like MICE (van492

Buuren and Groothuis-Oudshoorn, 2011) could po-493

tentially narrow the performance gap.494

Finally, the computational demands of fine-495

tuning LLMs like Gemma2 9B and Mixtral 8x7B496

are substantial, requiring significant resources (e.g.,497

8× A40 GPUs for our experiments). This resource-498

intensive process could pose a barrier to scalability499

for broader datasets or limit the accessibility of our500

approach for researchers with constrained compu-501

tational resources.502

Future work could address these limitations by503

expanding the dataset to include larger, multi-504

domain samples, exploring the transferability of505

our framework to different types of longitudinal ex-506

periential data, investigating the use of lightweight507

LLMs to reduce computational costs, and develop-508

ing or evaluating alternative imputation strategies509

that are less reliant on proprietary models.510
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