A Appendix

This appendix complements the main paper with
detailed materials supporting our framework for
forecasting student engagement levels. Section A.1
lists the 28 non-cognitive questions and sample
responses used to derive qualitative longitudinal
features, showcasing the data’s experiential rich-
ness. Section A.2 provides an extended discussion
of related work, covering prior efforts in LL.Ms,
time-series forecasting, and educational analytics.
Section A.3 elaborates on limitations, addressing
dataset constraints, imputation dependencies, and
computational factors, enhancing transparency and
reproducibility.

A.1 Non-Cognitive Questions and Response
Options

Below is the complete list of 28 non-cognitive (NC)
questions used to collect weekly student engage-
ment data. Each question includes its prompting
rule and response options.

* Q1: How much are you looking forward to
your CS1 class lecture today?
Rule: Prompted every Monday, Wednesday,
and Friday at 12:01 PM (timeout 9240s)
Options:

1. I am really looking forward to it
2. I am kind of looking forward to it

3. T am not really looking forward to it

4. T am not planning to attend today’s lec-
ture

* Q2: How well do you feel you understood the
lecture material today?
Rule: Prompted every Monday, Wednesday,
and Friday at 3:25 PM on departure from the
lecture hall (GPS-based, timeout 9240s)
Options:

1. T understood all of it well

2. T understood most of it well

3. There were some parts I didn’t under-
stand well

4. There were many parts I couldn’t under-
stand well

* Q3: What are the (up to 2) most important
reasons for your experience?
Rule: If Q2 response is 1-4 (timeout 9240s)
Options:

1. The clarity (or lack of it) of the presenta-
tion

2. The interestingness (or lack of it) of the
content

3. The amount that I prepared

4. Something else

* Q4: You answered “Something else”. Would
you like to tell us more?
Rule: If Q3 response is 4 (timeout 9240s)
Options:

1. FillText

* QS5: Reflecting on the CS1 class today, which
statement best describes your feelings?
Rule: Prompted every Monday, Wednesday,
and Friday at 7:00 PM (timeout 9240s)
Options:

1. I thoroughly enjoyed it

I mostly enjoyed it

I enjoyed it for some parts of it

1 did not enjoy the lecture

I was bored at the lecture

I did not attend the lecture

AN

* Q6: What are the (up to 2) most important
reasons for your response?
Rule: If Q5 response is 1-3 (timeout 9240s)
Options:
1. I'love learning new things
2. I am doing well in the class
3. I like to be with my friends in the class
4

. I am not doing well but I like being with
my friends

5. Ifeel respected in the class

* Q7: What are the (up to 2) most important
reasons for your response?
Rule: If Q5 response is 4-5 (timeout 9240s)
Options:
1. I don’t like learning new things
. T am not doing well in the class
. I don’t like to be around my classmates
. I don’t have any friends in the class
. My friends don’t go
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. I don’t feel respected

* Q8: Select an answer that best describes your
reflection on your CS1 lab.



Rule: Prompted every Monday on departure
from lab (GPS-based, timeout 9240s)
Options:
1. I was able to complete all tasks
I was able to complete most tasks
I was unable to complete some tasks
I was unable to complete most tasks
I did not go to the lab today
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* Q9: What are the (up to 2) most important
reasons for your response?
Rule: If Q8 response is 3-4 (timeout 9240s)
Options:
1. I did not study the relevant topics
I studied but tasks were too difficult
I did not seek help from lab assistants
I did not get help from lab assistants
I did not attend past lectures

AN

I don’t have a partner

* Q10: What are the (up to 3) most important
reasons for your response?
Rule: If Q8 response is 5 (timeout 9240s)
Options:
1. Physically unwell
Don’t like being in lab
Didn’t study relevant topics
Don’t get help from assistants
Did not attend past lectures
No partners
Can do tasks alone
Attended another day
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* Q11: Select up to 3 responses that best de-
scribe your experience with classmates in the
last 2 days.
Rule: Prompted every Tuesday and Thursday
at 12:01 PM (timeout 9240s)
Options:

1. Learned something new
. Students near me work well together
. Learned something personal
. Comfortable asking for help
. Classmates respect my opinions
Opinions not respected
. Didn’t feel like talking
. Worked by myself
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* Q12: Select up to 3 responses that best de-

scribe your experience with your instructor in
the last 2 days.

Rule: If Q11 response is 1-8 (timeout 9240s)
Options:
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Instructor knows my name

. Instructor cares about me

. Acquainted with instructor

. Spoke informally
Comfortable asking for help
Not comfortable asking
Instructor respects opinions
. Opinions not respected

. Didn’t feel like talking
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Q13: How strongly do you feel you belong at
UNL?
Rule: Prompted every Tuesday and Thursday
on departure from areas on campus where
students usually gather outside of their classes
or labs (GPS-based, timeout 9240s)
Options:

1. Really belong

2. Bit like I belong

3. Could belong

4. Little out of place

5. Don’t belong

Q14: How strongly do you feel you belong in
the CS1 class?

Rule: If Q13 response is 1-5 (timeout 9240s)
Options:

. Really belong

. Bit like I belong

. Could belong

Little out of place

R

Don’t belong

Q15: What strategy do you typically use for
solving assignments and lab problems? (Up
to 3)
Rule: Prompted every Tuesday and Thursday
at 7:00 PM (timeout 9240s)
Options:

1. Use concepts from lectures/labs

2. Categorize problems

3. Solve without prior context

4. Ask friends



5. Search online

* Q16: Which statement best describes your

experience? (Up to 2)
Rule: If Q15 response is 1-5 (timeout 9240s)
Options:

1. Attempt extra problems

2. Ask instructor for more

3. Only required problems

4. Feel anxious

5. Struggle with required problems

* Q17: What are the (up to 2) most important

reasons?
Rule: If Q16 response is 1-2 (timeout 9240s)
Options:

1. Love challenging problems

2. Increase grade

3. Be ahead

4. Impress instructor

5. Impress friends

* Q18: What grade do you think you might
earn in CS1?
Rule: Prompted every Saturday at 12:01 PM
(timeout 9240s)
Options:
1. A
2. B
3. C
4. D
5. Not pass

* Q19: How confident are you in completing

CS1 requirements?
Rule: If Q18 response is 1-5 (timeout 9240s)
Options:

1. Very confident

2. Confident

3. Somewhat confident

4. Little confident

5. Not confident

* Q20: How confident are you in excelling in
CS1?
Rule: If Q19 response is 1-5 (timeout 9240s)
Options:

1. Very confident
2. Confident

3. Somewhat confident
4. Little confident
5. Not confident

* Q21: How satisfied are you with your perfor-
mance in this class?
Rule: Prompted every Saturday at 7:00 PM
(timeout 9240s)
Options:
1. Very satisfied
2. Satisfied
3. Somewhat satisfied
4. Little satisfied
5. Not satisfied

* Q22: How do you think other students are

performing compared to you?
Rule: If Q21 response is 1-5 (timeout 9240s)
Options:

1. Much better

2. Little better

3. I'm a little better

4. I'm much better

* Q23: How worried are you about your perfor-

mance?
Rule: If Q22 response is 1-4 (timeout 9240s)
Options:

1. Not at all

2. Little

3. Somewhat

4. Worried

5. Very worried

* Q24: How much do you see yourself as a
future engineer or scientist?
Rule: Prompted every Sunday at 12:01 PM
(timeout 9240s)
Options:
1. Well suited
2. Like but unsure
3. Want to like but doubt
4. Not for me

* Q25: How much do others see you as a future
engineer/scientist?
Rule: If Q24 response is 1-4 (timeout 9240s)
Options:

1. Very much



2. Alot

3. Somewhat
4. A little

5. Not at all

* Q26: How important is CS1 for your future
career?
Rule: If Q25 response is 1-5 (timeout 9240s)
Options:
1. Very important
Important
Somewhat important

Little important
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Not important

* Q27: How important is doing well in college
classes for a good life?
Rule: If Q26 response is 1-5 (timeout 9240s)
Options:

Very important

Important

Somewhat important

Little important
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Not important

* 28: What type of on-campus extracurricular
activities are you involved in?
Rule: Prompted every Sunday at 7:00 PM
(timeout 9240s)
Options:

1. Fraternity/sorority
2. Social club

3. Sports team

4. None

A.2 Related Work

This research sits at the intersection of LLMs, time-
series forecasting, and educational analytics, with
a particular focus on handling missing data and fea-
ture selection in LE sequences. Below, we review
prior work in these areas, highlighting gaps that
our LLM-based framework addresses.

LLMs for Time-Series and Sequential Data.
Transformer-based LLMs have revolutionized NLP,
excelling in tasks like text generation and classifica-
tion (Bommasani et al., 2021). Recent efforts have
extended their application to sequential data be-
yond text, such as time-series forecasting. Models

like TimeGPT (Garza et al., 2024) and Prompt-
Cast (Xue and Salim, 2024) leverage LLMs’ se-
quence modeling capabilities to predict numeric
trends, often by verbalizing time-series into textual
prompts. Research in this domain can be broadly
categorized into model-centric and data-centric ap-
proaches (Sun et al., 2023).

Data-centric methods emphasize transforming
time-series into representations suitable for pre-
trained LMs, using embedding techniques to align
time-series tokens with LM text spaces (Sun et al.,
2023), augmenting embeddings with prompts con-
taining dataset context or task instructions (Jin
et al., 2024), two-stage fine-tuning (Chang et al.,
2023), and zero-shot preprocessing of numeric
data (Gruver et al., 2023). Model-centric ap-
proaches adapt LMs to time-series by fine-tuning
specific layers (e.g., embedding, normalization)
while freezing others (?), incorporating designs
like time-series decomposition and soft prompts
(Cao et al., 2023), framing forecasting as question-
answering (Xue and Salim, 2024), or using prompt-
tuning with few-shot learning (Liu et al., 2023).

While we adopt a model-centric approach by
fine-tuning LLMs for forecasting, our work di-
verges by targeting experiential, qualitative LE
data rather than numeric time-series. Unlike soft-
prompt methods (Cao et al., 2023), we employ
discrete prompts, and our focus on subjective en-
gagement attributes in education addresses a do-
main where temporal dependencies and missing-
ness remain underexplored by existing LLM-based
time-series models.

Student Engagement Forecasting in Educa-
tional Analytics. Educational data mining has
long explored student engagement through longi-
tudinal data, often using cognitive metrics (e.g.,
grades) or behavioral logs (e.g., clickstreams)
(Wang et al., 2014; Li et al., 2020). Machine learn-
ing methods like LSTMs and random forests have
been applied to predict engagement or performance
(Xu and Ouyang, 2022), but they typically rely on
numeric features and struggle with the subjective,
textual responses prevalent in LE data. Recent
studies have incorporated non-cognitive (NC) fac-
tors—such as self-efficacy and motivation—using
survey-based datasets (Fredricks, 2014; Sinatra
et al., 2015), yet these efforts rarely address tem-
poral dynamics or missingness systematically. Our
approach differs by focusing on weekly NC tra-
jectories, verbalizing them for LLM processing,



and forecasting binary engagement shifts, offering
a novel bridge between educational analytics and
NLP.

Imputing Missing Data in LE Sequences.
Missing data is a pervasive challenge in longitu-
dinal studies, with implications for model accu-
racy and generalizability. Rubin’s taxonomy classi-
fies missingness as missing completely at random
(MCAR), missing at random (MAR), or missing
not at random (MNAR), with MNAR being par-
ticularly problematic due to its correlation with
unobserved factors (e.g., disengagement) (Rubin,
1976). Traditional statistical methods, such as mul-
tiple imputation by chained equations (MICE) (van
Buuren and Groothuis-Oudshoorn, 2011) and fully
conditional specification (Van Buuren et al., 2006),
estimate missing values based on observed data
distributions. However, these approaches assume
MCAR or MAR, require complete training sets,
and struggle with LE data’s qualitative heterogene-
ity and MNAR patterns, such as students skipping
questions due to disinterest (Muzellec et al., 2020).

Machine learning has advanced imputation with
generative models. GAIN (Yoon et al., 2018) uses
Generative Adversarial Networks (GANs) to im-
pute numeric values, while MIWAE (Mattei and
Frellsen, 2019) extends importance-weighted au-
toencoders for MAR data. Transformed Distribu-
tion Matching (TDM) (Zhao et al., 2023) aligns in-
complete batches distributionally, excelling across
missingness types. These methods, however, fal-
ter with LE sequences’ textual NC features and
MNAR missingness, where context-aware solu-
tions are needed. Techniques like LOCF (Liu,
2016) are inadequate, ignoring behavioral causes
of missingness. Transformer-based approaches
like TabMT (Gulati and Roysdon, 2023) and LLM
pre-training on tables (Yang et al., 2024) show
promise but overlook LE-specific patterns. Our
LLM-informed imputation uses GPT-40 to gener-
ate textual descriptors, capturing MNAR context
without numeric estimation.

Feature Selection for Qualitative High-
Dimensional Data. Feature selection—identifying
the most relevant features from high-dimensional
datasets—is critical for enhancing model perfor-
mance, reducing computational complexity, and
improving interpretability (Guyon and Elisseeff,
2003). In domains like LE data, with its rich,
qualitative NC attributes, effective feature selec-
tion is paramount yet challenging. Traditional

methods include statistical techniques like vari-
ance thresholding and correlation-based selection
(Jain et al., 2000), alongside machine learning ap-
proaches such as feature importance from tree-
based models (e.g., random forests) and regulariza-
tion (e.g., LASSO) (Hastie et al., 2009). Recently,
deep learning has introduced automated feature se-
lection via attention mechanisms and feature mask-
ing, learning relevance within neural architectures
(Ying et al., 2024; Cherepanova et al., 2023).

These methods, however, often rely on statistical
or linear assumptions, which may fail to capture the
nuanced, non-linear, and semantically driven rela-
tionships in qualitative LE data (e.g., self-reported
engagement). For instance, correlation-based se-
lection might overlook features with subtle contex-
tual importance, while deep learning approaches
typically require large, labeled datasets—scarce in
educational settings. We propose a novel zero-shot
feature selection approach using GPT-4o, leverag-
ing its advanced reasoning and world knowledge
to assess the semantic relevance of NC features
for predicting student engagement. Unlike tradi-
tional and deep learning methods, our LLM-based
strategy excels in high-dimensional, textual data,
offering a scalable, context-aware alternative that
aligns with LE data’s subjective nature and en-
hances downstream forecasting.

While prior studies apply LLMs to time-series,
impute missing values, or select features in struc-
tured data, none address the combined challenges
of qualitative LE sequences, MNAR missingness,
and engagement forecasting in education. Our
three-tier framework—imputation, zero-shot fea-
ture selection, and fine-tuned forecasting—extends
NLP techniques to this domain, emphasizing LLM-
based feature selection as a key innovation, and
outperforms traditional and generative baselines
by embracing LE data’s textual richness.

A.3 Limitations

While our LLM-based framework demonstrates
the promise of LLMs in forecasting student en-
gagement levels from qualitative longitudinal data,
several limitations warrant consideration. First,
our dataset, comprising 960 trajectories from stu-
dents within a single university’s introductory pro-
gramming courses, is modest in size compared to
typical NLP corpora. This scale might limit the
robustness and the generalizability of our findings
to diverse academic disciplines or educational set-



tings. Furthermore, the domain-specific nature of
student engagement and the verbalization of non-
cognitive features might mean that the observed
performance advantages, such as those of encoder-
only LLMs (e.g., RoBERTa) over numeric base-
lines, may weaken with different distributions of
non-cognitive features or variations in verbaliza-
tion styles. This sensitivity to feature quantity and
modality was also suggested by our ablation stud-
ies. The limited dataset size could also impact
the model’s ability to generalize to non-academic
longitudinal experiential data, such as workplace
engagement.

Second, our approach relies on GPT-4o0 for im-
puting missing data exhibiting MNAR patterns.
While this zero-shot strategy effectively leverages
the model’s contextual understanding, it introduces
a dependency on an external, proprietary model,
potentially raising concerns about reproducibility
and cost. Moreover, there is a risk that the textual
patterns generated by GPT-4o could introduce a
bias, potentially skewing downstream forecasting
if these patterns do not perfectly align with the
true underlying engagement signals. For our base-
line comparisons, we employed zero-imputation
for missing values in the numeric data. While
straightforward, this method might undervalue the
potential of traditional ML models, as more so-
phisticated imputation techniques like MICE (van
Buuren and Groothuis-Oudshoorn, 2011) could po-
tentially narrow the performance gap.

Finally, the computational demands of fine-
tuning LLMs like Gemma2 9B and Mixtral 8x7B
are substantial, requiring significant resources (e.g.,
8% A40 GPUs for our experiments). This resource-
intensive process could pose a barrier to scalability
for broader datasets or limit the accessibility of our
approach for researchers with constrained compu-
tational resources.

Future work could address these limitations by
expanding the dataset to include larger, multi-
domain samples, exploring the transferability of
our framework to different types of longitudinal ex-
periential data, investigating the use of lightweight
LLMs to reduce computational costs, and develop-
ing or evaluating alternative imputation strategies
that are less reliant on proprietary models.
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