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UniDense: Unleashing Diffusion Models with Meta-Routers for
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ABSTRACT
Universal few-shot dense prediction requires a versatile model ca-
pable of learning any dense prediction task from limited labeled
images, which necessitates the model to possess efficient adaptation
abilities. Prevailing few-shot learning methods rely on efficient fine-
tuning of model weights for few-shot adaptation, which carries the
risk of disrupting the pre-trained knowledge and lacks the capabil-
ity to extract task-specific knowledge contained in the pre-trained
model. To overcome these limitations, our paper approaches uni-
versal few-shot dense prediction from a novel perspective. Unlike
conventional fine-tuning techniques that directly use all parame-
ters of the model and modify a specific set of weights for few-shot
adaptation, our method focuses on selecting the task-relevant com-
putation pathways of the pre-trained model while keeping the
model weights frozen. Building upon this idea, we introduce a
novel framework UniDense for universal few-shot dense prediction.
First, we construct a versatile MoE architecture for dense prediction
based on the Stable Diffusion model. We then utilize episodes-based
meta-learning to train a set of routers for this MoE model, called
Meta-Routers, which act as hyper-networks responsible for select-
ing computation blocks relevant to each task. We demonstrate that
fine-tuning these meta-routers for novel tasks enables efficient
adaptation of the entire model. Moreover, for each few-shot task,
we leverage support samples to extract a task embedding, which
serves as a conditioning factor for meta-routers. This strategy al-
lows meta-routers to dynamically adapt themselves for different
few-shot task, leading to improved adaptation performance. Experi-
ments on a challenging variant of Taskonomy dataset with 10 dense
prediction tasks demonstrate the superiority of our approach.

CCS CONCEPTS
• Computing methodologies → Computer vision; Machine
learning.

KEYWORDS
few-shot learning, dense prediction, diffusion model, mixture of
experts, multi-task pre-training

1 INTRODUCTION
Dense prediction tasks, such as semantic segmentation, depth esti-
mation and edge detection, hold significant importance in the field
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of computer vision. Their objective is to learn a mapping from input
images to pixel-wise annotated labels. Given the high cost of pixel-
wise labeling for supervised methods, there is a strong demand for
developing a few-shot learner which can flexibly and efficiently
learn any dense task from a few labeled images. This specific task is
referred to as universal few-shot dense prediction [18], which has
been recently proposed. The ultimate objective of few-shot learning
is to emulate the human brain’s capacity to learn arbitrary new
tasks with minimal samples. The task of universal few-shot dense
prediction serves as a testing ground for evaluating such learning
approaches in the domain of dense prediction tasks.

A crucial requirement for universal few-shot dense prediction
is the ability of the model to adapt flexibly to diverse unseen tasks
while being efficient enough to avoid over-fitting [18]. Several few-
shot learning methods, including metric learning and in-context
learning, have emerged to address this challenge by enabling rapid
adaptation to novel few-shot tasks without the need for additional
fine-tuning [10, 36, 37, 40]. However, numerous experiments con-
sistently demonstrate that models with fine-tuning still achieve the
highest performance [15, 20, 21, 24]. The naive approach involves
fine-tuning the entire model, as depicted in Figure 1a. Nevertheless,
the limited samples in the few-shot setting is insufficient for full-
model fine-tuning, resulting in overfitting. To address this issue, cur-
rent fine-tuning methods often resort to partial fine-tuning. A com-
mon approach is to fine-tune the last few layers [1, 38, 42], as shown
in Figure 1b. Some methods also fine-tune the biases [2, 18, 44], as
depicted in Figure 1c. However, all these methods achieve few-shot
adaptation by modifying the model weights, which may disrupt
the well-learned knowledge from the pre-training stage. Moreover,
recent experiments have demonstrated that not all features of a pre-
trained model are beneficial for novel few-shot tasks and selecting
task-specific features may lead to improved performance [4, 22].
However, prevalent fine-tuning methods simply use all parameters
of the model and lack the ability to extract pre-existing task-specific
knowledge embedded within the pre-trained model.

To overcome these limitations, our paper approaches universal
few-shot dense prediction from a novel perspective. Unlike con-
ventional fine-tuning techniques that directly use all parameters
of the model and modify a specific set of weights to achieve few-
shot adaptation, our method focuses on selecting the task-specific
computation pathways of the pre-trained model while keeping
the model weights frozen, as shown in Figure 1d. Building upon
this concept, we introduce a novel framework called UniDense for
universal few-shot dense prediction. The basic idea of this frame-
work is to construct a MoE (Mixture of Experts) backbone and
achieve few-shot adaptation by fine-tuning its routers, which act as
hyper-networks responsible for selecting task-specific computation
blocks. Specifically, our UniDense framework follows a three-step
pipeline: (1) We transform the UNet-like denoising autoencoder
from Stable Diffusion (SD) [29] into a MoE model. This design al-
lows us to leverage SD pre-trained knowledge, which has been

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Comparison of different few-shot adaptation strate-
gies: Full-model fine-tuning (a) to adjust all model weights
for different tasks; Prediction head fine-tuning (b) and bias
tuning (c) to adjust partial model weights; Our adaptation
method (d) to select task-relevant computation pathways.

empirically proven to be useful for a wide range of dense prediction
tasks [1, 41, 48]. We then conduct multi-task training on this MoE
model using datasets from various base training tasks (disjoint from
testing tasks). After this, we assume that the model possesses the
necessary general knowledge to tackle arbitrary dense prediction
tasks. (2) We utilize episodes-based meta-learning to train a set of
routers for this MoE model, called Meta-Routers. Each episode is
designed to simulate the few-shot setting of testing phase, enabling
the meta-routers to learn how to efficiently fine-tune on arbitrary
unseen dense prediction tasks. (3) For novel few-shot tasks, we
fine-tune these meta-routers to achieve efficient adaptation of the
entire model by choosing task-specific computation pathways.

Moreover, for each few-shot task, we leverage support samples to
extract a task embedding, which serves as a conditioning factor for
the meta-routers. This strategy allows meta-routers to dynamically
adapt themselves for different few-shot task, instead of rely solely
on fine-tuning a fixed set of initialization weights, thus increasing
their flexibility and leading to improved adaptation performance.

We follow the standard evaluation setup of universal few-shot
dense prediction [18] to validate our method. A variant of the
Taskonomy dataset [45], consisting of ten tasks, is used for evalua-
tion. The dataset is partitioned into a 5-fold split, where two tasks
are selected for few-shot evaluation in each split, while the remain-
ing eight tasks are used for training. This setup effectively simulates
the few-shot learning scenario for unseen dense prediction tasks.
Experimental results across all splits consistently demonstrate the
superior performance of our proposed approach.

Our paper makes the following key contributions: (1) We intro-
duce UniDense, a novel framework for universal few-shot dense
prediction, featuring a reliable and versatile MoE architecture based
on the Stable Diffusion model, along with the technique of router
fine-tuning to achieve efficient adaptation by selecting task-specific
computation pathways instead of modifying model weights. (2)
We propose meta-routers which are trained with episodes-based
meta-learning to learn how to rapidly adapt. Moreover, a task em-
bedding directly generated from the few-shot samples is used to
dynamically adjust meta-routers, resulting in highly efficient model
adaptation. (3) Experimental results on a variant of the Taskonomy

dataset across all dataset splits and various shot numbers consis-
tently demonstrate the superior performance of our approach.

2 RELATEDWORK
Universal few-shot dense prediction. Existing few-shot learning
methods in computer vision are typically designed for specific tasks
like classification and semantic segmentation [17, 23, 39]. However,
these methods often rely on task-specific prior knowledge and
assumptions in their model architecture and training procedures,
making them less suitable for generalizing to arbitrary dense pre-
diction tasks. VTM [18] is the pioneering work that addresses the
challenge of few-shot learning for arbitrary dense prediction tasks
in a universal manner, which utilizes non-parametric matching on
tokenized image and label embeddings. However, VTM’s compu-
tational demands and data inefficiency arise from the matching
operation between all tokens of the query image and the support
images. Furthermore, the bias tuning technique used for few-shot
adaptation in VTM lacks the ability to excavate the task-specific
knowledge embedded in the pre-trained model. In contrast, our
UniDense framework offers rapid inference regardless of the num-
ber of support images, and the router fine-tuning technique allows
our method to extract task-specific knowledge from the pre-trained
model by selecting task-relevant computation pathways.
Few-shot fine-tuning. Conventional fine-tuning strategies for
few-shot learning achieve efficient adaptation by selectively fine-
tuning specific parts of the model [18, 19, 35, 38]. Another set of
methods involve inserting adapter modules into the frozen pre-
trained model and fine-tuning these adapters for few-shot adapta-
tion [12, 46]. However, all these methods directly use all parameters
of the model and overlook the extraction of task-specific knowl-
edge hidden in the well-learned pre-trained model. In contrast, our
approach achieves few-shot adaptation by selectively choosing com-
putation pathways that excavate the task-specific knowledge. The
closest relevant studies to our method involve training a masking
module to select relevant features for novel few-shot tasks [4, 49].
However, these methods are not tailored for the model with multi-
task pre-training, which limits their ability for universal few-shot
dense prediction. In contrast, our MoE design allows us to fully
exploit the knowledge from multiple base training tasks.
Unleashing diffusion models for visual perception. While
diffusion models are primarily trained using generative loss, their
features have shown impressive performance in specific visual
perception tasks that demand a comprehensive understanding of
pixel-level fine-grained information [1, 41, 48], such as semantic
segmentation and depth estimation. However, existing works either
focus on leveraging diffusion models for a specific task [1, 41] or
address multiple visual perception tasks without considering the
few-shot setting [48]. Currently, there is no effective and elegant
method to fully harness the pre-trained knowledge of diffusion
models and adapt them to few-shot visual perception tasks in a
universal manner. To the best of our knowledge, we are the first to
make an attempt to bridge this gap.

3 PROBLEM DEFINITION
The problem of universal few-shot dense prediction [18] aims to
build a universal few-shot learner F that, for any dense prediction
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task T : R𝐻×𝑊 ×3 → R𝐻×𝑊 ×𝐶T , where 𝐶T ∈ N, can produce a
prediction 𝑌𝑄 for an unseen (query) image 𝑋𝑄 given only a few
labeled (support) examples ST :

𝑌𝑄 = F (𝑋𝑄 ;ST ), ST = {(𝑋 𝑖 , 𝑌 𝑖 )}𝑖≤𝑁𝑆
, (1)

where 𝑁𝑆 denotes the number of labeled images for each few-shot
dense prediction task, namely the shot number.

To capture the general knowledge for the domain of dense pre-
diction, several base dense prediction tasks {T 𝑖

𝐵
}𝑖≤𝑁𝐵

are used for
the multi-task pre-training of the few-shot learner F , where each
base task does not have a limitation on the number of examples.
Here, 𝑁𝐵 represents the number of base tasks and the testing task
is not included among the base tasks.

4 METHODOLOGY
In this section, we present the details of our proposed UniDense
framework. We begin by introducing the foundational concepts of
MoE (Mixture of Experts) and Stable Diffusion model, upon which
UniDense is built. Next, we delve into the architectural design
details of our method. Subsequently, we proceed to introduce the
three-stage pipeline of our UniDense framework.

4.1 Preliminaries
Mixture of Experts. AMoE layer typically contains a set of expert
networks 𝐸1, 𝐸2, ..., 𝐸𝑁𝐸 along with a routing network (router) 𝐺 .
The output of a MoE layer is the weighted sum of the output from
every expert. The router 𝐺 calculates the weight 𝐺𝑘 (𝑥) for each
expert given the input 𝑥 . Formally, the output of a MoE layer is

𝑦 =

𝑁𝐸∑︁
𝑘=1

𝐺𝑘 (𝑥)𝐸𝑘 (𝑥). (2)

The router𝐺 is a noisy top-K routing network [34] with parameters
𝑊𝐺 and𝑊𝑁 . It models 𝑃 (𝐸𝑘 |𝑥) as the probability of using expert
𝐸𝑘 and selects 𝑁𝐾 experts with the highest 𝑃 (𝐸𝑘 |𝑥) to contribute
to the final output. The whole process is shown as follows:

𝐺 (𝑥) = 𝑇𝑜𝑝 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑊𝐺 + N(0, 1)𝑆𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (𝑥𝑊𝑁 )), 𝑁𝐾 ), (3)

where 𝑇𝑜𝑝 (·, 𝑁𝐾 ) sets all elements in the vector to zero except the
elements with the largest 𝑁𝐾 values. N(0, 1) represents sampling
from a normal distribution. Softplus is the smooth approximation
to the ReLU function:

𝑆𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝 (𝑥)). (4)

Stable Diffusion. The Stable Diffusion model [29] is a text-to-
image model trained on the large-scale image-text dataset LAION-
5B [31]. This model has demonstrated impressive performance in
generating images controlled by language descriptions. Initially,
they train a VQGAN model [7], which comprises an encoder E
and a decoder D, enabling conversion between the pixel space and
the latent space. Subsequently, a diffusion model is trained on this
latent space. The noise predictor network 𝜖𝜃 employed in the latent
diffusion model is implemented as a UNet [30] and incorporates
rich pre-trained knowledge, which has empirically shown its effec-
tiveness in dense prediction tasks [1, 41, 48]. Hence, we opt to adopt
the UNet architecture as the foundation for our model’s backbone.
Our approach does not utilize the diffusion process and language

interface of the Stable Diffusion model. Thus, we leave the detail
descriptions of the Stable Diffusion model in the appendix.

4.2 Architecture
Our model architecture consists of a MoE backbone based on the
UNet-like denoising autoencoder from the Stable Diffusion model,
along with a prediction head that produces predictions with varying
dimensions for different tasks, as shown in Figure 2.
Backbone. To leverage the pre-trained knowledge of the Stable
Diffusion model, our backbone is constructed based on the UNet-
like denoising autoencoder 𝜖𝜃 from Stable Diffusion. Specifically,
given an input image 𝑋 ∈ R𝐻×𝑊 ×3, we firstly employ the encoder
E of the VQGAN to encode the input image into the latent space:

𝑍 = E(𝑋 ), 𝑍 ∈ R
𝐻
8 ×𝑊

8 ×4 . (5)

We feed the latent feature map 𝑍 to 𝜖𝜃 and then a set of hierarchical
feature maps are extracted from the last layer of each output block
in different resolutions:

{𝐹 𝑖 }𝑖≤4 = 𝜖𝜃 (𝑍 ), (6)

where 𝐹 𝑖 ∈ R
𝐻

2𝑖+2 ×
𝑊

2𝑖+2 ×𝐶
𝑖

, with 𝑖 = 1, 2, 3, 4. For instance, if the
input image size is 256×256, the output feature maps of 𝜖𝜃 will have
side lengths of 32, 16, 8, 4. Note that we only use the self-attention
layers in 𝜖𝜃 since we do not utilize the language interface of the
Stable Diffusion model. Additionally, no extra noise is added to the
input image, which is equivalent to using a timestep of 0 in the
diffusion process.

To enable efficient adaptation by selecting task-specific compu-
tation pathways for novel few-shot tasks, we propose to fine-tune
the routers of a MoE backbone. Here, we show how to construct
the MoE backbone based on the Stable Diffusion model. Inspired
by Mod-Squad [3], which transforms the vision transformer into
a MoE model, we convert the multi-head attention layers and the
feed-forward layers in the transformer blocks of the Stable Diffu-
sion model’s denoising autoencoder 𝜖𝜃 into MoE attention layers
and MoE MLP layers.

We followMoA [47] to construct the MoE attention layers. Given
a query token𝑞𝑖 ∈ R1×𝐶𝑀 from the query sequence𝑄 , the objective
of a MoE attention layer is to generate a new token 𝑦𝑖 for 𝑞𝑖 , with
𝑁𝑎
𝐸
attention experts {𝐸𝑘

𝐴
}𝑁

𝑎
𝐸

𝑘=1 and the router 𝐺𝐴:

𝑦𝑖 =

𝑁𝑎
𝐸∑︁

𝑘=1
𝐺𝑘𝐴 (𝑞

𝑖 ) · 𝐸𝑘𝐴 (𝑞
𝑖 ), (7)

𝐸𝑘𝐴 (𝑞
𝑖 ) = (𝛼𝑖,𝑘𝑉𝑊𝑉 )𝑊 𝑘

𝑂 , (8)

𝛼𝑖,𝑘 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑞𝑖𝑊 𝑘

𝑄
(𝐾𝑊𝐾 )𝑇
√
𝐶𝐻

), (9)

where 𝐶𝐻 is the head dimension.𝑊𝐾 ,𝑊𝑉 ∈ R𝐶𝑀×𝐶𝐻 are shared
across attention experts to reduce computational complexity, while
𝑊 𝑘
𝑄

∈ R𝐶𝑀×𝐶𝐻 and𝑊 𝑘
𝑂

∈ R𝐶𝐻 ×𝐶𝑀 are specific to each expert.
As for a MoE MLP layer, we convert the GEGLU feed-forward

layer [33] adopted in 𝜖𝜃 into a MoE model:

𝑦 =

𝑁
𝑓

𝐸∑︁
𝑘=1

𝐺𝑘𝐹 (𝑥) · 𝐸
𝑘
𝐹 (𝑥), (10)
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Figure 2: Illustration of our proposed UniDense framework, which consists of three stages (A∼C). ‘SD Encoder’ and ‘SD Decoder’
represent the VQGAN encoder and decoder from the Stable Diffusion (SD) model. The task-specific convolution layer in SD
decoder is omitted for clarity. The ‘UNet’ is a MoE module transformed from the UNet-like denoising autoencoder of SD model.
The ‘lock’ icon represents freezing parameters and the ‘flame’ icon represents parameter tuning.

𝐸𝑘𝐹 (𝑥) = (Φ(𝑥�̂� 𝑘
G) ⊙ 𝑥�̂�

𝑘
I )�̂�

𝑘
O , (11)

where Φ represents the GELU activation function [13]. Φ(𝑥�̂�G) act
as gating values. ⊙ represents element-wise product.

The weights of attention experts {𝐸𝑘
𝐴
} and MLP experts {𝐸𝑘

𝐹
} are

initialized using the weights from the multi-head attention layers
and the feed-forward layers in 𝜖𝜃 . For the specific details of this
initialization process, please refer to the appendix.
Prediction head. Recent research [1] has shown that different
levels of feature maps from 𝜖𝜃 contain varying levels of semantic
information. To aggregate these levels of information, we introduce
a feature aggregation moduleU, which consists of several convo-
lutional layers and upsampling layers. From the lowest scale to the
highest scale of {𝐹 𝑖 }𝑖≤4, the feature aggregation module upsamples
the current level of feature map and concatenates it with the next
level of feature map, followed with convolutions. This procedure
generates a feature map with the shape R

𝐻
8 ×𝑊

8 ×𝐶U . To generate
the final predictions with a high resolution of𝐻×𝑊 , an upsampling
procedure is required. Instead of using the naive bilinear interpola-
tion, we utilize the decoder D from the Stable Diffusion model as a
parametric upsampling procedure. Since the output dimension 𝐶T
may vary for different tasks, we replace the last convolution layer in
D, which originally produces an output with the shape R𝐻×𝑊 ×3,

with task-specific convolution layers. Therefore, the prediction
head can be represented as:

𝑌 = DT (V(U({𝐹 𝑖 }𝑖≤4))), (12)

where V denotes a 1 × 1 convolution layer that transforms the
feature dimension from R

𝐻
8 ×𝑊

8 ×𝐶U to R
𝐻
8 ×𝑊

8 ×4. DT denotes the
Stable Diffusion decoder with the task-specific convolution layer,
which produces the final prediction 𝑌 with the shape R𝐻×𝑊 ×𝐶T .

4.3 Pipeline
The overall pipeline of our method is illustrated in Figure 2, which
can be divided into three stages: multi-task pre-training of the
backbone, meta-training for the meta-routers, and fine-tuning of
meta-routers for efficient adaptation to novel few-shot tasks.
Multi-task pre-training. To capture the general knowledge for
the domain of dense prediction, we perform multi-task pre-training
for the backbone on a set of base dense prediction tasks {T 𝑖

𝐵
}𝑖≤𝑁𝐵

.
There are two options to achieve multi-task pre-training for a MoE
model. The first is to train a specific router for each task, while the
other is to train a single router for all tasks conditioned on learnable
task embeddings. Experiments have demonstrated that the former
is more effective than the latter [8]. Therefore, we assign each dense
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prediction task a task-specific router for multi-task pre-training.
Note that the Stable Diffusion encoder E and decoder D used in
our model are fixed during the multi-task pre-training to preserve
the pre-trained knowledge from the Stable Diffusion model.

In the single-task setting, previous MoE methods [9, 28, 34] often
use a load-balancing loss to promote similar utilization frequen-
cies of experts across different batches. However, in the multi-task
setting, this approach may force experts on conflicting tasks with
learning gradients counteracting each other [3]. Therefore, we fol-
lowMod-Squad [3] to utilize amutual information loss to encourage
a sparse but strong dependence between experts and tasks:

L =

𝑁𝐵∑︁
𝑖=1

𝑤T𝑖
𝐵
LT𝑖

𝐵
−𝑤𝑀𝐼

∑︁
∀𝑀𝑜𝐸 𝑙𝑎𝑦𝑒𝑟 𝑙

𝐼 (𝑇 ;𝐸𝑙 ), (13)

where 𝑇 = {T 𝑖
𝐵
}𝑖≤𝑁𝐵

, 𝐸𝑙 represents all experts in the MoE layer 𝑙 ,
and 𝐼 (𝑇 ;𝐸𝑙 ) is the mutual information measurement between tasks
𝑇 and experts in 𝐸𝑙 . An auto-balancing weight𝑤T𝑖

𝐵
is learned for

each task-specific loss LT𝑖
𝐵
. We use cross-entropy loss for semantic

segmentation task and L1 loss for the others in our experiments. The
hyper-parameter𝑤𝑀𝐼 is set as 0.001. Here, we omit the computation
details for clarity, which can be found in [3].
Meta-training for Meta-Routers. To enable efficient adaptation
by selecting task-specific computation pathways, we propose to
fine-tune the routers of the MoE backbone. However, it raises ques-
tions about which router to fine-tune and how to ensure its effec-
tiveness. A naive approach is to randomly initialize a set of routers.
However, due to the limited number of samples in the few-shot
testing stage, such randomly initialized routers cannot ensure the
adaptation efficiency for diverse novel tasks. To overcome this, we
introduce Meta-Routers, which are optimized to efficiently adapt to
any novel few-shot task. To obtain meta-routers, we freeze the well
pre-trained backbone and employ episodes-based meta-learning
to train an additional set of routers {𝐺𝑙

𝑀
: ∀𝑀𝑜𝐸 𝑙𝑎𝑦𝑒𝑟 𝑙}. In each

episode, we simulate the few-shot setting during the testing phase.
First, we randomly select a base task T̂ and sample 𝑁𝑆 examples as
the support set ST̂ . Then, we sample another 𝑁𝑄 examples as the
query set QT̂ . The objective of the episodes-based meta-learning is
to make the model obtain optimal performance on the query set
QT̂ after the few-shot fine-tuning based on the support set ST̂ :

L𝑀 =
1

|QT̂ |
∑︁

(𝑋Q ,𝑌Q ) ∈QT̂

L T̂ (𝑌Q , F̂ (𝑋Q ;ST̂ )), (14)

where F̂ (𝑋Q ;ST̂ ) represents the model’s prediction for the query
image 𝑋Q after fine-tuning 𝑁𝐹𝑇 steps on the support set ST̂ , and
L T̂ is the task-specific loss. Note that the fine-tuning procedure
of F̂ (𝑋Q ;ST̂ ) only involves the meta-routers and the task-specific
convolution layer in the prediction head. Calculating the gradient
of L𝑀 is a bi-level optimization problem, which involves comput-
ing the Jacobian matrix of the fine-tuning procedure F̂ (𝑋Q ;ST̂ ),
leading to extra computation cost [11]. In this regard, we opt for
FOMAML (First-Order Model-Agnostic Meta-Learning) [11, 25] to
strike a balance between speed and effectiveness, which can achieve
nearly the same performance with MAML [11] while significantly
reducing GPUmemory requirements and training time, particularly
when the number of fine-tuning steps is large [26].

Moreover, we enhance the meta-routers’ capabilities by incorpo-
rating the task embedding extracted from the support samples. This
transforms each meta-router 𝐺𝑙

𝑀
into a task-conditioned router:

𝐺𝑙𝑀 (𝑥,ST ) = 𝐺𝑙𝑀 (𝑥 + 𝜉 (ST )), (15)

where 𝜉 represents the task embedding extractor. For each sample
(𝑋 𝑖 , 𝑌 𝑖 ) in the support set ST from any task T , 𝜉 first transforms
𝑌 𝑖 ∈ R𝐻×𝑊 ×𝐶T into 𝑌 𝑖 ∈ R𝐻×𝑊 ×3 using linear projections. The
specific details of this transformation are provided in the appendix.
Then, 𝑋 𝑖 and 𝑌 𝑖 are concatenated, resulting in an input with shape
R𝐻×2𝑊 ×3. Next, this concatenated input is fed into a vision trans-
former [5] consisting of three stacked transformer blocks. An extra
token is appended to the sequence of embedded patches, whose
state at the output of the transformer serves as the task token. For
each sample in the support set ST , a task token is extracted. Finally,
𝜉 averages all these task tokens to output the final task embedding.

The inclusion of task-conditioning allows the meta-routers to
dynamically adapt themselves using task embeddings, thereby in-
creasing their flexibility. This enhancement leads to improved adap-
tation performance compared to the naive meta-routers, which rely
solely on fine-tuning a fixed set of initialization weights. Note that
our method differs from existing task-conditioned routers [8, 50]
in a fundamental way. These existing methods extract the task
embedding in a dictionary-like manner: 𝑒𝑚𝑏𝑒𝑑 (𝑖𝑑𝑡𝑎𝑠𝑘 (𝑥)), where
𝑖𝑑𝑡𝑎𝑠𝑘 (𝑥) is the task index of current token 𝑥 and 𝑒𝑚𝑏𝑒𝑑 (·) rep-
resents the embedding layer. However, in the few-shot learning
setting, the pre-trained embedding layer 𝑒𝑚𝑏𝑒𝑑 (·) is not adapt-
able to novel tasks. In contrast, our approach directly extract the
task embedding from the support samples themselves, making it
well-suited for few-shot scenarios.

During meta-training, we only optimize the parameters of the
meta-routers, the task embedding extractor and the task-specific
convolution layers in the prediction head. Note that the task em-
bedding extractor remains fixed during the fine-tuning procedure
F̂ (𝑋Q ;ST̂ ) and the testing phase. This ensures a consistent task
embedding space, enabling meta-routers to achieve more efficient
adaptation when prompted with a stable task embedding.
Router fine-tuning. In the testing phase, given an arbitrary unseen
dense prediction task T̃ with𝑁𝑆 support examples, the model needs
to rapidly adapt to this new task while avoid overfitting. Thanks
to the versatile backbone acquired through multi-task pre-training
and the meta-routers trained with episodes-based meta-learning,
adapting themodel to unseen few-shot tasks are super easy. You just
need to fine-tune the meta-routers and the task-specific convolution
layer on 𝑁𝑆 support samples of the novel task T̃ for 𝑁𝐹𝑇 steps,
which is consistent with the setup in the meta-training stage.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We evaluate our approach on a variant of the Taskon-
omy dataset [45], which only uses the Taskonomy-tiny partition.
Taskonomy dataset contains indoor images with various annota-
tions, where we choose ten dense prediction tasks of diverse output
dimensions: semantic segmentation (SS), euclidean distance (ED),
Z-buffer depth (ZD), texture edge (TE), occlusion edge (OE), 2D
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Table 1: Quantitative comparison on a variant of Taskonomy dataset. 10-shot results are evaluated on each fold after being
trained on the tasks from the other folds, while fully-supervised methods are trained on tasks from each fold independently
(DPT) or trained on all folds (InvPT). The bolded results are the best results within their respective supervision settings.

Supervision Method

Tasks
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

SS SN ED ZD TE OE K2 K3 RS PC
mIoU↑ mErr↓ RMSE↓ RMSE↓ RMSE↓ RMSE↓ RMSE↓ RMSE↓ RMSE↓ RMSE↓

Full DPT [27] 0.4449 6.4414 0.0534 0.0268 0.0188 0.0689 0.0358 0.0357 0.0860 0.0347
InvPT [43] 0.3900 12.9249 0.0589 0.0298 0.0517 0.0788 0.0456 0.0384 0.0949 0.0370

10-Shot

HSNet [23] 0.1069 24.9120 0.2375 0.0748 0.1746 0.1643 0.1056 0.0651 0.2627 0.0610
VAT [14] 0.0353 25.8134 0.2718 0.0779 0.1719 0.1655 0.1450 0.0678 0.2709 0.0796

DGPNet [16] 0.0261 29.1668 0.4579 0.2846 0.1881 0.2130 0.1104 0.1308 0.3680 0.3574
VTM [18] 0.4097 11.4391 0.0741 0.0316 0.0791 0.0912 0.0639 0.0519 0.1089 0.0420

UniDense (ours) 0.4310 9.1261 0.0687 0.0299 0.0634 0.0871 0.0617 0.0442 0.1015 0.0386
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Figure 3: Performance comparison on various shots. UniDense consistently outperforms the previous SOTA method VTM by a
significant margin and even surpasses the fully supervised method InvPT on 9 out of 10 tasks.

keypoints (K2), 3D keypoints (K3), reshading (RS), principal curva-
ture (PC), surface normal (SN). Following VTM, we choose some
single-channel tasks (ED, TE, OE) and transform them into multi-
channel tasks to increase task diversity, and standardize all labels
to [0, 1]. All images and labels are resized to 256 × 256 resolution.
Additional details are given in the appendix.
Evaluation protocol. Following the standard evaluation setup
of universal few-shot dense prediction [18], we partition the ten
tasks to construct a 5-fold split, in each of which two tasks are
used for few-shot evaluation and the remaining eight are used for
training. The split is shown in Table 1. For evaluation on semantic
segmentation (SS), we follow the standard binary segmentation
protocol in few-shot semantic segmentation [32] and report the
mean intersection over union (mIoU) for all classes. We use the
mean angle error (mErr) for surface normal prediction (SN) [6],
and use root mean square error (RMSE) for other tasks. Note that
all metrics are better when their values are smaller except for the
metric of SS. To be consistent with VTM [18], we test our method
on the ‘muleshoe’ building of Taskonomy dataset.
Implementation details.We use the released 1-5 version of Stable
Diffusion in our experiments. We introduce MoE attention layers
and MoE MLP layers into 𝜖𝜃 every two layers. For MoE attention
layers, we use 24 experts with top-k as 8. For MoE MLP layers,
we use 12 experts with top-k as 4. For the multi-task pre-training,

we set the learning rate to 1e-4 with a batch size of 16. For each
training batch, we randomly sample 16 images with their labels for
all training tasks. We use 5 warmup epochs with 50 total training
epochs. For the meta-training of meta-routers, the learning rate is
set as 5e-4, with 3000 episodes in total. Recent research [21] has
found that utilizing a small learning rate exclusively for the non-
finetuned portion of the model can result in significant performance
enhancement during the few-shot fine-tuning process. Therefore,
we employ a 1/100 smaller learning rate to the rest part of the model
for model fine-tuning in the testing phase. The fine-tuning steps
𝑁𝐹𝑇 is set as 30. Further details can be found in the appendix.

5.2 Comparison with State-of-the-Art Methods
In Table 1, we compare the 10-shot performance of our model with
current State-Of-The-Art (SOTA) methods. Among them, ‘HSNet’,
‘DGPNet’ and ‘VAT’ are adapted from previous SOTA few-shot
segmentation methods, following [18]. Our UniDense method con-
sistently outperforms the previous SOTA few-shot method VTM
across all tasks. Figure 3 illustrates the performance of UniDense
and current SOTA methods as we increase the size of the support
set from 10 to 275. Our method exhibits a significant advantage
over VTM across all shot numbers. Remarkably, our model even
surpasses the fully supervised method InvPT on 9 out of 10 tasks
using a much smaller dataset (0.1%). This implies the potential value
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Table 2: Comparing different few-shot adaptation methods
while controlling all models’ backbone as ViT [5].

Method Backbone SS (mIoU↑) SN (mErr↓)
VTM w/o FT [18] ViT-B 0.0002 23.4212

Painter [40] ViT-L 0.1167 19.0734
Linear Head ViT-B 0.2681 13.0704
VTM [18] ViT-B 0.4097 11.4391

UniDense-ViT ViT-B 0.4158 10.2803

Table 3: Effectiveness of meta-routers.
Method SS (mIoU↑) SN (mErr↓)

Random Router 0.3946 10.5673
Meta-Router w/o Cond. 0.4239 9.3122

Meta-Router 0.4310 9.1261

of our method in specialized domains (e.g., medical images) where
the number of available labels ranges from dozens to hundreds.

5.3 Ablation Study
Our method’s superior performance is attributed to the efficient
few-shot adaptationmethod of router fine-tuningwithmeta-routers
and the reliable backbone based on the Stable Diffusion model. This
section conducts ablation experiments to investigate the individual
effectiveness of each design.

Comparing adaptation methods with same backbone. Due
to the architectural differences between our method and VTM, a
direct comparison may be unfair. To demonstrate the effectiveness
of our few-shot adaptation strategy, we perform an ablation experi-
ment by replacing the stable diffusion backbone with a ViT back-
bone. Specifically, we customizeMoE attention layers andMoEMLP
layers within the transformer blocks of the DPT-Base model [27] to
create a MoE ViT model. We then apply our three-stage UniDense
pipeline to this MoE ViT model, resulting in the ‘UniDense-ViT’
model. Table 2 presents the results. The upper section of meth-
ods represents few-shot adaptation without fine-tuning, where
Painter [40] adopts the in-context learning paradigm. The lower
section of methods involves fine-tuning for few-shot adaptation,
where ‘Linear Head’ denotes the method that fine-tunes only the
linear mapping layer while freezing the backbone. Our UniDense-
ViT method outperforms VTM with the same ViT-B backbone and
achieves a significant improvement over the advanced in-context
learning method Painter. These results validate the effectiveness of
our few-shot adaptation strategy.

Effect of Meta-Routers. To realize the idea of few-shot adapta-
tion by selecting task-specific computation pathways, we propose
to fine-tune the routers of the MoE backbone. However, this raises
questions about which router to fine-tune and how to ensure its
effectiveness. Here, we compare three different ways to construct
routers for few-shot fine-tuning in Table 3. ‘Random Router’ repre-
sents randomly initializing a set of routers for few-shot fine-tuning.
‘Meta-Router w/o Cond.’ represents using meta-routers without
task conditions. As observed in the table, meta-routers significantly
surpass randomly initialized routers, and the involvement of task
conditions further improves the performance.

Comparing different methods exploiting Stable Diffusion.
While the pre-trained knowledge of Stable Diffusion (SD) greatly
facilitates our method, it is worth exploring if there are more

Table 4: Comparing different methods to leverage SD pre-
trained knowledge.

Method SS (mIoU↑) SN (mErr↓)
SD+FT 0.3869 10.8713

SD+MTL+FT 0.4016 10.2134
UniDense 0.4310 9.1261
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Figure 4: Visualization of the frequency that experts being
selected for each few-shot task. The horizontal axis repre-
sents the index of the expert in a MoE MLP layer.

direct and effective ways to leverage the SD pre-trained knowl-
edge. Here, we compare three different methods leveraging SD
pre-trained knowledge in universal few-shot dense prediction. In
Table 4, ‘SD+FT’ involves directly fine-tuning the Stable Diffusion
model (specifically, fine-tuning the UNet and the last convolution
layer in decoder) for few-shot adaptation, without multi-task pre-
training. ‘SD+MTL+FT’ first performs multi-task pre-training on
the SD backbone and then fine-tunes it for novel few-shot tasks.
Note that these two methods do not use the MoE architecture. As
observed in the table, UniDense significantly outperforms the other
methods, demonstrating that our UniDense framework fully exploit
SD pre-trained knowledge and effectively adapt the SD model into
the task of universal few-shot dense prediction.

5.4 Visualization
In this section, we perform visualization experiments to demon-
strate that our method is capable of extracting task-specific knowl-
edge by selecting relevant experts for different tasks, and that
our method can effectively transfer knowledge between relevant
tasks. We also visualize the predictions generated by our method
to demonstrate its effectiveness.

Activation frequencies of experts for different tasks. One
advantage of our method is the ability to extract task-specific knowl-
edge by selecting relevant experts for different tasks. To demon-
strate this, we visualize the frequencies of activated experts for
different few-shot tasks. In Figure 4, the left part displays the expert
frequencies obtained using the load-balancing loss, which promotes
similar utilization frequencies of experts across different tasks. In
contrast, the mutual information loss (right) adopted by our method
encourages expert specialization, resulting in a sparse but strong
dependence between experts and tasks.

Transfer efficiency of expert knowledge.We are interested in
understanding which task’s knowledge is more useful than others
for a specific task. To address this, we define the transfer efficiency
of expert knowledge as the percentage of experts that the target
few-shot task shares with the pre-training task. Figure 5 presents
the results for all data folds. From the table, we observe that there is
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Figure 5: Visualization of the transfer efficiency of expert knowledge between different tasks. The tasks at the tail of the arrow
are the tasks used for multi-task pre-training, while the tasks at the head of the arrow are novel few-shot tasks.
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Figure 6: Qualitative comparison of few-shot learning methods in the 10-shot setting.

a higher transfer efficiency between 2D tasks (TE, K2) and between
3D tasks (ED, ZD, SN, RS, PC, K3, OE). This finding is reasonable
and demonstrates that our framework can effectively transfer useful
knowledge between relevant tasks.

Qualitative comparison. In Figure 6, we present visualizations
of the predictions generated by our method and previous SOTA
methods. Comparing our method to VTM, we observe that our
method produces more accurate predictions across all tasks, which
aligns with the results reported in Table 1.

6 CONCLUSION AND DISCUSSION
In this paper, we tackle the universal few-shot learning problem
from a novel perspective. Unlike traditional few-shot fine-tuning

techniques that directly use all parameters of the pre-trained model
and modify a specific set of weights, our approach focuses on select-
ing task-relevant computation pathways while keeping the model
weights frozen. To achieve this, we introduce a novel framework
called UniDense. Our method utilizes the Stable Diffusion model to
construct a versatile MoE architecture and fine-tunes its routers to
achieve few-shot adaptation. To ensure efficient router fine-tuning,
we leverage episodes-based meta-learning to train a set of routers
known as Meta-Routers. Additionally, we introduce a task embed-
ding extractor that generates task conditions directly from support
samples for the meta-routers. By fine-tuning these meta-routers
for novel tasks, we enable highly efficient adaptation of the entire
model. Experimental results on a modified version of the Taskon-
omy dataset demonstrate the superiority of our method.
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