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1 DATASET DETAILS

We use the ‘tiny’ partition of Taskonomy dataset provided by [12],
which consists of images and labels collected from 35 different
buildings. To be consistent with VITM [5], we preprocess three
single-channel tasks, namely Euclidean Distance (ED), Texture Edge
(TE), and Occlusion Edge (OE), to enhance the task diversity:

e Texture edge (TE) labels are generated by applying Sobel
edge detector to RGB images, which consists of a Gauss-
ian filter and image gradient computation. The Gaussian
filter has two hyper-parameters, namely kernel size and the
standard deviation, where adjusting those hyper-parameters
yield different thickness of detected edges. We use three dif-
ferent sets of hyper-parameters — (3, 1), (11, 2), (19, 3) - to
produce 3-channel labels.

e Euclidean distance (ED) labels consists of pixel-wise depth
map, where the depth is computed by the Euclidean distance
from each image pixel to the camera’s optical center. As this
task is very similar to the Z-buffer depth prediction (ZD)
whose label pixels are the distance from each image pixel to
the camera plane, we augment the ED task by segmenting
the depth range and re-normalizing within each segment.
Specifically, we compute the 5-quantiles of the pixel-wise
depth labels in the whole dataset, then use each quantile as
different channels after renoramlization into [0, 1]. Thus the
objective of each channel of the augmented ED task is to
predict Euclidean distance within a specific range, where the
ranges are disjoint for different channels.

e Occlusion edge (OE) labels are similar to texture edge, but
they are constructed to depend on only the 3D geometry
rather than color or lighting. We adopt the same approach
as ED task to augment the OE labels into 5-channel labels.

The original labels for Semantic Segmentation (SS) task have
the shape of 256 x 256 x 1. Each position of the label is an integer
value representing the ground truth semantic category. To convert
these discrete labels into a continuous label structure, we follow
VTM [5] to transform the labels into real values ranging from 0
to 1, resulting in the labels with the shape R?>0%256XNeis wwhere
N,1s = 12 represents the total number of semantic classes. Within
each channel, a value of 0 denotes the background region, while a
value of 1 denotes the object region.

2 IMPLEMENTATION DETAILS

In this section, we elaborate on some implementation details that
were not covered in the main body of the paper.

MOoE transformation. To enable efficient adaptation through
the use of router fine-tuning, we propose transforming the back-
bone into a MoE model. Specifically, we convert the multi-head
attention layers and the feed-forward layers in the transformer
blocks of the Stable Diffusion model’s denoising autoencoder €y
into MoE attention layers and MoE MLP layers. The weights of

attention experts {EIIZ} in the MoE attention layer and MLP experts
{E;‘,} in the MoE MLP layer are initialized using the weights from
the multi-head attention layer and the feed-forward layer in ey.
Below, we will present the details of this initialization process.

For the convenience of readers, we rewrite the definition of the
MoE attention layer here. Given a query token ¢' € R'M from
the query sequence Q, the objective of a MoE attention layer is to

a

generate a new token y' for ¢!, with N' 7 attention experts {Eﬁ}kNi
and the router G4:

N
y' =) k(g - E5(d), (1)
k=1
EX (¢') = (@™ vmi)wg, )
¢ WKW

®)

abk = Softmax( ),
VCu

where Wg, Wy € REMXCH are shared across attention experts
to reduce computational complexity, while WS € REMXCH and

Wg € RCHXCM gre specific to each expert. Here, Cj represents the
dimension of input tokens and Cy represents the head dimension.
Ga selects N experts and sets all other outputs to zero.

Next, we show how to initialize a MoE attention layer from a
multi-head attention layer in €. Given the weights of the query
linear layer WQ € RMXCm*Ch and the output linear layer W €
RPXCHXCM from a multi-head attention layer in g, where h rep-
resents the number of attention heads, we firstly replicate the
weights of Wy and Wo by b times, obtaining WQ € RPbXCuxCr
and Wp € R"0*CrXCum Then, we initialize a MoE atttention layer’s
weights of Wp € RNEXCMXCH and Wy € RNEXCHXCM from
the weights of l/T/Q and Wy, where Ni = hb. The weights of
Wk, Wy € REMXCH are initialized randomly. To maintain the com-
putational complexity between the MoE attention layer and the
multi-head attention layer in €y, the router G4 selects the same
number of attention heads as the multi-head attention layer. This
is achieved by setting N as h, which is 8 in the Stable Diffusion
model. In our experiments, we set b as 3. Therefore, we use 24
experts with top-k as 8 for MoE attention layers.

As for a feed-forward layer in €y, the Stable Diffusion model
adopts a variant of Gated Linear Units (GLU) called GEGLU [8]:

ForcLu (x) = (2(xWg) © xW71)Wo, 4)

where @ represents the GELU activation function [3]. <I>(ng) act
as gating values. Wg, Wy € ROMXCD and Wy € REPXCM, where
Cp = h x CM,ﬁ € N. To transform FGggry into MoE MLP layer,
we split Wg, Wi, Wp into h parts and replicate them by b times,

resulting in {Wg}Zil {W}‘}Zil {W(’;}Zi’l where WgW_’; W(IS €
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REMXCM  Then, a MoE MLP layer can be represented as:

N
y=) GE(x)-Ef(x), ()
k=1
Ef(x) = (2(xW}) 0 xWHW, (6)

where N}J; = hb. G retains the outputs of NIJ; experts and sets all
other outputs to zero. To maintain the computation complexity

before and after the MoE transformation, we set NII: as fl which is
4 in the Stable Diffusion model. In our experiments, we set b as 3.
Therefore, we use 12 experts with top-k as 4 for MoE MLP layers.

Details for extracting task embedding. We enhance the meta-
routers’ capabilities by incorporating the task embedding extracted
from the support samples. To extract the task embedding, we intro-
duce a task embedding extractor ¢ based on the concatenated input
of the image and the label. This approach has been proven effective
in representing vision tasks [10]. As the dimensions of labels can
vary across different tasks, we transform the label Y € REXWXCr
for each sample (X', Y?) of task 7 into Y! € REXWX3 which is
then concatenated with the input image X? € REXW>3 Here, we
delve into the specific details of this transformation process. First,
we define three sets of parameters {a/, b/ }2:1' Then, for jth set
of parameters {a/, b/}, we apply the linear projection a/x + b/ for
each channel of Y* and average the results of all channels, obtaining
Y e REXW, Finally, we stack the results obtained from these three
sets of parameters {a/, b/ }3:1 into Y! € REXWX3,

Task-specific convolution layer. The task-specific convolu-
tion layers used in the prediction head are 3x3 convolution layers
with the input dimension of 128 and output dimension of Cq- for
each task 77, which are randomly initialized for different task in the
multi-task pre-training stage. However, in the subsequent stages, to
enhance the model’s adaptation ability, we initialize all these task-
specific convolution layers from a single 3x3 convolution layer with
the input dimension of 128 and output dimension of 1. This design
allows all these task-specific convolution layers to share a set of
initialization weights which can be optimized in the meta-training
stage to enable rapid adaptation to novel few-shot tasks.

3 DETAILS OF STABLE DIFFUSION MODEL

To begin with, we provide a brief overview of the Denoising Diffu-
sion Probabilistic Model (DDPM) [4], upon which the Stable Dif-
fusion model[6] is built. DDPM transforms the noise zr ~ N(0,I)
to the sample zy by gradually denoising z7 to less noisy samples,
which is the reverse process of a diffusion process. Formally, a
diffusion process is modeled as a Markov:

zt ~ N(Varze—1, (1 — ap)D), (7)

where {a;} are fixed coefficients that determine the noise schedule.
A noisy sample z; can be obtained directly from the data zg:

2 = Vaz +1-de, e ~ N(0,1), ®)

where a; = Hé:l as. This further allows us to sample an arbitrary
z; efficiently during training. The training objective of diffusion
models can be derived as [4]:

Lpm =Ezerlle — eg(ze(z0,€),10) ||, 9
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Table 1: Ablation study of the MoE attention layer’s expert
number N7 and the MoE MLP layer’s expert number N]]; ,

where Ng = hb and N]J; = fzb, with h = 8 and / = 4. b € N is the
replication factor, which is set as 3 in our experiments.

b [ N& [ N/ [ S (mloUT) SN (mErr))
1 8 4 0.3829 11.1813
2| 16 | 8 0.4057 9.8769
3 24 12 0.4310 9.1261
4 32 16 0.4334 9.2053

Table 2: Comparison of different initialization methods for
the MoE backbone of our method.

Method SS (mIoUT) SN (mErr])
Random Init. 0.3935 10.7280
Partial Random Init. 0.4169 9.7856
Replication Init. 0.4310 9.1261

where z; is computed as Equation (8). €y is a denoising autoencoder
(usually implemented as a UNet [7]) that is learned to predict the €
given the conditioning input C, which can be the text prompt. The
sampling of diffusion models is achieved by discretizing the diffu-
sion SDE or ODE [9], which requires multiple model evaluations at
different timesteps.

Recently, a new type of diffusion model called latent diffusion
model [6] is proposed. Stable Diffusion is a latent diffusion model
trained on large-scale image-text dataset LAION-5B, which has
demonstrated remarkable performance on image synthesis con-
trolled by natural language. Specifically, the Stable Diffusion Model
first train a VQGAN model [2], which comprises an encoder &
and a decoder D, enabling conversion between the pixel space
and the latent space. Subsequently, a diffusion model is trained on
this latent space with the same objective in Equation (9). Although
diffusion models are trained using generative loss, their features
have shown impressive performance in specific visual perception
tasks that demand a comprehensive understanding of pixel-level
fine-grained information [1, 11, 13], such as semantic segmentation
and depth estimation. In this work, we take a step towards exploit-
ing the Stable Diffusion model’s rich features for few-shot dense
prediction tasks in a universal manner. We focus on leveraging
the pre-trained knowledge from Stable Diffusion by treating the
UNet-like denoising autoencoder €g as a vision backbone, without
considering the language condition and the diffusion process.

4 ADDITIONAL RESULTS

In this section, we conduct ablation experiments on the expert
number of MoE attention layers and MoE MLP layers. We also
compare several initialization methods for our MoE backbone to
leverage the pre-trained knowledge of Stable Diffusion.

Ablation on expert number. As discussed in Section 2, we
adopt an initialization strategy for the weights of the MoE attention
layers and MoE MLP layers in the MoE backbone, which involves
replicating the weights of the multi-head attention layers and feed-
forward layers of Stable Diffusion by a factor of b and initialize the
MoE backbone from these weights. Consequently, the expert num-
ber Nj of the MoE attention layer is equal to hb, while the expert
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number N]]; of the MoE MLP layer is equal to hb, where h = 8 and

h = 4. In both cases, the replication factor b determines the overall
number of experts. Therefore, we conduct ablation experiments on
the replication factor b, ranging from 1 to 4, as shown in Table 1.
As observed, increasing b from 1 to 3 consistently improves the per-
formance. However, there is little improvement when b increases
from 3 to 4. Hence, we choose b as 3 to strike a balance between
performance and memory cost.

Comparing initialization methods for MoE backbone. To
demonstrate the effectiveness of our initialization strategy, we com-
pare several initialization methods in Table 2. ‘Random Init. rep-
resents randomly initializing the weights of all experts within the
MoE backbone. ‘Partial Random Init. represents initializing a subset
of h attention experts in the MoE attention layer and h MLP experts
in the MoE MLP layer from the weights of the Stable Diffusion
model’s multi-head attention layer and feed-forward layer, while
randomly initializing the remaining experts. ‘Replication Init.’ is
the initialization strategy adopted by our method, which involves
replicating the weights from Stable Diffusion by a factor of b and
utilizing them to initialize the MoE backbone. As observed in the
table, our initialization method proves to be the most effective ap-
proach for enabling the MoE backbone to leverage the pre-trained
knowledge of the Stable Diffusion model.
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