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1 DATASET DETAILS
We use the ‘tiny’ partition of Taskonomy dataset provided by [12],
which consists of images and labels collected from 35 different
buildings. To be consistent with VTM [5], we preprocess three
single-channel tasks, namely Euclidean Distance (ED), Texture Edge
(TE), and Occlusion Edge (OE), to enhance the task diversity:

• Texture edge (TE) labels are generated by applying Sobel
edge detector to RGB images, which consists of a Gauss-
ian filter and image gradient computation. The Gaussian
filter has two hyper-parameters, namely kernel size and the
standard deviation, where adjusting those hyper-parameters
yield different thickness of detected edges. We use three dif-
ferent sets of hyper-parameters – (3, 1), (11, 2), (19, 3) – to
produce 3-channel labels.

• Euclidean distance (ED) labels consists of pixel-wise depth
map, where the depth is computed by the Euclidean distance
from each image pixel to the camera’s optical center. As this
task is very similar to the Z-buffer depth prediction (ZD)
whose label pixels are the distance from each image pixel to
the camera plane, we augment the ED task by segmenting
the depth range and re-normalizing within each segment.
Specifically, we compute the 5-quantiles of the pixel-wise
depth labels in the whole dataset, then use each quantile as
different channels after renoramlization into [0, 1]. Thus the
objective of each channel of the augmented ED task is to
predict Euclidean distance within a specific range, where the
ranges are disjoint for different channels.

• Occlusion edge (OE) labels are similar to texture edge, but
they are constructed to depend on only the 3D geometry
rather than color or lighting. We adopt the same approach
as ED task to augment the OE labels into 5-channel labels.

The original labels for Semantic Segmentation (SS) task have
the shape of 256 × 256 × 1. Each position of the label is an integer
value representing the ground truth semantic category. To convert
these discrete labels into a continuous label structure, we follow
VTM [5] to transform the labels into real values ranging from 0
to 1, resulting in the labels with the shape R256×256×𝑁𝑐𝑙𝑠 , where
𝑁𝑐𝑙𝑠 = 12 represents the total number of semantic classes. Within
each channel, a value of 0 denotes the background region, while a
value of 1 denotes the object region.

2 IMPLEMENTATION DETAILS
In this section, we elaborate on some implementation details that
were not covered in the main body of the paper.

MoE transformation. To enable efficient adaptation through
the use of router fine-tuning, we propose transforming the back-
bone into a MoE model. Specifically, we convert the multi-head
attention layers and the feed-forward layers in the transformer
blocks of the Stable Diffusion model’s denoising autoencoder 𝜖𝜃
into MoE attention layers and MoE MLP layers. The weights of

attention experts {𝐸𝑘
𝐴
} in the MoE attention layer and MLP experts

{𝐸𝑘
𝐹
} in the MoE MLP layer are initialized using the weights from

the multi-head attention layer and the feed-forward layer in 𝜖𝜃 .
Below, we will present the details of this initialization process.

For the convenience of readers, we rewrite the definition of the
MoE attention layer here. Given a query token 𝑞𝑖 ∈ R1×𝐶𝑀 from
the query sequence 𝑄 , the objective of a MoE attention layer is to
generate a new token 𝑦𝑖 for 𝑞𝑖 , with 𝑁𝑎

𝐸
attention experts {𝐸𝑘

𝐴
}𝑁

𝑎
𝐸

𝑘=1
and the router 𝐺𝐴:

𝑦𝑖 =

𝑁𝑎
𝐸∑︁

𝑘=1
𝐺𝑘𝐴 (𝑞

𝑖 ) · 𝐸𝑘𝐴 (𝑞
𝑖 ), (1)

𝐸𝑘𝐴 (𝑞
𝑖 ) = (𝛼𝑖,𝑘𝑉𝑊𝑉 )𝑊 𝑘

𝑂 , (2)

𝛼𝑖,𝑘 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑞𝑖𝑊 𝑘

𝑄
(𝐾𝑊𝐾 )𝑇
√
𝐶𝐻

), (3)

where 𝑊𝐾 ,𝑊𝑉 ∈ R𝐶𝑀×𝐶𝐻 are shared across attention experts
to reduce computational complexity, while𝑊 𝑘

𝑄
∈ R𝐶𝑀×𝐶𝐻 and

𝑊 𝑘
𝑂

∈ R𝐶𝐻 ×𝐶𝑀 are specific to each expert. Here,𝐶𝑀 represents the
dimension of input tokens and 𝐶𝐻 represents the head dimension.
𝐺𝐴 selects 𝑁𝑎

𝐾
experts and sets all other outputs to zero.

Next, we show how to initialize a MoE attention layer from a
multi-head attention layer in 𝜖𝜃 . Given the weights of the query
linear layer 𝑊̂𝑄 ∈ Rℎ×𝐶𝑀×𝐶𝐻 and the output linear layer 𝑊̂𝑂 ∈
Rℎ×𝐶𝐻 ×𝐶𝑀 from a multi-head attention layer in 𝜖𝜃 , where ℎ rep-
resents the number of attention heads, we firstly replicate the
weights of 𝑊̂𝑄 and 𝑊̂𝑂 by 𝑏 times, obtaining𝑊𝑄 ∈ Rℎ𝑏×𝐶𝑀×𝐶𝐻

and𝑊𝑂 ∈ Rℎ𝑏×𝐶𝐻 ×𝐶𝑀 . Then, we initialize a MoE atttention layer’s
weights of 𝑊𝑄 ∈ R𝑁𝑎

𝐸
×𝐶𝑀×𝐶𝐻 and 𝑊𝑂 ∈ R𝑁𝑎

𝐸
×𝐶𝐻 ×𝐶𝑀 from

the weights of 𝑊𝑄 and 𝑊𝑂 , where 𝑁𝑎𝐸 = ℎ𝑏. The weights of
𝑊𝐾 ,𝑊𝑉 ∈ R𝐶𝑀×𝐶𝐻 are initialized randomly. To maintain the com-
putational complexity between the MoE attention layer and the
multi-head attention layer in 𝜖𝜃 , the router 𝐺𝐴 selects the same
number of attention heads as the multi-head attention layer. This
is achieved by setting 𝑁𝑎

𝐾
as ℎ, which is 8 in the Stable Diffusion

model. In our experiments, we set 𝑏 as 3. Therefore, we use 24
experts with top-k as 8 for MoE attention layers.

As for a feed-forward layer in 𝜖𝜃 , the Stable Diffusion model
adopts a variant of Gated Linear Units (GLU) called GEGLU [8]:

F𝐺𝐸𝐺𝐿𝑈 (𝑥) = (Φ(𝑥𝑊̂G) ⊙ 𝑥𝑊̂I )𝑊̂O , (4)

where Φ represents the GELU activation function [3]. Φ(𝑥𝑊̂G) act
as gating values. 𝑊̂G,𝑊̂I ∈ R𝐶𝑀×𝐶𝐷 and 𝑊̂O ∈ R𝐶𝐷×𝐶𝑀 , where
𝐶𝐷 = ℎ̂ ×𝐶𝑀 , ℎ̂ ∈ N. To transform F𝐺𝐸𝐺𝐿𝑈 into MoE MLP layer,
we split 𝑊̂G,𝑊̂I ,𝑊̂O into ℎ̂ parts and replicate them by 𝑏 times,
resulting in {𝑊̂ 𝑘

G}
ℎ̂𝑏
𝑘=1, {𝑊̂

𝑘
I }
ℎ̂𝑏
𝑘=1, {𝑊̂

𝑘
O}
ℎ̂𝑏
𝑘=1, where 𝑊̂

𝑘
G,𝑊̂

𝑘
I ,𝑊̂

𝑘
O ∈
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R𝐶𝑀×𝐶𝑀 . Then, a MoE MLP layer can be represented as:

𝑦 =

𝑁
𝑓

𝐸∑︁
𝑘=1

𝐺𝑘𝐹 (𝑥) · 𝐸
𝑘
𝐹 (𝑥), (5)

𝐸𝑘𝐹 (𝑥) = (Φ(𝑥𝑊̂ 𝑘
G) ⊙ 𝑥𝑊̂

𝑘
I )𝑊̂

𝑘
O , (6)

where 𝑁 𝑓
𝐸
= ℎ̂𝑏. 𝐺𝐹 retains the outputs of 𝑁 𝑓

𝐾
experts and sets all

other outputs to zero. To maintain the computation complexity
before and after the MoE transformation, we set 𝑁 𝑓

𝐾
as ℎ̂, which is

4 in the Stable Diffusion model. In our experiments, we set 𝑏 as 3.
Therefore, we use 12 experts with top-k as 4 for MoE MLP layers.

Details for extracting task embedding.We enhance the meta-
routers’ capabilities by incorporating the task embedding extracted
from the support samples. To extract the task embedding, we intro-
duce a task embedding extractor 𝜉 based on the concatenated input
of the image and the label. This approach has been proven effective
in representing vision tasks [10]. As the dimensions of labels can
vary across different tasks, we transform the label 𝑌 𝑖 ∈ R𝐻×𝑊 ×𝐶T

for each sample (𝑋 𝑖 , 𝑌 𝑖 ) of task T into 𝑌 𝑖 ∈ R𝐻×𝑊 ×3, which is
then concatenated with the input image 𝑋 𝑖 ∈ R𝐻×𝑊 ×3. Here, we
delve into the specific details of this transformation process. First,
we define three sets of parameters {𝑎 𝑗 , 𝑏 𝑗 }3

𝑗=1. Then, for 𝑗th set
of parameters {𝑎 𝑗 , 𝑏 𝑗 }, we apply the linear projection 𝑎 𝑗𝑥 + 𝑏 𝑗 for
each channel of𝑌 𝑖 and average the results of all channels, obtaining
𝑌
𝑖 ∈ R𝐻×𝑊 . Finally, we stack the results obtained from these three

sets of parameters {𝑎 𝑗 , 𝑏 𝑗 }3
𝑗=1 into 𝑌

𝑖 ∈ R𝐻×𝑊 ×3.
Task-specific convolution layer. The task-specific convolu-

tion layers used in the prediction head are 3x3 convolution layers
with the input dimension of 128 and output dimension of 𝐶T for
each task T , which are randomly initialized for different task in the
multi-task pre-training stage. However, in the subsequent stages, to
enhance the model’s adaptation ability, we initialize all these task-
specific convolution layers from a single 3x3 convolution layer with
the input dimension of 128 and output dimension of 1. This design
allows all these task-specific convolution layers to share a set of
initialization weights which can be optimized in the meta-training
stage to enable rapid adaptation to novel few-shot tasks.

3 DETAILS OF STABLE DIFFUSION MODEL
To begin with, we provide a brief overview of the Denoising Diffu-
sion Probabilistic Model (DDPM) [4], upon which the Stable Dif-
fusion model[6] is built. DDPM transforms the noise 𝑧𝑇 ∼ 𝑁 (0, 𝐼 )
to the sample 𝑧0 by gradually denoising 𝑧𝑇 to less noisy samples,
which is the reverse process of a diffusion process. Formally, a
diffusion process is modeled as a Markov:

𝑧𝑡 ∼ N(√𝛼𝑡𝑧𝑡−1, (1 − 𝛼𝑡 )𝐼 ), (7)

where {𝛼𝑡 } are fixed coefficients that determine the noise schedule.
A noisy sample 𝑧𝑡 can be obtained directly from the data 𝑧0:

𝑧𝑡 =
√︁
𝛼𝑡𝑧0 +

√︁
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, 1), (8)

where 𝛼𝑡 =
∏𝑡
𝑠=1 𝛼𝑠 . This further allows us to sample an arbitrary

𝑧𝑡 efficiently during training. The training objective of diffusion
models can be derived as [4]:

L𝐷𝑀 = E𝑧0,𝜖,𝑡 ∥𝜖 − 𝜖𝜃 (𝑧𝑡 (𝑧0, 𝜖), 𝑡 ;C)∥2, (9)

Table 1: Ablation study of the MoE attention layer’s expert
number 𝑁𝑎

𝐸
and the MoE MLP layer’s expert number 𝑁 𝑓

𝐸
,

where 𝑁𝑎
𝐸
= ℎ𝑏 and 𝑁 𝑓

𝐸
= ℎ̂𝑏, with ℎ = 8 and ℎ̂ = 4. 𝑏 ∈ N is the

replication factor, which is set as 3 in our experiments.

b 𝑁𝑎
𝐸

𝑁
𝑓

𝐸
SS (mIoU↑) SN (mErr↓)

1 8 4 0.3829 11.1813
2 16 8 0.4057 9.8769
3 24 12 0.4310 9.1261
4 32 16 0.4334 9.2053

Table 2: Comparison of different initialization methods for
the MoE backbone of our method.

Method SS (mIoU↑) SN (mErr↓)
Random Init. 0.3935 10.7280

Partial Random Init. 0.4169 9.7856
Replication Init. 0.4310 9.1261

where 𝑧𝑡 is computed as Equation (8). 𝜖𝜃 is a denoising autoencoder
(usually implemented as a UNet [7]) that is learned to predict the 𝜖
given the conditioning input C, which can be the text prompt. The
sampling of diffusion models is achieved by discretizing the diffu-
sion SDE or ODE [9], which requires multiple model evaluations at
different timesteps.

Recently, a new type of diffusion model called latent diffusion
model [6] is proposed. Stable Diffusion is a latent diffusion model
trained on large-scale image-text dataset LAION-5B, which has
demonstrated remarkable performance on image synthesis con-
trolled by natural language. Specifically, the Stable Diffusion Model
first train a VQGAN model [2], which comprises an encoder E
and a decoder D, enabling conversion between the pixel space
and the latent space. Subsequently, a diffusion model is trained on
this latent space with the same objective in Equation (9). Although
diffusion models are trained using generative loss, their features
have shown impressive performance in specific visual perception
tasks that demand a comprehensive understanding of pixel-level
fine-grained information [1, 11, 13], such as semantic segmentation
and depth estimation. In this work, we take a step towards exploit-
ing the Stable Diffusion model’s rich features for few-shot dense
prediction tasks in a universal manner. We focus on leveraging
the pre-trained knowledge from Stable Diffusion by treating the
UNet-like denoising autoencoder 𝜖𝜃 as a vision backbone, without
considering the language condition and the diffusion process.

4 ADDITIONAL RESULTS
In this section, we conduct ablation experiments on the expert
number of MoE attention layers and MoE MLP layers. We also
compare several initialization methods for our MoE backbone to
leverage the pre-trained knowledge of Stable Diffusion.

Ablation on expert number. As discussed in Section 2, we
adopt an initialization strategy for the weights of the MoE attention
layers and MoE MLP layers in the MoE backbone, which involves
replicating the weights of the multi-head attention layers and feed-
forward layers of Stable Diffusion by a factor of 𝑏 and initialize the
MoE backbone from these weights. Consequently, the expert num-
ber 𝑁𝑎

𝐸
of the MoE attention layer is equal to ℎ𝑏, while the expert
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number 𝑁 𝑓
𝐸
of the MoE MLP layer is equal to ℎ̂𝑏, where ℎ = 8 and

ℎ̂ = 4. In both cases, the replication factor 𝑏 determines the overall
number of experts. Therefore, we conduct ablation experiments on
the replication factor 𝑏, ranging from 1 to 4, as shown in Table 1.
As observed, increasing 𝑏 from 1 to 3 consistently improves the per-
formance. However, there is little improvement when 𝑏 increases
from 3 to 4. Hence, we choose 𝑏 as 3 to strike a balance between
performance and memory cost.

Comparing initialization methods for MoE backbone. To
demonstrate the effectiveness of our initialization strategy, we com-
pare several initialization methods in Table 2. ‘Random Init.’ rep-
resents randomly initializing the weights of all experts within the
MoE backbone. ‘Partial Random Init.’ represents initializing a subset
of ℎ attention experts in the MoE attention layer and ℎ̂ MLP experts
in the MoE MLP layer from the weights of the Stable Diffusion
model’s multi-head attention layer and feed-forward layer, while
randomly initializing the remaining experts. ‘Replication Init.’ is
the initialization strategy adopted by our method, which involves
replicating the weights from Stable Diffusion by a factor of 𝑏 and
utilizing them to initialize the MoE backbone. As observed in the
table, our initialization method proves to be the most effective ap-
proach for enabling the MoE backbone to leverage the pre-trained
knowledge of the Stable Diffusion model.
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