
A Additional Derivations and Proofs

A.1 Derivations of the Lagrangian

We start from the optimization problem:

max
π

Est,at∼τπ

∞∑
t=0

γtr (st, at)

s.t. DKL (dπ(·)∥ζ(·)) < εm.

(1)

The KL-Divergence term can be transformed as:

DKL (dπ(·)∥ζ(·)) = −Es∼dπ(s) [log ζ(s)− log dπ(s)]

= −
∫

dπ(s) [log ζ(s)− log dπ(s)] ds

= −
∫
(1− γ)

∞∑
t=0

γtp (st = s) [log ζ(s)− log dπ(s)] ds

= −(1− γ)

∞∑
t=0

∫
γtp (st = s) [log ζ(s)− log dπ(s)] ds

= −(1− γ)

∞∑
t=0

Est∼τ

[
γt (log ζ(st)− log dπ(st))

]
= −(1− γ)Est∼τ

∞∑
t=0

γt (log ζ(st)− log dπ(st)) .

(2)

So the constraint can be written as

Est∼τ

∞∑
t=0

[
γt (log dπ(st)− log ζ(st))

]
− εm

1− γ
< 0. (3)

The optimization problem can be written as the following standard form

min
π

Est,at∼τ

∞∑
t=0

−γtr (st, at)

s.t. Est∼τ

∞∑
t=0

[
γt (log dπ(st)− log ζ(st))

]
− εm

1− γ
< 0.

(4)

So the Lagrangian L is

L = −Est,at∼τ

[∞∑
t=0

γt (r(st, at) + λ log ζ(st)− λ log dπ(st))

]
− λεm

1− γ
. (5)

A.2 Derivations of the Forward and Backward Probabilities

The backward probability can be written as:

βt(st) =

∫
S
p(Ot:∞|st, st+1, π)p(st+1|st)dst+1

=

∫
S
p(Ot|st, π)p(Ot+1:∞|st+1, π)p(st+1|st)dst+1

=

∫
S
max
at

exp(γtr(st, at))βt+1(st+1)p(st+1|st)dst+1.

(6)

Taking logarithm on both sizes, we have

log βt(st) = logEst+1
max
at

exp(γtr(st, at) + log βt+1(st+1)). (7)

1

Let W (st) = log βt(st), we get

W (st) = logEst+1
exp

[
max
at

γtr(st, at) +W (st+1)

]
. (8)

According to [1], Wt is a soft version of the traditional value function Vt. As the Soft Actor-Critic [2]
has become the base algorithm in many scenarios, βt is closely related to the value function learned
during training, which is often in its soft version. The forward probability αt(st) = p (O0:t−1 | st, π)
is the probability of trajectory from timestep 0 to t − 1 being optimal given the state st. Such
probability is hard to model as the transition from st−1 to st is related to the actual policy π as well
as the environment dynamics. Therefore, we do not take αt(st) into account when dividing training
data to train the classifier.

A.3 Discussions on the Surrogate for the Density Ratio

According to some Off-Policy RL algorithms [3, 4], the idea of training a classifier D(s) as a
data-based surrogate of the density ratio ζ(s)

dπ(s)
can also be derived from a theorem related to f-

divergence (lemma 1 in [4]). Such derivation is essentially the same with our GAN-based proposition.
Technically, these algorithms also divides the training data into two parts and train a classifier, which
is later used to generate probabilities for prioritized sampling. Our SRPO algorithm proposes a
different criterion to divide the training data, and train a classifier used in reward augmentation.

A.4 Proofs to Theorems in Sec. 4

We first introduce the following lemma which is essential in proving the two theorems in Sec. 4.
Lemma A.1. Consider two homomorphous MDPs with dynamics T and T ′. Assuming T ′ ∈ (T, εm),
the reward function w.r.t. the action is λ1-Lipschitz and the dynamics function w.r.t. the action is
λ2-inverse Lipschitz, we have

|V ∗
T (s)− V ∗

T ′(s)| ⩽
λ1λ2εm
1− γ

(9)

for all s ∈ S.

Proof. Recall the optimal value function under dynamics T follows

V ∗
T (s) = max

a
r(s, a, T (s, a)) + γV ∗

T (T (s, a)). (10)

Without the loss of generality, we assume V ∗
T (s) ⩾ V ∗

T ′(s) on a certain state s. Define a∗T = π∗
T (s)

and â such that T ′(s, â) = T (s, a∗T) = s′. Then we have

|T (s, a∗T)− T (s, â)| = |T ′(s, â)− T (s, â)| ⩽ εm, (11)

and
|r(s, a∗T , s′)− r(s, â, s′)| ⩽ λ1 |a∗T − â| ⩽ λ1λ2εm. (12)

Therefore for all s ∈ S,

|V ∗
T (s)− V ∗

T ′(s)| = V ∗
T (s)− V ∗

T ′(s)

= r(s, a∗T , s
′) + γV ∗

T (s
′)−max

a
[r(s, a, T ′(s, a)) + γV ∗

T ′(T ′(s, a))]

⩽ r(s, a∗T , s
′) + γV ∗

T (s
′)− r(s, â, s′)− γV ∗

T ′(s′)

⩽ λ1λ2εm + γ |V ∗
T (s

′)− V ∗
T ′(s′)|

⩽ λ1λ2εm + γλ1λ2εm + γ2 |V ∗
T (s

′′)− V ∗
T ′(s′′)|

⩽ · · ·

⩽
λ1λ2εm
1− γ

,

(13)

which concludes the proof.

This lemma shows the discrepancy upper bound between the optimal state value functions in two
homomorphous MDPs. We then apply it to prove the second theorem in Sec. 4.

2

Theorem A.2 (Restatement of Thm. 4.3). Following the assumptions in Lem. A.1, if the action gap
∆ follows ∆ > (2−γ)λ1λ2εm

1−γ , for all s ∈ S we have d∗T (s) = d∗T ′(s).

Proof. Recall that the definition of action gap is ∆ = min
θ∈Θ

min
s∈S

min
a ̸=π∗

T (s)
V ∗
Tθ
(s)−Q∗

Tθ
(s, a). There-

fore, we have
V ∗
T (s) ⩾ Q∗

T (s, a) + ∆

> Q∗
T (s, a) +

(2− γ)λ1λ2εm
1− γ

(14)

for all (s, a) ∈ S × A if a ̸= π∗
T (s). The same property holds for the transition function T ′. We

first show the state transition probability derived from π∗
T and π∗

T ′ is the same: pT (·|s, π∗
T) =

pT ′(·|s, π∗
T ′), ∀s ∈ S. Without the loss of generality, let V ∗

T (s) ⩾ V ∗
T ′(s)(∗). Let

ā = argmax
a

r(s, a, T (s, a)) + γV ∗
T (T (s, a))

a′ = argmax
a

r(s, a, T ′(s, a)) + γV ∗
T ′(T ′(s, a))

T ′(s, ã) = T (s, ā) = s̄, T ′(s, a′) = s′.

(15)

According to Eq. (12), ∥ã− ā∥ ⩽ λ1λ2εm. Supposing s̄ ̸= s′(∗∗), we have ã ̸= a′ = π∗
T ′(s). So

V ∗
T ′(s) > Q∗

T ′(s, ã) +
(2− γ)λ1λ2εm

1− γ
. (16)

Meanwhile,
Q∗

T ′(s, ã) = r(s, ã, s̄) + γV ∗
T ′(s̄)

⩾ r(s, ā, s̄) + γV ∗
T ′(s̄)− λ1λ2εm

⩾ r(s, ā, s̄) + γV ∗
T (s̄)− λ1λ2εm − γλ1λ2εm

1− γ

= V ∗
T (s)−

(2− γ)λ1λ2εm
1− γ

(17)

Combining Eq. (16) and Eq. (17), we get V ∗
T ′(s) > V ∗

T (s), which contradicts with Eq. (∗). It means
that the assumption (∗∗) is not correct, so s̄ = s′.

We then show that d∗T (s) = d∗T ′(s) for all s ∈ S:

∥pT (st = ·|π∗
T)− pT ′(st = ·|π∗

T ′)∥∞

=

∥∥∥∥∥∑
s′

pT (·|s′, π∗
T)pT (st−1 = s′|π∗

T)− pT ′(·|s′, π∗
T ′)pT ′(st−1 = s′|π∗

T ′)

∥∥∥∥∥
∞

=

∥∥∥∥∥∑
s′

pT (·|s′, π∗
T) [pT (st−1 = s′|π∗

T)− pT ′(st−1 = s′|π∗
T ′)]

∥∥∥∥∥
∞

⩽

∥∥∥∥∥∑
s′

pT (·|s′, π∗
T) ∥pT (st−1 = ·|π∗

T)− pT ′(st−1 = ·|π∗
T ′)∥∞

∥∥∥∥∥
∞

=

∥∥∥∥∥∥pT (st−1 = ·|π∗
T)− pT ′(st−1 = ·|π∗

T ′)∥∞
∑
s′

pT (·|s′, π∗
T)

∥∥∥∥∥
∞

= ∥pT (st−1 = ·|π∗
T)− pT ′(st−1 = ·|π∗

T ′)∥∞
⩽ · · ·
⩽ ∥pT (s0 = ·|π∗

T)− pT ′(s0 = ·|π∗
T ′)∥∞

= 0.

(18)

Therefore, for all s ∈ S, we have pT (st = s|π∗
T) = pT ′(st = s|π∗

T ′). So

|d∗T (s)− d∗T ′(s)| =

∣∣∣∣∣
∞∑
t=0

pT (st = s|π∗
T)− pT ′(st = s|π∗

T ′)

∣∣∣∣∣ = 0 (19)

for all s ∈ S, which concludes the proof.

3

Before proving the first theorem in Sec. 4, we introduce a lemma that incorporates the 1-Wasserstein
distance between the policies. It also considers a reference policy that has the same stationary
state distribution with the optimal policy in the other dynamics. Such policy exists thanks to the
homomorphous property of the MDPs.

Lemma A.3. Following the assumptions in Lem. A.1, for all policy π̂ such that dπ̂T (s) = d∗T ′(s) for
all s ∈ S and maxs W1 (π̂(·|s), π∗

T ′(·|s)) ⩽ ϵπ , we have

|ηT (π∗
T)− ηT (π̂)| ⩽

λ1λ2εm + λ1επ
1− γ

, (20)

where W1(π̂(·|s), π∗
T ′(·|s)) is the 1-Wasserstein distance between two policies.

Proof. First, |ηT (π∗
T)− ηT ′(π∗

T ′)| can be bounded with Thm. A.1:

|ηT (π∗
T)− ηT ′(π∗

T ′)| = |Es∈ρ0
V ∗
T (s)− Es∈ρ0

V ∗
T ′(s)|

⩽
λ1λ2εm
1− γ

.
(21)

We then try to bound |ηT (π̂) − ηT ′(π∗
T ′)|. We first define the state-action stationary distributions

D1(s, a) = dπ̂T (s)π̂(a|s) and D2(s, a) = d∗T ′(s)π∗
T ′(a|s). The accumulated return can be written as

ηT (π̂) =
1

1− γ
Es,a,s′∼D1

[r(s, a, s′)]

ηT ′(π∗
T ′) =

1

1− γ
Es,a,s′∼D2 [r(s, a, s

′)]

(22)

We start from the Lipschitz property of the reward function:

|r(s, a1, s′)− r(s, a2, s
′)| ⩽ λ1∥a1 − a2∥1. (23)

Taking expectation w.r.t. d∗T ′(·) on both sides, we get

Es∼d∗
T ′ |r(s, a1, s

′)− r(s, a2, s
′)| ⩽ Es∼d∗

T ′λ1∥a1 − a2∥1. (24)

Letting µ(A1, A2|s) be any joint distribution with marginals π̂ and π∗
T ′ conditioned on s. Taking

expectation w.r.t. µ on both sides, we get

|Es,a∼D1
r(s, a, s′)− Es,a∼D2

r(s, a, s′)| ⩽ Es∼d∗
T ′Ea1,a2∼µ|r(s, a1, s′)− r(s, a2, s

′)|
⩽ λ1Es∼d∗

T ′Eµ∥a1 − a2∥1
⩽ max

s
λ1Eµ∥a1 − a2∥1.

(25)

Eq. (25) holds for all joint distribution µ, so it also holds for µ̄ = argmin
µ

λ1Eµ∥a1 − a2∥1, leading

to the 1-Wasserstein distance:

|Es,a∼D1
r(s, a, s′)− Es,a∼D2

r(s, a, s′)| ⩽ max
s

λ1W1(π̂(·|s), π∗
T ′(·|s)). (26)

According to Eq. (22), we have

|ηT (π̂)− ηT ′(π∗
T ′)| ⩽

λ1εm
1− γ

. (27)

Applying the triangle inequality, we get

|ηT (π∗
T)− ηT (π̂)| ⩽ |ηT (π∗

T)− ηT ′(π∗
T ′)|+ |ηT (π̂)− ηT ′(π∗

T ′)|

⩽
λ1λ2εm + λ1επ

1− γ
,

(28)

which concludes the proof.

We then use this lemma to prove the first theory in Sec. 4.

4

Table 1: λ1, λ2, Rmax in practical environments.

Environment Action-related Reward λ1 λ2 Rmax

CartPole-v0 0 0 1.42 1.00
InvertedPendulum-v2 0 0 8.58 1.00
Swimmer-v2 −0.0001|a|22 0.0001 2.59 0.36
HalfCheetah-v2 −0.1|a|22 0.1 1.01 4.80
Hopper-v2 −0.001|a|22 0.001 3.45 3.80
Walker2d-v2 −0.001|a|22 0.001 4.70 ⩾ 4
Ant-v2 −0.5|a|22 0.5 0.69 6.0
Humanoid-v2 −0.1|a|22 0.1 0.03 ⩾ 8

Theorem A.4 (Restatement of Thm. 4.2). Consider two homomorphous MDPs with dynamics T and
T ′. If T ′ ∈ (T, εm), for all learning policy π̂ such that DKL(d

π̂
T (·)∥d∗T ′(·)) ⩽ εs, we have

ηT (π̂) ⩾ ηT (π
∗
T)−

λ1λ2εm + 2λ1 +
√
2Rmax

√
εs

1− γ
. (29)

Proof. In two homomorphous MDPs with dynamics T and T ′, there exists a policy π̃ such that
dπ̃T (·) = d∗T ′(·). According to Lem. A.3, we have

|ηT (π∗
T)− ηT (π̃)| ⩽

λ1λ2εm + λ1επ
1− γ

⩽
λ1λ2εm + 2λ1

1− γ
, (30)

where the second inequality is obtained as the actions are bounded to [−1, 1]. The scaling is multiplied
by the Lipschitz coefficient which tends to small, so it will make little influence to the bound. On the
other hand, policies π̂ and π̃ have a similar state discrepancy: DKL(d

π̂
T (·)∥dπ̃T (·)) ⩽ εs. Therefore,

their performance gap can be bounded according to results in imitation learning (Lem. 6 in [5]):

|ηT (π̂)− ηT (π̃)| ⩽
√
2Rmax

√
εs

1− γ
. (31)

Merging Eq. (30) and Eq. (31), we obtain
ηT (π

∗
T)− ηT (π̂) ⩽ |ηT (π̂)− ηT (π

∗
T)|

⩽ |ηT (π∗
T)− ηT (π̃)|+ |ηT (π̂)− ηT (π̃)|

⩽
λ1λ2εm + 2λ1 +

√
2Rmax

√
εs

1− γ
.

(32)

A.5 Discussions on the Theoretical Analysis

The Lipschitz Assumptions in Sec. 4 Regarding the reward functions, the Lipschitz property
implies that if s and s′ keeps unchanged, the deviation of the reward r will be no larger than λ1 times
the deviation of the action a. Therefore, the Lipstchiz coefficient λ1 is solely related to action-related
terms in the reward function. It is important to note that different actions exist given the same s
and s′ since we may compute the reward function in different dynamics. Considering the dynamics
functions, the Lipschitz property indicates that if the current state s remains unchanged and the
actions differ by : |a1 − a2| ⩾ ε, the next states will exhibit a significant difference: |s′1 − s′2| ⩾ ε

λ2 .

In Tab. 1, we list the action-related terms of the reward functions for various RL evaluation envi-
ronments, along with the corresponding values of λ1 derived from these terms. Additionally, we
sample 50,000 (s, a, s′) tuples from the replay buffer, slightly modify the action, and observe how
the resulting next state s′ changes. The replay buffer contains trajectories collected during different
training phases and should be diverse enough to cover most possible trajectories. This empirical
analysis allows us to calculate λ2 in practice. As indicated in the table, the action-related terms in
reward functions exhibit reasonably small coefficients in all environments, leading to small λ1 values.
Combined with medium values of λ2, it can be inferred that Lipschitz terms, including λ1 and λ1λ2,
will remain small in practical scenarios and will not dominate the error term in Eq. 7. Also, the action
gap assumption in Thm. 4.3 (line 258-259) is not strong and holds in many situations.

5

Table 2: Detailed results of ablation studies in offline experiments.

MAPLE
+SRPO

Behavior
Regularization

Random
Partition

Fixed
λ = 0.1

Fixed
λ = 0.3

Walker2d-medium-expert 0.66±0.08 0.70±0.18 0.42±0.16 0.66±0.08 0.38±0.16
Walker2d-medium 0.84±0.03 0.71±0.02 0.79±0.00 0.72±0.13 0.84±0.03
Walker2d-medium-replay 0.17±0.02 0.16±0.01 0.14±0.01 0.17±0.02 0.16±0.01
Walker2d-random 0.22±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.22±000
Hopper-medium-expert 0.98±0.02 0.85±0.25 0.46±0.14 0.98±0.02 0.86±0.18
Hopper-medium 1.03±0.01 0.78±0.26 0.76±0.21 0.53±0.13 1.03±0.01
Hopper-medium-replay 1.02±0.01 0.94±0.04 0.91±0.08 1.02±0.01 0.93±0.03
Hopper-random 0.32±0.02 0.13±0.01 0.12±0.01 0.13±0.01 0.32±0.02
Halfcheetah-medium-expert 0.63±0.01 0.65±0.01 0.44±0.18 0.63±0.01 0.52±0.00
Halfcheetah-medium 0.63±0.01 0.60±0.00 0.62±0.02 0.61±0.02 0.63±0.01
Halfcheetah-medium-replay 0.55±0.00 0.54±0.00 0.54±0.01 0.55±0.00 0.24±0.01
Halfcheetah-random 0.24±0.01 0.21±0.03 0.20±0.01 0.24±0.01 0.23±0.01

Average 0.61 0.54 0.47 0.54 0.53

Failure Cases Although the assumptions are weak and hold in many situations, there are certain
scenarios that these assumptions do not hold and the performance of SRPO can not be guaranteed.
For example, in maze environments with different obstacle layout, the requirement of homomorphous
MDPs is violated. There are also cases where the Lipstchitz coefficients λ1, λ2 can be large, such as
stock markets with very high transaction feeds.

The Assumption on Dynamics Discrepancy We mentioned in Sec. 4 that one of the assumptions
to prove the theorems is that T ∈ (T ′, εm). In fact, this is a simplification of the actual requirement,
which is weaker than the uniform bound of dynamics shift. According to Eq. (11), for any state
s we only require T (s, a) and T ′(s, a) to be close on one specific action â such that T ′(s, â) =
T (s, a∗T) = s′. This is a point-wise bound on dynamics shift and is comparable to assumptions in
previous analysis [6].

The Tightness of Eq. (29) Eq. (29) has a similar form with the Eq. (1) in Thm. 4.1 of [7], where
the return discrepancy |ηT (π∗

T)− ηT (π̂)| is also bounded by differences in the policy distribution
and transition functions, with an order of two in the effective horizon (i.e. with a coefficient 1

(1−γ)2).
By introducing some assumptions and constraining the policy to have the same stationary state
distribution, we obtain a tighter discrepancy bound with an order of one in the effective horizon (i.e.
with a coefficient 1

1−γ).

B Experiment Details

B.1 Setup

To generate environments with different transition functions, We alter the xml file of the MuJoCo
simulator and change its environment parameters. In online experiments, we build our code based
on the Github repository1 of CaDM [8]. Some customized MuJoCo environments are defined in
this repository. They have different reward functions with the original environments. We keep these
modifications to make our online results comparable with the original CaDM algorithm. In offline
experiments, we build our code based on the Github repository2. The offline datasets are generated
by concatenating the data sampled in the original MuJoCo simulator, as well as simulators whose
gravity and medium density are altered. In both online and offline experiments, the evaluation is
done in online static environments with all possible values of environment parameters. The average
of these evaluation results is reported.

1https://github.com/younggyoseo/CaDM/tree/master
2https://github.com/polixir/OfflineRL

6

0.0 0.1 0.2 0.3 0.4 0.5

1.3

1.2

1.1

1.0

0.9 ×103
Pendulum (Single Dynamics)

0 0.4 0.8 1.2 1.6 2

0.5

1.0

1.5

×102
Ant (Single Dynamics)

0 0.4 0.8 1.2 1.6 2

0.0

0.5

1.0

1.5
×103
HalfCheetah (Single Dynamics)

0 0.4 0.8 1.2 1.6 2
2

0

2

4

6

8
×104

Humanoid (Single Dynamics)

0.0 0.3 0.6 0.9 1.2 1.5
1.4

1.2

1.0

0.8

0.6

0.4 ×103
Pendulum (3 Different Dynamics)

0 1 2 3 4 5 60.0

0.5

1.0

1.5

2.0

2.5
×102

Ant (3 Different Dynamics)

0 1 2 3 4 5 6

0

1

2

3
×103

HalfCheetah (3 Different Dynamics)

0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
1.0
1.2 ×105

Humanoid (3 Different Dynamics)

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps(M)

1.4

1.2

1.0

0.8

0.6

0.4 ×103
Pendulum (5 Different Dynamics)

0 2 4 6 8 10
Timesteps(M)

0

1

2

3

4

5 ×102
Ant (5 Different Dynamics)

0 2 4 6 8 10
Timesteps(M)

0

1

2

3

4 ×103
HalfCheetah (5 Different Dynamics)

0 2 4 6 8 10
Timesteps(M)

0.00

0.25

0.50

0.75

1.00

1.25
×105

Humanoid (5 Different Dynamics)

PPO CaDM CaDM+SRPO

Figure 1: Detailed results of online experiments on MuJoCo tasks. In environments with single
dynamics, three algorithms have a similar performance.

Table 3: Results of offline experiments with a small dataset.

MOPO MAPLE MAPLE+
DARA

MAPLE+
SRPO (ours)

Walker2d-medium 0.21± 0.13 0.45± 0.18 0.74± 0.12 0.79± 0.04
Walker2d-medium-expert 0.14± 0.06 0.26± 0.01 0.38± 0.03 0.61± 0.11
Hopper-medium 0.01± 0.00 0.42± 0.36 0.36± 0.06 0.51± 0.14
Hopper-medium-expert 0.01± 0.00 0.33± 0.09 0.16± 0.04 0.40± 0.06
HalfCheetah-medium 0.10± 0.01 0.50± 0.06 0.37± 0.01 0.55± 0.03
HalfCheetah-medium-expert −0.03± 0.00 0.35± 0.01 0.63± 0.03 0.62± 0.19

Average 0.07 0.39 0.44 0.58

B.2 Additional Results

We show full results of online experiments on MuJoCo tasks in Fig. 1. Experiments on environments
with single dynamics are included. These experiments are equivalent to those on static static
environments. PPO, CaDM and CaDM+SRPO have a similar performance in these tasks. Full results
of ablation studies are shown in Tab. 2. We also reduce the amount of offline data to 1/3 and perform
additional experiments. The results are shown in Tab. 3. MAPLE+SRPO can still achieve better
performance than baseline algorithms. It improves the performance by 31% over MAPLE+DARA
and 49% over MAPLE. These evidences indicate that SRPO indeed enables efficient data reuse,
which is in accordance with statements in the introduction part.

B.3 Additional Analysis

To provide an additional demonstrating example to the intuition in Sec. 3.1, we train two policies in
the Pendulum environment with 0.5 and 2 times of the original frictions and then visualize state and
action densities. The results in Fig. 2 are similar to the experiments altering the environment gravity.
We observe similar state distributions and different peaks in action distributions.

7

t

0.0 0.8 1.6 2.4 3.1
Angle

-4.0

-2.0

0.0

2.0

4.0

Sp
ee

d

State Density with Friction 0.5

0.0 0.8 1.6 2.4 3.1
Angle

-4.0

-2.0

0.0

2.0

4.0

State Density with Friction 2

25

20

15

10

5

0

-2.0 -1.0 0.0 1.0 2.0
Torque

Action Density with Friction 0.5

-2.0 -1.0 0.0 1.0 2.0
Torque

Action Density with Friction 2

5

0

Figure 2: Visualization of state and action densities in data sampled from the Inverted Pendulum
environment with 0.5 and 2 times of the original friction. Under both frictions, the state distribution
has high density with low pendulum speed and small pendulum angle. Meanwhile, the action
distribution has different peaks in density under different frictions.

With respect to different Offline RL tasks, MAPLE+SRPO gains the highest rise in the Hopper
environment and outperform all baseline methods in all of the 4 tasks. In the Walker2d and HalfChee-
tah environments, however, MAPLE+SRPO only outperforms in half of the tasks. Such difference
results from the existence of multiple optimal policies which lead to different stationary state distribu-
tions [9, 10]. For example, the agent in the Walker2d environment has many ways to swing its arms
to keep balance. When the policy pattern in the offline dataset is different from the learning policy,
its stationary state distribution may not be a good regularizer. The Hopper agent has a fewer degree
of freedom compared with the other two, so the policy benefits more from regularizing with SRPO.

References
[1] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and

review. CoRR, abs/1805.00909, 2018.

[2] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

[3] Xu-Hui Liu, Zhenghai Xue, Jing-Cheng Pang, Shengyi Jiang, Feng Xu, and Yang Yu. Regret
minimization experience replay in off-policy reinforcement learning. In NeurIPS, 2021.

[4] Samarth Sinha, Jiaming Song, Animesh Garg, and Stefano Ermon. Experience replay with
likelihood-free importance weights. In L4DC, 2022.

[5] Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. In
NeurIPS, 2020.

[6] Yuda Song, Aditi Mavalankar, Wen Sun, and Sicun Gao. Provably efficient model-based policy
adaptation. In ICML, 2020.

[7] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In NeurIPS, 2019.

[8] Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware
dynamics model for generalization in model-based reinforcement learning. In ICML, 2020.

[9] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In ICLR, 2019.

[10] Kailin Zeng, Qiyuan Zhang, Bin Chen, Bin Liang, and Jun Yang. APD: learning diverse
behaviors for reinforcement learning through unsupervised active pre-training. IEEE Robotics
Autom. Lett., 7(4):12251–12258, 2022.

8

	Additional Derivations and Proofs
	Derivations of the Lagrangian
	Derivations of the Forward and Backward Probabilities
	Discussions on the Surrogate for the Density Ratio
	Proofs to Theorems in Sec. 4
	Discussions on the Theoretical Analysis

	Experiment Details
	Setup
	Additional Results
	Additional Analysis

