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Abstract

Continuous diffusion models are commonly acknowledged to display a deter-
ministic probability flow, whereas discrete diffusion models do not. In this
paper, we aim to establish the fundamental theory for the probability flow of
discrete diffusion models. Specifically, we first prove that the continuous prob-
ability flow is the Monge optimal transport map under certain conditions, and
also present an equivalent evidence for discrete cases. In view of these find-
ings, we are then able to define the discrete probability flow in line with the
principles of optimal transport. Finally, drawing upon our newly established def-
initions, we propose a novel sampling method that surpasses previous discrete
diffusion models in its ability to generate more certain outcomes. Extensive ex-
periments on the synthetic toy dataset and the CIFAR-10 dataset have validated
the effectiveness of our proposed discrete probability flow. Code is released at:
https://github.com/PangzeCheung/Discrete-Probability-Flow.

1 Introduction

The emerging diffusion-based models [47, 22, 49, 50] have been proven to be an effective technique
for modeling data distribution, and generating high-quality texts [34, 16], images [37, 13, 44, 41,
42, 23] and videos [24, 21, 43, 55, 19]. Considering their generative capabilities have surpassed the
previous state-of-the-art results achieved by generative adversarial networks [13], there has been
a growing interest in exploring the potential of diffusion models in various advanced applications
[45, 36, 52, 59, 11, 35, 53, 56, 20, 57].

Diffusion models are widely recognized for generating samples in a stochastic manner [50], which
complicates the task of defining an encoder that translates a sample to a certain latent space. For
instance, by following the configuration proposed by [22], it has been observed that generated samples
from any given initial point have the potential to span the entire support of the data distribution.
To achieve a deterministic sampling process while preserving the generative capability, Song et
al.[50] proposed the probability flow, which provides a deterministic map between the data space
and the latent space for continuous diffusion models. Unfortunately, the situation differs when it
comes to discrete models. For instance, considering two binary distributions (P0 = 1

2 , P1 = 1
2 ) and

(P0 = 1
3 , P1 = 2

3 ), there is no deterministic map that can transform the former distribution to the
latter one, as it would simply be a permutation. Although some previous research has been conducted
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on discrete diffusion models with discrete [26, 25, 4, 14, 10, 28, 18] and continuous [7, 51] time
configurations, these works primarily focus on improving the sampling quality and efficiency, while
sampling certainty has received less attention. More specifically, there is a conspicuous absence of
existing literature addressing the probability flow in discrete diffusion models.

The aim of this study is to establish the fundamental theory of the probability flow for discrete
diffusion models. Our paper contributes in the following ways. Firstly, we provide proof that under
some conditions the probability flow of continuous diffusion coincides with the Monge optimal
transport map during any finite time interval within the range of (0,∞). Secondly, we propose a
discrete analogue of the probability flow under the framework of optimal transport, which we have
defined as the discrete probability flow. Additionally, we identify several properties that are shared by
both the continuous and discrete probability flow. Lastly, we propose a novel sampling method based
on the aforementioned observations, and we demonstrate its effectiveness in significantly improving
the certainty of the sampling outcomes on both synthetic toy dataset and CIFAR-10 dataset.

Proofs for all Propositions are given in the Appendix. For consistency, the probability flow and
infinitesimal transport of a process Xt is signified by X̂t and X̃t respectively.

2 Background on Diffusion Models and Optimal Transport

First of all, we review some important concepts from the theory of diffusion models, optimal transport
and gradient flow.

2.1 Continuous state diffusion models

Diffusion models are generative models that consist of a forward process and a backward process.
The forward process transforms the data distribution pdata(x0) into a tractable reference distribution
pT (xT ). The backward process then generates samples from the initial points drawn from pT (xT ).
According to [30], the forward process is modeled as the (time-dependent) Ornstein-Uhlenbeck (OU)
process:

dXt = −θtXtdt+ σtdBt, (1)
where θt ≥ 0, σt > 0,∀t ≥ 0 and Bt is the Brownian Motion (BM). The backward process is the
reverse-time process of the forward process [2]:

dXt = [−θtXt − σ2
t∇Xt

log p(Xt, t)]dt+ σtdB̃t, (2)

where B̃t is the reverse-time Brownian motion and p(Xt, t) is the single-time marginal distribution
of the forward process, which also serves as the solution to the Fokker-Planck equation [39]:

∂

∂t
p(x, t) = θt∇x(xp(x, t)) +

1

2
σ2
t∆xp(x, t). (3)

In order to train a diffusion model, the primary objective is to minimize the discrepancy between the
model output sθ(xt, t) and the Stein score function s(xt, t) = ∇xt

log p(xt, t) [27]. Song et al. [49]
demonstrate that, it is equivalent to match sθ(xt, t) with the conditional score function:

θ∗ = argmin
θ

Et

{
λtEx0,xt

[
∥sθ(xt, t)−∇xt

log p(xt, t|x0, 0)∥2
]}
, (4)

where λt is a weighting function, t is uniformly sampled over [0, T ] and p(xt, t|x0, 0) is the forward
conditional distribution.

It is noted that every Ornstein-Uhlenbeck process has an associated probability flow, which is a
deterministic process that shares the same single-time marginal distribution [50]. The probability
flow is governed by the following Ordinary Differential Equation (ODE):

dX̂t = [−θtX̂t −
1

2
σ2
t s(X̂t, t)]dt. (5)

In accordance with the global version of Picard-Lindelöf theorem [1] and the adjoint method[40, 8],
the map

Ts,t : Rn −→ Rn,

X̂s 7−→ X̂t.
(6)

is a diffeomorphism ∀t ≥ s > 0. The diffeomorphism naturally gives a transport map.

2



2.2 Discrete state diffusion models

In the realm of discrete state diffusion models, there are two primary classifications: the Discrete
Time Discrete State (DTDS) models and the Continuous Time Discrete State (CTDS) models,
which are founded on Discrete Time Markov Chains (DTMC) and Continuous Time Markov Chains
(CTMC), correspondingly. Campbell et al.[7] conducted a comparative analysis of these models
and determined that CTDS outperforms DTDS. The DTDS models construct the forward process
through the utilization of the conditional distribution qt+1|t(xt+1|xt) and employ a neural network to

approximate the reverse conditional distribution qt|t+1(xt|xt+1) =
qt+1|t(xt+1|xt)qt(xt)

qt+1(xt+1)
. In practical

applications, it is preferable to parameterize this model using pθ0|t+1 [26, 4] and obtain pθk|k+1 through

pθk|k+1(xk|xk+1) =
∑
x0

qk|k+1,0(xk|xk+1, x0)p
θ
0|k+1(x0|xk+1)

=
∑
x0

qk+1|k(xk+1|xk)
qk|0(xk|x0)

qk+1|0(xk+1|x0)
pθ0|k+1(x0|xk+1).

(7)

In contrast to DTDS models, a CTDS model is characterized by the (infinitesimal) generator [3], or
transition rate, Qt(x, y). The Kolmogorov forward equation [15] is:

∂

∂t
qt|s(xt|xs) =

∑
y

qt|s(y|xs)Qt(y, xt). (8)

The reverse process is:
∂

∂s
qs|t(xs|xt) =

∑
y

qs|t(y|xt)Rt(y, xs). (9)

The generator of the reverse process can be written by [7, 51]:

Rt(y, x) =
qt(x)

qt(y)
Qt(x, y) =

∑
y0

qt|0(x|y0)
qt|0(y|y0)

q0|t(y0|y)Qt(x, y). (10)

There are various approaches to train the model, such as the Evidence Lower Bound (ELBO)
technique [7], and the score-based approach [51]. It has been observed that the reverse generator
can be factorized over dimensions, allowing parallel sampling for each dimension during the reverse
process. However, it is important to note that this independence is only possible when the time
interval for each step is small.

2.3 Optimal transport

The optimal transport problem can be formulated in two primary ways, namely the Monge formulation
and the Kantorovich formulation [46]. Suppose there are two probability measures µ and ν on (Rn,B),
and a cost function c : Rn × Rn → [0,+∞]. The Monge problem is

(MP) inf
T

{∫
c(x,T(x)) dµ(x) : T#µ = ν

}
. (11)

The measure T#µ is defined through T#µ(A) = µ(T−1(A)) for every A ∈ B and is called the
pushforward of µ through T.

It is evident that the Monge Problem (MP) transports the entire mass from a particular point, denoted
as x, to a single point T(x). In contrast, Kantorovich provided a more general formulation, referred
to as the Kantorovich problem:

(KP) inf
γ

{∫
Rn×Rn

cdγ : γ ∈ Π(µ, ν)

}
, (12)

where Π(µ, ν) is the set of transport plans, i.e.,
Π(µ, ν) = {γ ∈ P(Rn × Rn) : (πx)#γ = µ, (πy)#γ = ν} , (13)

where πx and πy are the two projections of Rn × Rn onto Rn. For measures absolutely continuous
with respect to the Lebesgue measure, these two problems are equivalent [54]. However, when the
measures are discrete, they are entirely distinct as the constraint of the Monge Problem may never be
fulfilled.
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2.4 Fokker-Planck equation by gradient flow

According to [29], the Fokker-Planck equation represents the gradient flow of a functional in a metric
space. In particular, for Brownian motion, its Fokker-Planck equation, which is also known as the
heat diffusion equation, can be expressed as:

∂

∂t
p(x, t) =

1

2
∆p(x, t), (14)

and it represents the gradient flow of the Gibbs-Boltzmann entropy multiplied by − 1
2 :

−1

2
S(p) =

1

2

∫
Rn

p(x) log p(x) dx. (15)

It is worth noting that Eq. 15 is the gradient flow of Eq. 14 under the 2-wasserstein metric (W2).

Chow et al. [9] have developed an analogue in the discrete setting by introducing the discrete
Gibbs-Boltzmann entropy:

S(p) =
∑
i

pi log pi, (16)

and deriving the gradient flow using a newly defined metric (Definition 1 in [9]). Since the discrete
model is defined on graph G(V,E), where V = {a1, ..., aN} is the set of vertices, and E is the set of
edges, the discrete Fokker-Planck equation with a constant potential can be written as:

d

dt
pi =

∑
j∈N(i)

pj − pi, (17)

where N(i) = {j ∈ {1, 2, ..., N}|{ai, aj} ∈ E} represents the one-ring neighborhood.

3 Continuous probability flow

3.1 The equivalence of Ornstein-Uhlenbeck processes and Brownian motion

The diffusion models that are commonly utilized in machine learning are founded on Ornstein-
Uhlenbeck processes. First of all, we demonstrate that it is feasible to deterministically convert a
time-dependent Ornstein-Uhlenbeck process into a standard Brownian motion.

Proposition 1. Let Xt and Yt be a time-dependent Ornstein-Uhlenbeck process and a Brownian
motion respectively: dXt = −θtXtdt + σtdB

(1)
t , dYt = dB

(2)
t , where B(1)

t and B(2)
t are two

independent Brownian motions and θt ≥ 0, σt > 0,∀t ≥ 0. Let ϕt = exp(
∫ t

0
θτ dτ), βt =∫ t

0
(στϕτ )

2 dτ . Then Xt coincides in law with ϕ−1
t Yβt

.

Building upon the aforementioned proposition, the primary focus of this paper is centered around the
standard Brownian motion dYt = dBt.

3.2 Probability flow is a Monge map

Khrulkov et al. [31] have proposed a conjecture that the probability flow of Ornstein-Uhlenbeck
process is a Monge map. However, they only provided a proof for a simplified case. We demonstrate
that under some conditions, the conjecture is correct.

It is important to highlight that the continuous optimal transports presented in this paper are defined
exclusively with the cost function: c(x, y) = 1

2 |x− y|
2.

Within the context of generative models, a collection of training samples denoted as {xi}Ni=1 is
typically provided, and these samples are intrinsically defined by a distribution:

p(x, 0) =
1

N

N∑
i=1

δ(x− xi), (18)
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where δ(x) represents the Dirac delta function. Given a Brownian motion with an initial distribution
in the form of Equation (18), the single-time marginal distribution is [39]

pB(x, t) =
1

N

N∑
i=1

(2πt)−
n
2 exp(−|x− xi|

2

2t
). (19)

The probability flow is defined as [50]:

dŶt = −
1

2
∇Ŷt

log pB(Ŷt, t)dt. (20)

According to [1, 40, 8], the solution exists for all t > 0 and the map Ŷt+s(Ŷt) is a diffeomorphism
for all t > 0, s ≥ 0. We have discovered that Ŷt+s(Ŷt) is the Monge map under some conditions and
the time does not reach 0 or +∞.

Proposition 2. Given that Y0 follows the initial condition (18), and all xis lie on the same line, the
diffeomorphism Ŷt+s(Ŷt) is the Monge optimal transport map between pB(x, t) and pB(x, t + s),
∀ t > 0, s ≥ 0.

There is a counterexample [33] to demonstrate that the probability flow map does not necessarily
provide optimal transport. It is important to note that their case differs from our assumptions in
two ways. Firstly, they consider the limit case of Ŷ+∞(Ŷ0). Secondly, the initial distribution of
the counterexample does not conform to the form specified in Equation (18). Therefore, their
counterexample is not applicable to our situation.

It has been shown that the heat diffusion equation can be regarded as the gradient flow of the Gibbs-
Boltzmann entropy concerning the W2 metric [29]. As W2 is associated with optimal transport, it is
reasonable to anticipate that the "infinitesimal transport" Ŷt+dt(Ŷt) is optimal [31].

In order to interpret the concept of "infinitesimal transport", we utilize the generator of the process
Yt. Let C2

c (Rn) denote the set of twice continuously differentiable functions on Rn with compact
support. The generator At is defined as follows [39]:

Âtf = lim
∆t→0+

f(Ŷt+∆t)− f(Ŷt)
∆t

,∀f ∈ C2
c (Rn). (21)

It is straightforward to verify that

Ât = −
1

2
∇x log pB(x, t)

T∇x. (22)

We define the "infinitesimal transport" to be the diffeomorphism Ỹt+s(Ỹt) where Ỹt+s evolves
according to the following equation

dỸt+s = −
1

2
∇Ỹt

log pB(Ỹt(Ỹt+s), t)ds, (23)

with the initial condition Ỹt = Ŷt. The generator of Ỹt+s is

Ãt+s = −
1

2
∇Ỹt

log pB(Ỹt(Ỹt+s), t)∇x. (24)

Proposition 3. Given any t > 0, there exists a δt > 0 s.t. ∀ 0 < s < δt, the diffeomorphism
Ỹt+s(Ỹt) with the initial condition Ỹt = Ŷt is the Monge optimal transport map.

Let us return to the original Ornstein-Uhlenbeck process Xt. As it is merely a deterministic transfor-
mation of the Brownian motion Yt, we can anticipate that the probability flow of Xt, denoted by X̂t,
will be a Monge map. In fact, this expectation holds true:

Proposition 4. Given that X0 follows the initial condition (18), and all xis lie on the same line, the
diffeomorphism X̂t+s(X̂t) is the Monge optimal transport map for all t > 0, s ≥ 0.
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4 Discrete probability flow

The continuous probability flow is deterministic, which means the "mass" at Ŷt is entirely transported
to Ŷt+s during the time interval [t, t+ s]. However, it is widely acknowledged that for discrete
distributions µ and ν, there may not exist a T such that T#µ = ν. As a result, discrete diffusions
cannot possess a deterministic probability flow. To establish the concept of the discrete probability
flow, we employ the methodology of optimal transport. First of all, a discrete diffusion model is
proposed as an analogue of Brownian motion. Secondly, we modified the forward process to create an
optimal transport map, which is used to define the discrete probability flow. Finally, a novel sampling
technique is introduced, which significantly improves the certainty of the sampling outcomes.

4.1 Constructing discrete probability flow

It is demonstrated that the process described by Equation (17) is a discrete equivalent of the heat
diffusion process (14) [9]. We adopt this process as our discrete diffusion model and represent it in a
more comprehensive notation.

The discrete diffusion model has K dimensions and S states. The states are denoted by i =
(i1, i2, . . . , iK), where ij ∈ {1, 2, . . . , S}. The Kolmogorov forward equation for this process is

d

dt
P i
j (t|s) =

∑
j′

P i
j′(t|s)QD

j′

j (t), (25)

where P i
j (t|s) means P (xt = j|xs = i) and QD is defined as:

QD
i
j =


1, dD(i, j) = 1,

−
∑

j′∈{k:dD(i,k)=1}QD
i
j′ , dD(i, j) = 0,

0, otherwise,

(26)

where dD(i, j) =
∑K

l=1 |il − jl|. If we let the solution of the Equation (25) be denoted by PD(t|s)
and assume an initial condition P0, the single-time marginal distribution can be computed as follows:

PDi(t) =
∑
j

P0jQD
j
i (t|0). (27)

It is noteworthy that the process defined by QD is not an optimal transport map, as there exist mutual
flows between the states (i.e., there exists two states i, j with Qi

j > 0 and Qj
i > 0). Therefore, we

propose a modified version that will be proved to be a solution to the Kantorovich problem, namely,
an optimal transport plan. The modified version is defined by the following Q:

Qi
j(t) =


ReLU(PDi(t)−PDj(t))

PDi(t)
, dD(i, j) = 1,

−
∑

j′∈{k:dD(i,k)=1}Q
i
j′(t), dD(i, j) = 0,

0, otherwise.

(28)

where

ReLU(x) =

{
x, x > 0,

0, x ≤ 0.
(29)

In order to avoid singular cases, We define Qi
j(t) to be 0 when PDi(t) = 0. In fact, it is easy to

verify that PDi(t) > 0 for all t > 0 , i ∈ {1, 2, . . . ,K}. We will show that the process defined by Q
is equivalent in distribution to the one generated by QD.

Proposition 5. The processes generated by QD and Q have the same single-time marginal distribu-
tion ∀t > 0.

Proposition 6. Given any t > 0, there exists a δt > 0 s.t. ∀ 0 < s < δt, the process generated by
Q provides an optimal transport map from PD(t) to PD(t+ s) under the cost dD.
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Proposition 6 demonstrates that QD generates a Kantorovich plan between PD(t) and PD(t + s)
under a certain cost function. On the other hand, the continuous probability flow is the Monge map
between pB(x, t) and pB(x, t+ s). Therefore, it is reasonable to define the process defined by QD

as the discrete probability flow of the original process defined by Q.

Furthermore, the "infinitesimal transport" of the discrete process, which is defined by d
ds P̂ (t+ s) =

P̂ (t+ s)Q(t), also provides an optimal transport map.

Proposition 7. Given any t > 0, there exists a δt > 0 s.t. ∀ 0 < s < δt, the process above provides
an optimal transport map from P̂ (t) to P̂ (t+ s) under the cost dD.

4.2 Sampling by discrete probability flow

In order to train the modified model, we employ a score-based method described in the Score-based
Continuous-time Discrete Diffusion Model (SDDM) [51]. Specifically, we directly learn the condi-
tional probability P θ(il(t)| {i1, . . . , il−1, il+1, . . . , iK} (t)). According to proposition 5, it follows
that P θ = P θ

D, and consequently, the training process is identical to that of [51]. For the sake of
brevity, we will employ the notation P θ

il|i\il(t) to replace P θ(il(t)| {i1, . . . , il−1, il+1, . . . , iK} (t)).

The generator of the reverse process is

Ri
j(t) =


ReLU(

P θ
Djl|i\il

(t)

P θ
Dil|i\il

(t)
− 1), dD(i, j) = 1 and il ̸= jl,

−
∑

j′∈{k:dD(i,k)=1}R
i
j′(t), dD(i, j) = 0,

0, otherwise.

(30)

We use the Euler’s method to generate samples. Given the time step length ϵ, the transition probabili-
ties for dimension l is:

P θ(il(t− ϵ)|i(t)) =

{
ϵR

i(t)
i1(t),...,il(t−ϵ),...,ik(t)

(t), il(t− ϵ) ̸= il(t),

1 + ϵR
i(t)
i(t)(t), il(t− ϵ) = il(t).

(31)

When ϵ is small, the reverse conditional distribution has the factorized probability:

P θ(i(t− ϵ)|i(t)) = ΠK
l=1P

θ(il(t− ϵ)|i(t)) (32)

In this way, it becomes possible to generate samples by sequentially sampling from the reverse
conditional distribution 32.

Transition to higher probability states The reverse process of the continuous probability flow, as
described in Equation (20), causes particles to move towards areas with higher logarithmic probability
densities. As the logarithm function is monotonically increasing, this reverse flow pushes particles
to higher probability density states. This phenomenon is also observed in the discrete probability
flow. By examining the reverse generator, as shown in Equation (30), it can be determined that the
transition rate Ri

j(t) > 0 only when the destination state j has a higher probability than the source
state i. This implies that transitions only occur in higher probability states. In contrast, the original
continuous reverse process (2) and the discrete reverse process from (10) allow any transitions.

Reduction of Standard Deviation We measure the certainty of the sampling method by the
expectation of the Conditional Standard Deviation (CSD):

CSDs,t(X) = EXt
[Std(Xs|Xt)], (33)

where Std(Xs|Xt) = Var
1
2 (Xs|Xt) = E

1
2

Xs
[Xs − EXs [Xs|Xt]|Xt]. CSDs,t(X) is 0 when the

process is deterministic, such as the continuous probability flow. In the discrete situation, there
does not exist any deterministic map. However, our discrete probability flow significantly reduces
CSDs,t(X). Table 2 presents numerical evidence of this phenomenon. Therefore, we posit that the
discrete probability flow enhances the certainty of the sampling outcomes.
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Table 1: Comparison of generation quality for SDDM and DPF, in terms of MMD with Laplace
kernel using bandwith=0.1. Lower values indicate superior quality.

2spirals 8gaussians checkerboard circles moons pinwheel swissroll
discrete dimension = 32, state size = 2

SDDM 2.18e-06 4.28e-06 1.33e-06 6.22e-06 5.62e-06 2.10e-06 4.27e-06
DPF (ours) 1.89e-05 1.09e-05 2.22e-05 3.27e-05 2.42e-05 1.60e-05 2.18e-05

discrete dimension = 16, state size = 5
SDDM 2.06e-4 1.01e-4 2.43e-4 1.74e-4 2.20e-4 3.37e-4 1.43e-4

DPF (ours) 3.87e-4 5.87e-4 4.93e-4 3.83e-4 3.43e-4 6.64e-4 3.20e-4
discrete dimension = 12, state size = 10

SDDM 5.52e-4 3.01e-4 4.39e-4 4.22e-4 2.71e-4 2.90e-4 3.39e-4
DPF (ours) 7.19e-4 3.49e-4 5.99e-4 6.65e-4 4.34e-4 4.14e-4 5.17e-4

Table 2: Comparison of certainty for SDDM and DPF, in terms of CSD on 4,000 initial points, each
of which has 10 generated samples. Lower values indicate superior certainty.

2spirals 8gaussians checkerboard circles moons pinwheel swissroll
discrete dimension = 32, state size = 2

SDDM 14.3053 14.1882 14.7433 14.4327 14.1739 14.0450 14.0548
DPF (ours) 2.1719 1.7945 2.0693 1.7210 2.0573 2.1834 1.8892

discrete dimension = 16, state size = 5
SDDM 14.4645 14.6143 14.6963 14.4807 14.2397 14.2466 14.2659

DPF (ours) 1.9711 1.9367 1.4172 1.7185 1.7668 1.9633 1.6665
discrete dimension = 12, state size = 10

SDDM 12.8463 12.7933 13.0158 12.9232 12.6665 12.7634 12.7880
DPF (ours) 1.8123 1.3178 1.1348 1.4625 1.4859 1.8435 1.5227

5 Related Work

The concept of probability flow was initially introduced in [50] as a deterministic alternative to the
Itô diffusion. In the work [48], they presented the Denoising Diffusion Implicit Model (DDIM) and
demonstrated its equivalence to the probability flow. Subsequently, [31] investigated the relationship
between the probability flow and optimal transport. They hypothesized that the probability flow could
be considered a Monge optimal transition map and provided a proof for a specific case. Additionally,
they conducted numerical experiments that supported their conjecture, showing negligible errors.
However, [33] has discovered an initial distribution that renders probability flow not optimal.

The discrete diffusion models were first introduced by [47], who considered a binary model. Following
the success of continuous diffusion models, discrete models have garnered more attention. The
bulk of research on discrete models has focused primarily on the design of the forward process
[26, 25, 4, 6, 28, 18, 10]. Continuous time discrete state models were introduced by [7] and
subsequently developed by [51].

6 Experiments

We conduct numerical experiments using our novel sampling method by Discrete Probability Flow
(DPF) on synthetic data. The primary goal is to demonstrate that our method can generate samples of
comparable quality with higher certainty.

Experiments are conducted on synthetic data using the same setup as SDDM [51], with the exception
that we replaced the generator Q with Equation (26). In addition to the binary situation (S = 2)
studied in [51], we also perform experiments on synthetic data with the state size S set to 5 and 10.
To evaluate the quality of the generated samples, we generated 40,000 / 4,000 samples for binary
data / other type of data using SDDM and DPF, and measured the Maximum Mean Discrepancy
(MMD) with the Laplace kernel [17]. The results are shown in Table 1. It can be seen that the MMD
value obtained using DPF is slightly higher than that of SDDM, which may be attributed to the
structure of the reverse generator 10. Specifically, DPF approximates an additional term, Qt(y, x),
with the neural network, which potentially introduces additional errors to the sampling process,
leading to a higher MMD value compared to SDDM. However, such difference is minimal and does
not significantly impact the quality of the generated samples. As evident from the visualization of the
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Figure 1: Visualization of the generation quality on generated binary samples for SDDM and DPF.
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Figure 2: Visualization of the generating certainty on generated binary samples for SDDM and DPF.
All the samples (in blue) are randomly generated from the single initial point (in red).
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Figure 3: Visualization of the generated binary samples from the given initial points xT . Different
colors distinguish the generated samples from different initial points xT .

distributions obtained from SDDM and DPF in Figure 1, it is clear that DPF can generate samples
that are comparable to those generated by SDDM.

In addition, we also compare the sampling certainty of DPF and SDDM by computing CSDs,t using
a Monte-Carlo based method. Specifically, we set s = 0 and t = T , and sample 4,000 xts with 10 xss
for each xt. We then estimate E(xs|xt) and Std(xs|xt) using the sample mean and sample standard
deviation, respectively. The results of certainty are presented in Table 2. Our findings indicate that
DPF significantly reduces the CSD, which suggests a higher certainty. Additionally, we visualize
the results of 4,000 generated samples (in blue) from a single initial point (in red) in the binary case
in Figure 2. It is apparent that the sampling of SDDM exhibits high uncertainty, as it can sample the
entire pattern from a single initial point. In contrast, our method reduces such uncertainty and is only
able to sample a limited number of states.

To provide a more intuitive representation of the generated samples originating from various initial
points, we select 20 × 20 initial points arranged in the grid, and distinguish them using different
colors. Subsequently, we visualize the results by sampling 10 outcomes from each initial point,
as shown in Figure 3. We observe that the visualization of SDDM samples appears disorganized,
indicating significant uncertainty. In contrast, the visualization of DPF samples exhibits clear
regularity, manifesting in two aspects: (1) the generated samples from the same initial point using
DPF are clustered by color, demonstrating the better sampling certainty of our DPF. (2) Both of the
generated samples and initial points are colored similarly at each position. For example, in the lower
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Figure 4: Image modeling on CIFAR-10 dataset. The figure is divided into three groups: initial points
xT , sampling results of τLDR-0, and sampling results of our DPF. For each row, the sampled images
are obtained from the same initial point.

right area, a majority of the generated samples are colored purple, which corresponds to the color
assigned to the initial points xT in that area. This observation demonstrates that most of the sampling
results obtained through DPF are closer to their respective initial points, aligning with our design
intention of optimal transport. It is worth noting that similar phenomena are observed across different
state sizes, and we have provided these results in the Appendix.

Finally, we extended our DPF to the CIFAR-10 dataset, and compare it with the τLDR-0 method
proposed in [7]. The visualization results are shown in Figure 4. It can be seen that our method
greatly reduces the uncertainty of generating images by sampling from the same initial xT . Detailed
experimental settings and more experimental results are presented in the Appendix.

7 Discussion

In this study, we introduce a discrete counterpart of the probability flow and established its connections
with the continuous formulations. We began by demonstrating that the continuous probability flow
corresponds to a Monge optimal transport map. Subsequently, we proposed a method to modify a
discrete diffusion model to achieve a Kantorovich plan, which naturally defines the discrete probability
flow. We also discovered shared properties between continuous and discrete probability flows. Finally,
we propose a novel sampling method that significantly reduces sampling uncertainty. However, there
are still remaining aspects to be explored in the context of the discrete probability flow. For instance,
to obtain more general conclusions under a general initial condition, the semi-group method [58]
could be employed. Additionally, while we have proven the existence of a Kantorovich plan in a
small time interval, it is possible to extend this to a global solution. Moreover, the definition of the
probability flow has been limited to a specific type of discrete diffusion model, which also could be
extended to a broader range of models. These topics remain open for future studies.
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A Overview of our DPF

To elucidate our methodology more intuitively, we include schematic diagrams in Figure 5, illustrating
the sampling procedure from various diffusion models. Broadly speaking, diffusion models can be
classified into two categories based on the nature of the underlying data space: continuous diffusion
models and discrete diffusion models. Figure 5 (a) provides an illustration of a continuous diffusion
model using a Stochastic Differential Equation (SDE) that transforms a prior noise distribution into
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Figure 5: Schematic representation of different diffusion models.

the data distribution. The stochastic nature of the sampling process in continuous diffusion models
allows samples generated from a single initial point to span the entire space (green line), but this
feature limits its practical applicability. To overcome this limitation, probability flow is introduced,
which ensures that the generated sample from an initial point follows a deterministic path (red line).
This enhancement enables the continuous diffusion model to be more manageable and applicable in a
broader range of scenarios.

In this paper, our concentration is primarily on discrete diffusion models. An example of such a
model, based on SDDM with 15 states, is depicted in Figure 5 (b). Similar to SDE, it is observed
that the sampling process is also susceptible to uncertainty (green line). One potential solution
could involve incorporating probability flow into discrete diffusion in a similar manner as in the
continuous models. Nonetheless, as previously mentioned in the introduction, this is not a viable
option in discrete models due to the lack of a deterministic mapping between the latent space and
the data space. Thus, there is a necessity for a redefined probability flow that is tailored to discrete
diffusion models, and this forms the core of this paper. This study examines the probability flow of
discrete diffusion models through the concept of optimal transport. Initially, we demonstrate that
the continuous probability flow coincides with the Monge optimal transport map (Proposition 4).
We then leverage this result to develop a similar probability flow for discrete diffusion models using
optimal transport (Proposition 6). Finally, we propose a novel sampling methodology for discrete
models that significantly reduces the uncertainty (red line) in the sampling process.

B Definitions and Theorems Employed in this Appendix

For the sake of reader convenience, we hereby provide a comprehensive list of the definitions and
theorems utilized in this paper. Additionally, we limit our representation to the case within Rn.

Theorem 1. (Theorem 1.48 in [46]) Suppose that µ is a probability measure on (Rn,B) such that∫
|x|2 dµ(x) <∞ and that u : Rn → R ∪ {+∞} is convex and differentiable µ-a.e. Set T = ∇u

and suppose
∫
|T(x)|2 dµ(x) < ∞. Then T is optimal for the transport cost c(x, y) = 1

2 |x − y|
2

between the measures µ and ν = T#µ.

Definition 2. The optimization problem under constraint is formally defined as follows:

min
x∈Rn

f(x) subject to
{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I. (34)

The Lagrangian for this constrained optimization problem is defined as:

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x). (35)

Here, λi represents the Lagrange multiplier associated with the ith constraint. The active set at any
feasible x is defined as the union of the set E with the indices of the active inequality constraints, that
is:

A(x) = E ∪ {i ∈ I : ci(x) = 0}. (36)
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Definition 3. (Definition 12.1 in [38]) Given the point x∗, we say that the Linear Independence
Constraint Qualification (LICQ) holds if the set of active constraint gradients {∇ci(x∗), i ∈ A(x∗)}
is linearly independent.

Theorem 4. (Theorem 12.1 in [38], the Karush-Kuhn-Tucker (KKT) conditions) Suppose that x∗
is a local solution of the problem (34) and that the LICQ holds at x∗. Then there is a Lagrange
multiplier vector λ∗ , with components λ∗i , i ∈ E ∪ I , such that the following conditions are satisfied
at (x∗, λ∗)

∇xL(x∗, λ∗) = 0, (37a)
ci(x

∗) = 0, ∀i ∈ E , (37b)
ci(x

∗) ≥ 0, ∀i ∈ I, (37c)
λ∗ ≥ 0, ∀i ∈ I, (37d)

λ∗i ci(x
∗) = 0, ∀i ∈ E ∪ I. (37e)

Remark 5. According to Theorem 4, the Karush-Kuhn-Tucker (KKT) conditions serve as necessary
conditions. In the case of linear programming, these conditions are not only necessary but also
sufficient. To demonstrate this, let us consider the standard form of a linear programming problem:

min cTx, subject to Ax = b, x ≥ 0. (38)

We can write the Lagrangian function for 38 as

L(x, π, s) = cTx− πT (Ax− b)− sTx. (39)

The KKT conditions are

ATπ + s = c, (40a)
Ax = b, (40b)
x ≥ 0, (40c)
s ≥ 0, (40d)

xT s = 0. (40e)

Suppose we have a vector triple (x∗, π∗, s∗) that satisfies Equation (40). In such a scenario, we can
deduce that:

cTx∗ = (ATπ∗ + s)Tx∗ = (π∗)TAx∗ = bTπ∗. (41)

Let us consider another feasible point denoted by x̄, which satisfies the conditions Ax̄ = b and x̄ ≥ 0.
we can conclude that:

cT x̄ = (ATπ∗ + s∗)T x̄ = bTπ∗ + x̄T s∗ ≥ bTπ∗ = cTx∗. (42)

The inequality (42) demonstrates that the KKT conditions serve as sufficient conditions.

Theorem 6. (Theorem 8.5.1 in [39]) Let Xt be an Itô diffusion given by

dXt = b(Xt) dt+ σ(Xt) dBt, b ∈ Rn, σ ∈ Rn×m, X0 = x, (43)

and let Yt be an Itô process given by

dYt = u(t, ω) dt+ v(t, ω) dBt, u ∈ Rn, v ∈ Rn×m, Y0 = x. (44)

Assume that
u(t, ω) = c(t, ω)b(Yt) and vvT (t, ω) = c(t, ω)σσT (Yt), (45)

for a.a. t, ω. Define βt and αt as:

βt = β(t, ω) =

∫ t

0

c(s, ω) ds and αt = inf{s : βs > t}. (46)

Then Yαt
coincides in law with Xt, denoted by Yαt

≃ Xt.
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Theorem 7. (Theorem 4.1 of Chapter V, §4 in [32], Poincaré’s lemma). Let U be an open ball
in Rn and let ω be a differential form of degree ≥ 1 on U such that dω = 0. Then there exists a
differential form ϕ on U such that dϕ = ω.

Remarks. The conclusion remains valid when the open ball U is substituted with the entirety of Rn.

Theorem 8. (Theorem 4 in [5]) The solution of the differential equation Y ′ = A(t)Y with initial
condition Y (0) = Y0 can be written as Y (t) = exp(Ω(t))Y0 with Ω(t) defined by

Ω′ = d exp−1
Ω (A(t)), Ω(0) = O. (47)

where

d exp−1
Ω (A(t)) =

∞∑
0

Bk

k!
adkΩ(A), (48)

and Bk is the Bernoulli numbers. adkΩ(A) is defined through

adΩ(A) = [Ω, A], adjΩ(A) = [Ω, adj−1
Ω (A)], ad0Ω(A) = A, j ∈ N, (49)

where [A,B] = AB −BA is the Lie-bracket.

Remarks. If A(s)A(t) = A(t)A(s),∀s, t ≥ 0, Ω(t) has the simple form Ω(t) =
∫ t

0
A(s) ds.

C Proofs

C.1 Proof of Proposition 1

Proof. By Itô formula:

d(ϕtXt) =ϕtθtXt dt+ ϕt dXt

=ϕtθtXt dt− ϕtθtXt dt+ ϕtσt dBt

=ϕtσt dBt.

(50)

By Theorem 6, ϕαtXαt ≃ Yt, which means Xt coincides in law with ϕ−1
t Yβt □

Remarks. Proposition 1 posits that the Ornstein-Uhlenbeck (OU) process is essentially a scaling of
Brownian motion with a change in time. Consequently, the VE SDEs, VP SDEs, sub-VP SDEs in
[50] , as well as the models presented in [30], can be regarded as equivalent.

C.2 Proof of Proposition 2

Lemma B.2.1 Let Ht be the Hessian matrices∇2
xt

log pB(xt, t), then HsHt = HtHs,∀s, t ≥ 0.

Proof.

Ht =∇2
xt

log pB(xt, t)

=∇xt

∑
i exp(−

|xt−xi|2
2t )(−xt−xi

t )∑
j exp(−

|xt−xj |2
2t )

=
∑
i

∇xt(
exp(− |xt−xi|2

2t )∑
j exp(−

|xt−xj |2
2t )

)(−xt − xi
t

)︸ ︷︷ ︸
A

+

∑
i exp(−

|xt−xi|2
2t )∑

j exp(−
|xt−xj |2

2t )
(−1

t
)I︸ ︷︷ ︸

B

.

(51)

18



B is a scalar matrix, then it commutes with any matrix.

A =(
∑
j

exp(−|xt − xj |
2

2t
))−2

︸ ︷︷ ︸
C

∑
i

[exp(−|xt − xi|
2

2t
)(−xt − xi

t
)
∑
j

exp(−|xt − xj |
2

2t
)

− exp(−|xt − xi|
2

2t
)
∑
j

exp(−|xt − xj |
2

2t
)(−xt − xj

t
)](−xt − xi

t
)T

=C
∑
i,j

exp(−|xt − xi|
2

2t
− |xt − xj |

2

2t
)(
xt − xi

t
)(
xt − xi

t
)T

− C
∑
i,j

exp(−|xt − xi|
2

2t
− |xt − xj |

2

2t
)(
xt − xj

t
)(
xt − xi

t
)T

=C
∑
i<j

exp(−|xt − xi|
2

2t
− |xt − xj |

2

2t
)
1

t2
[(xt − xi)(xt − xi) + (xt − xj)(xt − xj)

− (xt − xj)(xt − xi)T − (xt − xi)(xt − xj)T ]

=C
∑
i<j

exp(−|xt − xi|
2

2t
− |xt − xj |

2

2t
)
1

t2
(xj − xi)(xj − xi)T .

(52)

As xis lie on the same line, xj−xi can be denoted by xj−xi = Ci,jv,∀i, j, where v is a fixed vector.
It has (xj − xi)(xj − xi)T = C2

i,jvv
T . It is clear that C2

i,jvv
T and C2

k,lvv
T commutes ∀i, j, k, l.

Furthermore, as t and xt only appear in the coefficients, Ht and Hs commute with one another. □

Proof of Proposition2. If Y0 follows the initial condition (18), and xis lie on the same line, Yt will
governed by the equation (20). Employing the trick in [8], For a fixed T , we define

a(t) = ∇Ŷt
ŶT . (53)

Then we can derive
da(t)

dt
= lim

ϵ→0+

a(t+ ϵ)− a(t)
ϵ

= lim
ϵ→0+

a(t+ ϵ)− a(t+ ϵ)∇Ŷt
(Ŷt − ϵ 12∇Ŷt

log pB(Ŷt, t) +O(ϵ2))
ϵ

= lim
ϵ→0+

ϵa(t+ ϵ)∇2
Ŷt

log pB(Ŷt, t) +O(ϵ2)
2ϵ

=
1

2
a(t)∇2

Ŷt
log pB(Ŷt, t),

(54)

where ∇2 is the Hessian operator. Based on Lemma B.2.1, theorem 8 and the fact that a(T ) =

∇ŶT
ŶT = I , a(t) = ∇Ŷt

ŶT is symmetric. Then theorem 7 shows that the equation ∇Ŷt
u(Ŷt) =

ŶT (Ŷt) has a solution. Furthermore, since a(t) is a matrix exponential of a symmetric matrix, it must
be positive semi-definite. Consequently, the solution u is convex. According to theorem 1, the map
ŶT (Ŷt) is optimal for the quadratic transport cost. □

C.3 Proof of Proposition 3

Proof. The definition of Ỹt+s is given by Equation (23). It can be observed that the term Ỹt(Ỹt+s)

on the right-hand side indicates that the evolution speed of Ỹt+s is constant, which implies that all
particles travel at a uniform rate. Consequently, for a given initial condition Ỹt,

Ỹt+s = Ỹt −
1

2
∇Ỹt

log pB(Ỹt)s. (55)

Further, we have:

∇Ỹt
Ỹt+s = I − 1

2
∇2

Ỹt
log pB(Ỹt)s. (56)
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It is evident that ∇Ỹt
Ỹt+s is symmetric and for small values of s, it is also positive semi-definite.

Based on the same reasoning as the proof of Proposition 2, we can conclude that the map Ỹt+s(Ỹt) is
optimal for the quadratic transport cost. □

C.4 Proof of Proposition 4

proof. As Proposition 1 establishes that Xt = ϕ−1
t Yβt , the single-time marginal distribution

pOU (xt, t) for the Ornstein-Uhlenbeck process can be expressed as follows:

pOU (xt, t) =
1

N

N∑
i

(2πβtϕ
−2
t )−

n
2 exp(−|xt − ϕ

−1
t xi|2

2βtϕ
−2
t

). (57)

The probability flow ODE for Ornstein-Uhlenbeck process is:

dX̂t = [−θtX̂t −
1

2
σ2
t∇X̂t

log pOU (X̂t, t)]dt. (58)

We start from Ŷt with the change of variable Zt = ϕ−1
t Ŷβt :

d

dt
Zt =

dϕ−1
t

dt
Ŷβt

+ ϕ−1
t

dŶβt

dβt

dβt
dt

=− ϕ−1
t θtŶβt

+ ϕ−1
t (σtϕt)

2[−1

2
∇Ŷβt

pB(Ŷt, βt)]

=− θtZt −
1

2
ϕtσ

2
t

∑
i exp(−

|Ŷβt−xi|2

2βt
)
Ŷβt−xi

βt∑
j exp(−

|Ŷβt−xj |2
2βt

)

=− θtZt −
1

2
σ2
t

∑
i exp(−

|ϕ−1
t Ŷβt−ϕ−1

t xi|2

2βtϕ
−2
t

)
ϕ−1
t Ŷt−ϕ−1

t xi

βtϕ
−2
t∑

j exp(−
|ϕ−1

t Ŷβt−ϕ−1
t xj |2

2βtϕ
−2
t

)

=− θtZt −
1

2
σ2
t

∑
i exp(−

Zt−ϕ−1
t xi

2βtϕ
−2
t

)
Zt−ϕ−1

t xi

βtϕ
−2
t∑

j exp(−
|Zt−ϕ−1

t xj |2
2βtϕ

−2
t

)

=− θtZt −
1

2
σ2
t∇Zt

log pOU (Zt, t).

(59)

As ϕ0 = 1 and β0 = 0, the initial distribution of X0 and Z0 is the same. Consequently, X̂t and
Zt follow the same ODE with identical initial conditions. Thus, we have X̂t = Zt = ϕ−1

t Ŷβt

and ∇X̂t
X̂t+s = ϕt

ϕt+s
∇Ŷβt

Ŷβt+s , which is symmetric and positive semi-definite by Proposition 2.

Therefore, we can conclude that the map X̂t+s(X̂t) is optimal for the quadratic transport cost. □

C.5 Proof of Proposition 5

Proof. For the original process (discrete analogue of Brownian motion), the transition rate is:

QD
i
j =


1, dD(i, j) = 1,∑
j∈N(i)

−QD
i
j , i = j,

0, others,

(60)
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where N(i) = {k : dD(i, k) = 1}. The Kolmogorov forward equation of this process is written as:

dPDi(t)

dt
=
∑
i′

PDi′(t)QD
i
′

i

=PDi(t)×
∑

i′∈N(i)

−QD
i
i′ +

∑
i′∈N(i)

PDi′ (t)× 1

+
∑

i′∈{k:dD(i,k)>1}

PDi′ (t)× 0

=
∑

i′∈N(i)

(PDi′ (t)− PDi(t)).

(61)

In contrast, the transition rate of our new process is:

Qi
j =


ReLU(PDi(t)−PDj(t))

PDi(t)
, dD(i, j) = 1∑

dD(i,j)=1

−Qi
j , i = j

0, others.

(62)

Our new process can be written as:

dPi(t)

dt
=
∑
i′

Pi′ (t)Q
i
′

i

=Pi(t)×
∑

i′∈N(i)

−Qi
i′

+
∑

i′∈N(i)

Pi′ (t)×
ReLU(PDi′ (t)− PDi(t))

PDi′ (t)

+
∑

i′∈{k:dD(i,k)>1}

Pi′ (t)× 0

=−
∑

i′∈N(i)

Pi(t)
ReLU(PDi(t)− PDi′ (t))

PDi(t)

+
∑

i′∈N(i)

Pi′ (t)
ReLU(PDi′ (t)− PDi(t))

PD
′

i(t)
.

(63)

Substitute P = PD in Equation (63), we get the same form in 61, which means PD also solves the
Equation (63). Thus, Pi(t) = PDi(t), ∀t ≥ 0, i ∈ {1, 2, · · · , S}K , according to Picard-Lindelöf
theorem. □

C.6 Proof of Proposition 6

Let a = P (t), b = P (t+ ε). As our generator only allows flux between adjacent states, we define
the transport map Π∗ ∈ Rk×k as:

Π∗i
j =

∫ t+ϵ

t

Pi(t)Q
i
j(t) dt, (64)

which is the probability transported from state i to state j in the time interval [t, t + ϵ]. As the
probability P (t) is continuous with respect to time t, we choose the ϵ such that the sign of all the
quantities Pi(t) − Pj(t) for {i, j ∈ {1, 2, · · · , S}K : dD(i, j) = 1} do not change. Under this
assumption, the flux directions do not change at every state.
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We claim that Π∗ solves the optimal transport problem:

min
Π

∑
i,j

Πi
jdD(i, j),

s.t.


∑
i

Πi = b,∑
j

Πj = a,

Π ≥ 0.

(65)

Proof. The Lagrangian function for this optimization problem is:

L(Π, ψ, ϕ, λ) =
∑
i,j

Πi
jdD(i, j) + ψi(Π

i
j − ai) + ϕj(Π

i
j − bj)− λijΠi

j , (66)

where ψi, ϕj and λij are Lagrange multipliers. According to Remark 5 and the fact that this is a linear
programming, Π∗ is optimal if and only if there exists a set of ϕi, ψj and λij that satisfy the following
equations for ∀ i, j:

dD(i, j) + ψi + ϕj − λij = 0 (67a)

λij ≥ 0 (67b)

λijΠ
i
j = 0 (67c)∑

i

Πi
j = bj (67d)∑

j

Πi
j = ai (67e)

Πi
j ≥ 0. (67f)

Firstly, we consider the i, j pairs where dD(i, j) ≤ 1. In this case Π∗i
j may > 0 (thus λij = 0).

Besides, the Equation (64) indicates that Π∗i
i > 0, thus we have λii = 0. Then the Equation (67a)

comes to:
ψi + ϕi = 0. (68)

According to the construction of our generator Q, there is no mutual flux, thus we obtain:

Πi1,...,il,...,iK
i1,...,il+1,...,iK

̸= 0 or Πi1,...,il+1,...,iK
i1,...,il,...,iK

̸= 0, ∀ i. (69)

By substituting this result into complementary slackness condition 67c, we have:

λi1,...,il,...,iK ,
i1,...,il+1,...,iK

= 0 or λi1,...,il+1,...,iK
i1,...,il,...,iK

= 0. (70)

Since dD([i1, . . . , il, . . . , iK ], [i1, . . . , il + 1, . . . , iK ]) = 1, from Equation (67a), we can obtain:

1 + ψi1,...,il,...,iK + ϕi1,...,il+1,...,iK = 0 or 1 + ψi1,...,il+1,...,iK + ϕi1,...,il,...,iK = 0. (71)

Solving Equations (68) and (71) simultaneously, we get:{
ψi1,...,il+1,...,iK = 1 + ψi1,...,il,...,iK

ϕi1,...,il+1,...,iK = −1 + ϕi1,...,il,...,iK
or

{
ψi1,...,il+1,...,iK = −1 + ψi1,...,il,...,iK

ϕi1,...,il+1,...,iK = 1 + ϕi1,...,il,...,iK
. (72)

Therefore, given ψ0,...,0, ψi1,...,iK and ϕi1,...,iK can be calculated by:

ψi1,...,iK = ψ0,...,0 +mi1,...,iK
0,...,0 − ni1,...,iK0,...,0 , (73)

ϕi1,...,iK = −ψi1,...,iK , (74)

where mi1,...,iK
0,...,0 + ni1,...,iK0,...,0 = dD(0, i), mi1,...,iK

0,...,0 ∈ N0, and ni1,...,iK0,...,0 ∈ N0. N0 represents the
set of all non-negative integers. The quantity mi1,...,iK

0,...,0 is the number where Πi1,...,il,...,iK
i1,...,il+1,...,iK

̸= 0
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Algorithm 1: Generative Reverse Process with Discrete Probability Flow (DPF)
t← T

i1:Kt ∼ PT (i
1:K
T )

while t > 0 do
Compute matrix P θ

D = [P θ
D[l, j]]K×S , where P θ

D[l, j] = P θ
Dilt−τ=j|it\ilt

(t), l = 1, . . . ,K,
j = 1, . . . , S with softmax operation on the results of K × S forward pass of the model

Encoded the three candidate states (i.e., ilt, i
l
t − 1 and ilt + 1) for ilt−τ with one-hot code:

Ostay ← IK×K [it]; Osub ← IK×K [it − 1]; Oadd ← IK×K [it + 1]

Fetch the probability P θ
D for the above candidate state: Pstay ←

∑
j(Ostay ◦ P θ

D);
Psub ←

∑
j(Osub ◦ P θ

D); Padd ←
∑

j(Oadd ◦ P θ
D)

Rit
it−τ

(t)← Osub ◦ReLU(Psub/Pstay − 1) +Oadd ◦ReLU(Padd/Pstay − 1)−Ostay ◦
(ReLU(Psub/Pstay − 1) +ReLU(Padd/Pstay − 1)) with Equation (30)
P θ(ilt−τ |it)← τRit

it−τ
(t) +Ostay with Equation (31)

it−τ ← Categorical
(
P θ(ilt−τ |it)

)
t← t− τ

end

and ni1,...,iK0,...,0 is the number where Πi1,...,il+1,...,iK
i1,...,il,...,iK

̸= 0. Consequently, we find all the Lagrange
multipliers for dD(i, j) ≤ 1

Then, we consider i, j pairs when dD(i, j) > 1 which indicates Π∗i
j = 0. We use ψi and ϕj in

Equation (73) and (74). To satisfy the KKT condition, we only need to verify that there is λij satisfies
Equation (67b) and Equation (67a). From Equation (67a), λij can be written as:

λij = dD(i, j) + ψi + ϕj (75)

Let rl = min(il, jl), it has:

dD(i, j) = dD(i, r) + dD(j, r) (76)
ψi = ψr +mr

i − nri (77)
ϕj = −ψj = −ψr −mr

j + nrj (78)

dD(i, r) = mr
i + nri (79)

dD(j, r) = mr
j + nrj (80)

mr
i , n

r
i ,m

r
j , n

r
j ≥ 0. (81)

Substitute the above results to Equation (75), we have:

λij = 2(mr
i + nrj) ≥ 0 (82)

As a result, we find all the Lagrange multipliers. Since Equations (67d) and (67e) are naturally
satisfied by the construction of Π∗, we conclude that the KKT conditions are met at Π∗:

1⃝ Primal Feasibility: (67d), (67e), (67f)

2⃝ Dual Feasibility: (67a), (67b)

3⃝ Complementary slackness: (67c)

According to Remark 5, the KKT conditions indicate Π∗ is a solution to the optimal transport problem
(65). □

C.7 Proof of Proposition 7

This is a special case of Proposition 6, where the generator Q remains constant throughout time.
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Table 3: Average MMD between different distributions of data.

State size 2 5 10
Average MMD 5.336e-3 2.201e-2 6.531e-3
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Figure 6: Visualization of the generation quality on generated samples with state size = 5 for SDDM
and DPF.
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Figure 7: Visualization of the generation quality on generated samples with state size = 10 for SDDM
and DPF.

D Experiment

D.1 Algorithm

Our training process follows the same procedure as SDDM, with the distinction that our forward
process incorporates the rate we formulated in Equation (28) to align with optimal transport theory.
The loss function employed during the training process is as follows:

θ∗ = argmin
θ

∫ T

0

∑
it∈{1,2,··· ,S}K

qt(it)

[
K∑
l=1

− logPt(i
l
t|it\ilt)

]
dt. (83)

The sampling process with the proposed discrete probability flow is shown in Algorithm 1. In our
algorithm, as R is non-zero only when dD(it, it−τ ) ≤ 1, the calculation of the reverse transition rate
R (as defined in Equation 30) is divided into three cases: staying in the current state ( ilt−τ = ilt,
i.e., "stay"), jumping to the next state (ilt−τ = ilt + 1, i.e., "add"), and jumping to the previous state
(ilt−τ = ilt− 1, i.e., "sub"). By combining the rate in these situations, we can derive Pθ(i

l
t−τ |it) from

(31) and (32), which allows us to sample the next state accordingly. This process continues iteratively
until t = 0.

D.2 Synthetic Dataset

Following [60, 12, 51], we utilize synthetic data for model validation. Initially, we generate 2D
floating-point data from seven distinct distributions using an infinite data oracle. By employing the
same settings as [51], we convert each dimension of the data into 16-bit Gray code, resulting in a
dataset with discrete dimension = 32 and state size = 2. However, it is not sufficient to validate our
method solely on the dataset with state size = 2, since Q in Equation (28) does not cover cases where
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Figure 8: Visualization of the generating certainty on generated samples with state size = 5 for SDDM
and DPF. All the samples (in blue) are randomly generated from the single initial point (in red).
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Figure 9: Visualization of the generating certainty on generated samples with state size = 10 for
SDDM and DPF. All the samples (in blue) are randomly generated from the single initial point (in
red).

dD(i, j) > 1. Therefore, we further transform the same data into 8-bit 5-base code and 6-bit decimal
code respectively, thereby creating two additional datasets: one with dimension = 16 and state size =
5, and another with dimension = 12 and state size = 10.

D.3 Experiment Details

In the experiments, our neural network consists of a 3-layer MLP with 256 channels [60, 51]. We
employ the Adam optimizer with a learning rate of 1e-4. The model is trained on a single NVIDIA
Quadro RTX 8000, utilizing a batch size of 128 for 300,000 iterations. During training, the parameter
t is uniformly sampled from the range of 0 to 1. For the sampling process, the data is generated
through 1,000 steps (i.e.,τ is set to 0.001).

D.4 Quality of Generated Samples

To evaluate the sampling quality, we generate 40,000 samples for binary data, and 4,000 samples for
other type of synthetic data by SDDM and our method. Then we compare these generated samples
to true data using Laplace MMD. This evaluation is repeated 10 times, and the average results are
presented in Table 1. It is worth noting that the unbiased estimation of MMD [17] is an approximation
by Monte Carlo method, which may cause negative results. It is observed that MMD score of our
method is slightly higher than that of SDDM. This is mainly caused by the approximation of Qt. In
the sampling process, two terms are present on the right-hand side of Eq. 10: qt(y)

qt(x)
and Qt(y, x).

In SDDM, only one term, i.e., qt(y)
qt(x)

is estimated using a neural network, as QDt(y, x) is known.
Different from SDDM, both terms in our method are evaluated using quantities approximated by the
neural network, since our Qt(y, x) is dependent on qt(y)

qt(x)
(Eq. 27). This approximation may lead to

slightly inferior quality than the SDDM using precise QDt(y, x). Due to this being a neural network
fitting error, we currently have no feasible alternative approximations to achieve a superior outcome.

To assess the significance of these differences, we presented the MMD between different distributions
of real data in Table 3. Taking this result as a reference, we can find that the gap of the MMD score
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Table 4: Comparison of the average L1 distance between the generated samples and initial point.
Lower values indicate that the generated sample is closer to initial point.

2spirals 8gaussians checkerboard circles moons pinwheel swissroll
discrete dimension = 32, state size = 2

SDDM 13.5595 13.3025 13.4710 13.5848 13.6485 13.4875 13.6962
DPF (ours) 1.5965 1.3855 0.7525 1.1875 1.8693 1.8135 1.6955

discrete dimension = 16, state size = 5
SDDM 12.7220 12.4698 12.4833 12.5390 12.6745 12.6238 12.7510

DPF (ours) 1.5265 1.6155 0.7090 1.1668 1.7038 1.8088 1.5888
discrete dimension = 12, state size = 10

SDDM 11.3433 11.0083 11.0243 11.2205 11.6850 11.3895 11.6333
DPF (ours) 1.7655 1.1940 0.7143 1.1588 2.0493 1.9283 1.7695
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Figure 10: Visualization of the generated samples with state size = 5 from the given initial points xT .
Different colors distinguish the generated samples from different initial points xT .
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Figure 11: Visualization of the generated samples with state size = 10 from the given initial points
xT . Different colors distinguish the generated samples from different initial points xT .

between DPF and SDDM is very small, which is not enough to affect the quality of the generation.
This conclusion is further supported by the visualization of the generated samples in Figure 1, Figure
6 and Figure 7 also confirm this point, which demonstrates that DPF produces samples of comparable
quality to SDDM.

D.5 Standard Deviation of Generated Samples

To evaluate the certainty of generated samples, we randomly select a 2D float-point and fix it as
the initial point. In this experiments, we use the same initial point (-1.91, 1.57). In the binary case,
the point is converted into Gray code, whereas in the 5-base and decimal cases, the original code is
utilized. For each dataset, we generate 4,000 points and compute the Expectation of the Conditional
Standard Deviation (33). Our DPF method results in a significant reduction in the CSD score, as
presented in Table 2. For example, on the checkerboard dataset with S = 5, our DPF achieves the
best score of 1.4103, which is 89% lower than the score achieved by SDDM. We also visualize these
results in Figure 2, Figure 8, and Figure 9, where the red star represents the initial point, and the
blue points denote the generated samples. Furthermore, it is evident that SDDM generates samples
from a single initial point across the entire space, especially for datasets with S = 2. In contrast,
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Table 5: Comparison of average trajectory length. Lower value indicates a better transport plan.

2spirals 8gaussians checkerboard circles moons pinwheel swissroll
discrete dimension = 32, state size = 2

SDDM 32.0075 31.7275 31.8010 32.0258 32.0240 31.8650 31.9988
DPF (ours) 1.6135 1.3980 0.7640 1.1995 1.8883 1.8265 1.7065

discrete dimension = 16, state size = 5
SDDM 26.0680 25.3258 25.9708 25.7565 25.8815 25.9793 26.0810

DPF (ours) 1.5425 1.6390 0.7275 1.1758 1.7102 1.8178 1.5973
discrete dimension = 12, state size = 10

SDDM 21.8558 21.7828 21.7778 21.9100 22.3180 21.9985 22.2688
DPF (ours) 1.7835 1.1995 0.7213 1.1793 2.0623 1.9433 1.7870

our method can only reach a limited number of states from the initial point, indicating the superior
sampling certainty of our approach.

We can also observe that our sampling results tend to form rectangles in Figure 2, Figure 8, and
Figure 9. This phenomenon arises from the construction of our synthetic dataset. Specifically, we
construct the synthetic dataset states and dimensions by encoding the x-axis and y-axis coordinates
of the toy dataset (normalized to [0, 1]) into K/2-bit S-ary. This is equivalent to dividing the data
space into rectangle regions, where the first few dimensions determine the approximate location of
the data. Since our proposed method significantly reduces the uncertainty, each dimension (including
the first few dimensions) has only a limited number of possible values. As a result, the points in
Figure 2, Figure 8, and Figure 9 appear to form rectangles.

D.6 Generated Samples from Different Initial Points

To display the generated samples from various initial points, we select a 20× 20 grid of initial points
and mark them with distinct colors. Subsequently, we generate 10 samples for each initial point and
presented the results in Figure 3, Figure 10, and Figure 11. It is apparent that the samples obtained
through SDDM sampling are mixed together. In contrast, the results obtained by our method exhibit
strong regularity, with the generated samples clustering together based on their respective colors.
This observation suggests that our method offers improved certainty in the sampling process.

D.7 Distance Between the Generated Samples and Initial Points

Our DPF is designed based on the theory of optimal transport, as demonstrated in Proposition 6.
Here, we aim to reflect this finding through experimentation as well. To accomplish this, we utilize
the generated samples from Figure 3, Figure 10 and Figure 11, and calculate the average L1 distance
from the generated samples to the corresponding initial point:

dD(i(0), i(T )) =

S∑
l=1

|il(0)− il(T )|. (84)

The results are presented in Table 4. It is evidence that DPF greatly reduces the distance between the
generated samples and the initial point. Moreover, combined with the visualization results in Figure 3,
Figure 10 and Figure 11, we observe that our method’s sampling outcomes tend to concentrate around
the high probability states near the initial point. This outcome aligns with our optimal transport
design, further verifying the efficacy of our approach.

However, there is an illusion that the difference between SDDM and PDF decreases as the state size
increases. This is mainly because that the Figure 3, Figure 10 and Figure 11 are visualized in the
’float space’ instead of the ’encoding space’. Specifically, our synthetic data with a state size of and a
dimension size of is established by encoding the x and y coordinates of the toy dataset (normalized
to [0, 1]) to K/2-bit S-ary respectively. In this encoding, the first dimension of the encoding has
the greatest impact on the data position. For example, in binary encoding (state size = 2), the first
bit divides the data space into two parts, and determines the part in which it resides. However, as
the number of states increases, the space is divided into more parts, and the small change of the
first bit can not significantly change the position of the number it represents. This will lead to a
narrowing of the gap between our DPF and SDDM in the visualization. Therefore, in such situations,
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Table 6: Comparison of transport efficiency. Larger values indicate better transport efficiency.

2spirals 8gaussians checkerboard circles moons pinwheel swissroll
discrete dimension = 32, state size = 2

SDDM 42.36% 41.93% 42.36% 42.42% 42.62% 42.33% 42.80%
DPF (ours) 98.95% 99.11% 98.49% 99.00% 98.99% 99.29% 99.36%

discrete dimension = 16, state size = 5
SDDM 48.80% 49.24% 48.07% 48.68% 48.97% 48.59% 48.89%

DPF (ours) 98.96% 98.56% 97.46% 99.23% 99.63% 99.50% 99.47%
discrete dimension = 12, state size = 10

SDDM 51.90% 50.54% 50.62% 51.21% 52.36% 51.77% 52.24%
DPF (ours) 98.99% 99.54% 99.02% 98.26% 99.36% 99.22% 99.02%

2spirals 8gaussians checkerboard circles moons pinwheel swissroll
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Figure 12: Visualization of the sampling trajectory. The yellow box highlights the duplicated
trajectories encountered during the sampling process.

the quantitative results in Table 2 are more appropriate for verifying the reduction of uncertainty in
the encoding space.

D.8 Sampling Trajectory Length

Merely examining the distance between the initial point and the generated samples is insufficient
to verify that our DPF aligns with optimal transport principles, as the sampling process may follow
different trajectories. Therefore, we calculate the cumulative consumption of the sampling trajectory
in Figure 3, Figure 10 and Figure 11 according to the following formula:

dtra(i(0), . . . , i(T )) =
∑

t∈{τ,2τ...,T}

dD(i(t), i(t− τ)). (85)

The results are shown in Table 5. It is evidence that there is a significant decrease in the trajectory
length of DPF compared to the SDDM. For instance, our DPF achieves the best score on the
checkerboard dataset with S = 5 with a score of 0.7640, which is 97% lower than the score of SDDM.
This suggests that the consumption during our sampling process is lower, which is in line with the
optimal transport design.

D.9 Transport Efficiency

We also examine the transport efficiency during the sampling process, which can be calculated as the
ratio of L1 distance between the initial point and generated sample to the sampling trajectory length:

E(i(0),...,i(T )) =
dD(i(0), i(T ))

dtra(i(0), . . . , i(T ))
. (86)
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Table 7: Application on higher dimension or state scenarios. Lower CSD indicate superior certainty.

2spirals 8gaussians checkerboard circles moons pinwheel swissroll
discrete dimension = 20, state size = 50

SDDM 25.8777 26.5288 25.5106 25.7398 25.6984 25.6984 6.4767
DPF (ours) 2.7113 4.4274 2.6217 3.7554 3.0774 3.3054 3.8183

discrete dimension = 50, state size = 5
SDDM 47.2706 47.5810 47.4964 47.2733 47.0047 46.9103 46.9819

DPF (ours) 2.0335 1.8134 0.7418 1.7143 1.2840 1.4245 1.5720

A higher value indicates a more optimal sampling trajectory selected by the model from the initial
point to the generated sample, i.e., the higher transport efficiency. The results are presented in
Table 6. Notably, we observed that only approximately 50% of the trajectory length of SDDM
contributes to the actual distance between the initial point and generated samples. In contrast, the
transport efficiency of our DPF is close to 100%, which means most jumps in our trajectory efficiently
contribute to the final transition. This finding demonstrates that the transport plan selected by our
DPF is more effective, aligning with our theoretical derivation.

D.10 Visualization of Sampling Trajectory

The visualization of the sampling trajectory for the 0-th dimension of the dataset is shown in Figure
12. It is evident that the sampling trajectory of SDDM often exhibits duplicate trajectories, which is
also the reason for the low transport efficiency of SDDM in Table 6. In contrast, our method, which
adheres to the principles of optimal transport theory, ensures that the sampling process only moves
toward high probability states, thereby avoiding the occurrence of duplicate trajectories.

D.11 Higher dimension or state scenarios

To further verify our method is still applicable in higher dimension or state scenarios, we increased
the number of states and dimension to 50 for experiments. Specifically, we set S = 50,K = 20 and
S = 5,K = 50 to avoid dimension redundancy in the K/2-bit S-ary encoding for the toy dataset
(float64) coordinates (i.e., 5020/2 < 264 and 550/2 < 264). The results of this experiment are shown
in Table 7, which clearly demonstrate that our method can significantly reduce sampling uncertainty
even with larger state and dimension sizes.

D.12 Image Modeling

In addition to the transition rate designed in Eq. 26, our method can also be extended to a broad range
of transition rates. For example, we can extend our discrete probability flow to the method in [7]. For
general QDt

with QD
i
j(t) = QD

j
i (t), define:

Qi
j(t) =

{
QD

i
j(t)

ReLU(PDi
(t)−PDj

(t))

PDi
(t) , i ̸= j,

−
∑

j ̸=iQ
i
j , i = j.

(87)

QDt and Qt have the same single-time marginal distribution. Let qt = PD(t) and x ̸= y, the reverse
transition rate can be written as:

Rt(x, y) =
qt(y)

qt(x)
Qt(y, x) (88a)

=
qt(y)

qt(x)
QDt

(y, x)
ReLU(qt(y)− qt(x))

qt(y)
(88b)

= QDt
(y, x)RELU(

qt(y)

qt(x)
− 1) (88c)

In the same way, the reverse rate in the paper [7] can be written into the following form:

R̂1:D
t (x1:D, x̃1:D) =

D∑
d=1

Rd
t (x̃

d, xd)δx1:D\d,x̃1:D\dRELU(
∑
xd
0

q0|t(x
d
0|x1:D)

qt|0(x̃
d|xd0)

qt|0(xd|xd0)
− 1)

(89)
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Table 8: Comparison of certainty for τLDR-0 and DPF on the Cifar-10 dataset. Here, CSD , class-std,
and class-entropy are calculated on 1,000 initial points, each of which has 10 generated images.
Lower values indicate superior certainty.

CSD class-std class-entropy
τLDR-0 [7] 57.6898 2.6628 1.7703
DPF (ours) 9.4420 1.1819 0.5291

In this way, the mutual flow between states is eliminated, greatly reducing the sampling uncertainty.
To validate this, we validated our DPF on the CIFAR-10 dataset, using the pre-trained discrete
diffusion model provided by the paper [7]. Firstly, we selected 1,000 initial points, and sampled 10
images from each initial point. To measure the sampling certainty on the image data, we used a pre-
trained CIFAR-10 classifier to classify the image, and introduce two new metrics, i.e., class-std and
class-entropy. The class-std calculates the standard deviation of the categories of the images sampled
from the same initial point. While the class-entropy calculates the entropy of the category distribution
of the images sampled from the same initial point. Lower class-std and class-entropy indicate better
sampling certainty. The experimental results, shown in Table 8, demonstrate that our method can
significantly reduce the sample uncertainty compared to the τLDR-0 method. Additionally, we
visualized the sampled images in Fig. 4. It was clear that from an initial point, our method samples
almost the same images, while the original sampling method obtains totally different images.

E Discussion

E.1 Narrow time interval limited in Proposition 6.

We limit the time frame to a narrow interval, as the validity of the proof hinges on the constancy of
the sign of Pi(t)− Pj(t). Alternatively, if both equations in Eq. (70) are established concurrently, a
contradiction arises whereby 2 equals 0. Consequently, the KKT condition cannot be satisfied by any
suitable Lagrange multipliers, thereby rendering the plan sub-optimal.

From an intuitive standpoint, DPF only avoids instantaneous mutual flow, which does not ensure
the elimination of mutual flow during finite interval. For example, if we assume Pi(t) > Pj(t) in
the interval [t, t + ϵ/2) and Pi(t) < Pj(t) in (t + ϵ/2, t + ϵ], it follows that Πi

j > 0 and Πj
i > 0.

Assuming Πi
j > Πj

i , we can demonstrate that the given plan is sub-optimal. If we define a new plan
as Π∗i

j = Πi
j−Πj

i and Π∗j
i = 0, we can verify that the resultant plan Π∗ incurs a lower transportation

cost than Π. The preceding derivation establishes the tightness of our announcement, indicating that
the optimal transport plan cannot be extended across the entire time interval.

In order to confirm the existence of such a scenario, we explicitly construct it in the case where
K = 1. Since P (t) = P (0)eQDt, we can obtain the analytical solution through eigen decomposition
with difference equations, yielding the following outcomes: λi = 2cos(iπ/S) − 2 and vi =
(1, cos(θi/2), ..., cos((2S − 1)θi/2)), where θi = arccos((λi + 2)/2). Subsequently, we can assess
a basic scenario wherein S = 3 and P (t = 0) = (0.1, 0, 0.9). It can be observed that P0(t = 0) >
P1(t = 0) and P0(t = 0.1) < P1(t = 0.1). However, the discussion presented above does not deny
the existence of a long term optimal transport process. And from an application perspective, it is
worth finding out a process with minimal uncertainty.

E.2 Definition of probability flow on universal discrete process.

In contrast to continuous processes, which necessitate the stochastic term to be a Brownian motion,
there are few assumptions regarding the discrete stochastic term. As a result, the consideration of the
drift term becomes unnecessary as it can be assimilated into the stochastic term. However, it is worth
exploring the potential distinctive properties that may arise from treating these two terms separately.

E.3 Practical applications.

Analogously to the effect of continuous probability flow on the continuous diffusion model, we
believe that reducing uncertainty can also bring many benefits to discrete diffusion models. For
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instance, by selecting appropriate initial data, we can generate results that are pertinent to the initial
data to attain controllable generation. Additionally, due to the excellent property of sampling certainty
reduction, we can perform operations such as interpolation in latent code to complete data editing.

E.4 Infinite horizon case in Proposition 2.

The infinite horizon case is not addressed in our study due to the presence of singularities that pose
significant challenges. For instance, in the case of Brownian motion, the distribution at t = ∞
assumes a uniform distribution over the entire Rn, which is not well-defined.

Additionally, the probability flow of Brownian motion at t = 0 also experiences a singularity. By
taking the limit of the right-hand side of Eq. 20 and let di = xt − xi, we obtain:

lim
t→0+

−1

2
∇xt

pB(xt, t) = lim
t→0+

∑
i exp(−

d2
i

2t )
di

2t∑
j exp(−

d2
j

2t )

= lim
z→+∞

∑
i

di∑
j exp((d

2
i − d2j )z)/z

.

(90)

Since

lim
z→+∞

exp((d2i − d2j )z)/z =
{
+∞ if d2i > d2j ,

0 if d2i ≤ d2j ,
(91)

we have
lim
t→0
−1

2
∇xt

pB(xt, t) = lim
z→+∞

dimin∑
j exp((d

2
imin
− d2j )z)/z

, (92)

where imin = argmin
i

d2i . (noting that imin may not be unique, but we exclude this scenario as it

does not significantly affect our analysis). Consequently, we obtain:

lim
t→0+

−1

2
∇xt

pB(xt, t) =

{
0, if xt=0 = ximin

,

dimin
∗∞, else.

(93)

where dimin ∗ ∞ indicates that the vector is oriented in the direction of dimin and has an infinite
norm. Consequently, the right-hand side of Eq. 20 lacks Lipschitz continuity, leading to non-unique
solutions. Actually, if Eq. 20 has a unique solution near t = 0, the distribution pB(x, t) will always
be a summation of Dirac deltas, which contradicts Eq. 18. Due to our reliance on the solution of
ODE, we are unable to analyze the behavior in the vicinity of t = 0. Consequently, we have limited
our study to finite intervals.
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