
Under review as a conference paper at ICLR 2023

A DATASETS AND MODEL ARCHITECTURES

A.1 BEER REVIEW

Data We use the BeerAdvocate review dataset (McAuley et al., 2012) and consider three binary
aspect-level sentiment classification tasks: LOOK, AROMA and PALATE. This dataset was originally
downloaded from https://snap.stanford.edu/data/web-BeerAdvocate.html.

Lei et al. (2016) points out that there exist strong correlations between the ratings of different aspects.
In fact, the average correlation between two different aspects is 0.635. These correlations constitute
as a source of biases when we apply predictors to examples with conflicting aspect ratings (e.g.
beers that looks great but smells terrible).

We randomly sample 2500 positive examples and 2500 negative examples for each task. We apply
ls to identify non-generalizable splits across these 5000 examples. The average word count per
review is 128.5.

Representation backbone Following previous work (Bao et al., 2021), we use a simple text
CNN for this dataset. Specifically, each input review is encoded by pre-trained FastText embed-
dings Mikolov et al. (2018). We employ 1D convolutions (with filter sizes 3, 4, 5) to extract the
features Kim (2014). We use 50 filters for each filter size. We apply max pooling to obtain the final
representation (2 R150) for the input.

Predictor The Predictor applies a multi-layer perceopton on top of the previous input representa-
tion to predict the binary label. We consider a simple MLP with one hidden layer (150 hidden units).
We apply ReLU activations and dropout (with rate 0.1) to the hidden units.

Splitter The Splitter concatenates the CNN representation with the binary input label. Similar to
the Predictor, we use a MLP with one hidden layer (150 ReLU units, dropout 0.1) to predict the
splitting decision P(zi | xi, yi). We note that the representation backbones of the Splitter and the
Predictor are not shared during training.

A.2 TOX21

Data The dataset contains 12,707 chemical compounds. Each example is annotated with two types
of properties: Nuclear Receptor Signaling Panel (AR, AhR, AR-LBD, ER, ER-LBD, aromatase,
PPAR-gamma) and Stress Response Panel (ARE, ATAD5, HSE, MMP, p53). The dataset is publicly
available at http://bioinf.jku.at/research/DeepTox/tox21.html.

Representation backbone Following Mayr et al. (2016), we encode each input molecule by its
dense features (such as molecular weight, solubility or surface area) and sparse features (chemical
substructures). There are 801 dense features and 272,776 sparse features. We concatenate these
features and standardize them by removing the mean and scaling to unit variance.

Predictor The Predictor is a multi-layer perceptron with three hidden layers (each with 1024
units). We apply ReLU activations and dropout (with rate 0.3) to the hidden units.

Splitter The Splitter concatenates the molecule features with the binary input label. Similar to the
Predictor, we use a multi-layer perceptron with three hidden layers (each with 1024 units). We apply
ReLU activations and dropout (with rate 0.3) to the hidden units.

A.3 WATERBIRD

Data This dataset is constructed from the CUB bird dataset (Welinder et al., 2010) and the
Places dataset (Zhou et al., 2017). Sagawa et al. (2019) use the provided pixel-level segmen-
tation information to crop each bird out from the its original background in CUB. The result-
ing birds are then placed onto different backgrounds obtained from Places. They consider two

14

https://snap.stanford.edu/data/web-BeerAdvocate.html
http://bioinf.jku.at/research/DeepTox/tox21.html

Under review as a conference paper at ICLR 2023

types of backgrounds: water (ocean or natural lake) and land (bamboo forest or broadleaf for-
est). There are 4795/1199/5794 examples in the training/validation/testing set. This dataset is pub-
licly available at https://nlp.stanford.edu/data/dro/waterbird_complete95_
forest2water2.tar.gz

By construction, 95% of all waterbirds in the training set have water backgrounds. Similarly, 95%
of all landbirds in the training set have land backgrounds. As a result, predictors trained on this
training data will overfit to the spurious background information when making their predictions. In
the validation and testing sets, Sagawa et al. (2019) place landbirds and waterbirds equally to land
and water backgrounds.

For identifying non-generalizable splits, we apply ls on the training set and the validation set. For
automatic de-biasing, we report the average accuracy and worst-group accuracy on the official test
set. To compute the worst-group accuracy, we use the background attribute to partition the test set
into four groups: waterbirds with water backgrounds, waterbirds with land backgrounds,
landbirds with water backgrounds, landbirds with land backgrounds.

Representation backbone Following previous work (Sagawa et al., 2019; Liu et al., 2021a), we
fine-tune torchvision’s resnet-50, pretrained on ImageNet (Deng et al., 2009), to represent each
input image. This results into a 2048 dimensional feature vector for each image.

Predictor The Predictor takes the resnet representation and applies a linear layer (2048 by 2)
followed by Softmax to predict the label ({waterbirds, landbirds}) of each image. Note
that we reset the Predictor’s parameter to the pre-trained resnet-50 at the beginning of each
outer-loop iteration.

Splitter The Splitter first concatenates the resnet representation with the binary image label. It
then applies a linear layer with Softmax to predict the splitting decision P(zi | xi, yi). The resnet
encoders for the Splitter and the Predictor are not shared during training.

A.4 CELEBA

Data CelebA (Liu et al., 2015) is a large-scale face attributes dataset, where each image is anno-
tated with 40 binary attributes. Following previous work (Sagawa et al., 2019; Liu et al., 2021a),
we consider our task as predicting the blond hair attribute (2 {blond hair,no blond hair}).
The CelebA dataset is available for non-commercial research purposes only. It is publicly available
at https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

While there are lots of annotated examples in the training set (162,770), the task is challenging
due to the spurious correlation between the target blond hair attribute and the gender attribute (2
{male,female}). Specifically, only 0.85% of the training data are blond-haired males. As a
result, predictors learn to utilize male as a predictive feature for no blond hairwhen we directly
minimizing their empirical risk.

For identifying non-generalizable splits, we apply ls on the official training set and validation set.
For automatic de-biasing, we report the average and worst-group performance on the official test
set. To compute the worst-group accuracy, we use the gender attribute to partition the test set into
four groups: blond hair with male, blond hair with female, no blond hair with male,
no blond hair with female.

Representation backbone Following previous work (Sagawa et al., 2019; Liu et al., 2021a), we
fine-tune torchvision’s resnet-50, pretrained on ImageNet (Deng et al., 2009), to represent each
input image. This results into a 2048 dimensional feature vector for each image.

Predictor The Predictor takes the resnet representation and applies a linear layer (2048 by
2) followed by Softmax to predict the label ({blond hair, no blond hair}) of each image.
Note that we reset the Predictor’s parameter to the pre-trained resnet-50 at the beginning of each
outer-loop iteration.

15

https://nlp.stanford.edu/data/dro/waterbird_complete95_forest2water2.tar.gz
https://nlp.stanford.edu/data/dro/waterbird_complete95_forest2water2.tar.gz
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Under review as a conference paper at ICLR 2023

Splitter The Splitter concatenates the resnet representation with the binary image label. It then
applies a linear layer with Softmax to predict the splitting decision P(zi | xi, yi). The resnet
encoders for the Splitter and the Predictor are not shared during training.

A.5 MNLI

Data The MultiNLI corpus contains 433k sentence pairs (Williams et al., 2018). Given a sen-
tence pair, the task is to predict the entailment relationship (entailment, contradiction,
neutral) between the two sentences. The original corpus splits allocate most examples to the
training set, with another 5% for validation and the last 5% for testing. In order to accurately mea-
sure the performance on rare groups, Sagawa et al. (2019) combine the training and validation set
and randomly shuffle them into a 50/20/30 training/validation/testing split. The dataset and splits
are publicly available at https://github.com/kohpangwei/group_DRO.

Previous work (Gururangan et al., 2018; McCoy et al., 2019) have shown that this crowd-sourced
dataset has significant annotation artifacts: negation words (nobody, no, never and nothing) often
appears in contradiction examples; sentence pairs with high lexical overlap are likely to be
entailment. As a result, predictors may over-fit to these spurious shortcuts during training.

For identifying non-generalizable splits, we apply ls on the training set and validation set. For
automatic de-biasing, we report the average and worst-group performance on the testing set. To
compute the worst-group accuracy, we partition the test set based on whether the input example
contains negation words or not: entailment with negation words, entailment without nega-
tion words, contradiction with negation words, contradiction without negation words,
neutral with negation words, neutral without negation words.

Representation backbone Following previous work (Sagawa et al., 2019; Liu et al., 2021a), we
fine-tune Hugging Face’s bert-base-uncasedmodel, starting with pre-trained weights (Devlin
et al., 2018).

Predictor The Predictor takes the representation of the [CLS] token (at the final layer of
bert-base-uncased) and applies a linear layer with Softmax activations to predict the final
label (entailment, contradictions, neutral). Note that we reset the Predictor’s parame-
ter to the pre-trained bert-base-uncased at the beginning of each outer-loop iteration.

Splitter The Splitter concatenates the representation of the [CLS] token with the one-hot label
embedding (2 {0, 1}3). It then applies a linear layer with Softmax activations to predict the splitting
decision P(zi | xi, yi). The bert-base-uncased encoders for the Splitter and Predictor are not
shared during training.

B IMPLEMENTATION DETAILS

B.1 IDENTIFYING NON-GENERALIZABLE SPLITS USING LS

Optimization For Beer Review, Tox21, Waterbirds and CelebA, we update the Splitter and Pre-
dictor with the Adam optimizer (Kingma & Ba, 2014). In Beer Review and Tox21, the learning rate
is set to 10�3 with no weight decay (as we already have dropout in the MLP to prevent over-fitting).
We use a batch size of 200. In Waterbirds and CelebA, since we start with pre-trained weights, we
adopt a smaller learning rate 10�4 (Sagawa et al., 2019) and set weight decay to 10�3. We use
a batch size of 100. For MNLI, we use the default setting for fine-tuning BERT: a fixed linearly-
decaying learning rate starting at 0.0002, AdamW optimizer (Loshchilov & Hutter, 2017), dropout,
and no weight decay. We use a batch size of 100.

Stopping criteria For the Predictor’s training, we held out a random 1/3 subset of Dtrain for val-
idation. We train the Predictor on the rest of Dtrain and apply early-stopping when the validation
accuracy stops improving in the past 5 epochs. For the Splitter’s training, we compare the average
loss Ltotal of the current epoch and the average loss across the past 5 epochs. We stop training if the
improvement is less than 10�3.

16

https://github.com/kohpangwei/group_DRO

Under review as a conference paper at ICLR 2023

B.2 AUTOMATIC DE-BIASING

Method details We use the Splitter learned by ls to create groups that are informative of the
biases. Specifically, for each example (xi, yi), we first sample its splitting decision from the Splitter
ẑi ⇠ P(zi | xi, yi). As we have seen in Figure 4, these splitting decisions reveal human-identified
biases. Similar to the typical group DRO setup (Sagawa et al., 2019), we use these information to-
gether with the target labels to partition the training and validation data into different groups. For ex-
ample in Waterbirds, we have four groups: {y = waterbirds, z = 0}, {y = waterbirds, z =
1}, {y = landbirds, z = 0}, {y = landbirds, z = 1}. We minimize the worst-group loss
during training and measure the worst-group accuracy on the validation data for model selection.
Specifically, we stop training if the validation metric hasn’t improved in the past 10 epochs.

Optimization Modern neural networks are usually highly over-parameterized. As a result, they
can easily memorize the training data and over-fit the majority groups even when we minimize
the worst-group loss during training. Following Sagawa et al. (2019), we apply strong regular-
ization to combat memorization and over-fitting. We grid-search over the weight decay parameter
(100, 10�1, 10�2, 10�3, 0).

B.3 COMPUTING RESOURCES

We conducted all the experiments on our internal clusters with NVIDIA A100, NVIDIA RTX
A6000, and NVIDIA Tesla V100.

C ADDITIONAL ANALYSES

Ablation study What would happen if we don’t have the regularity constraints? Figure 7 presents
our ablation analyses on Beer Look and Tox21. We observe that ls produces challenging splits w/
and w/o the regularity constraints. However, the resulting splits are very different:

• Regularizer ⌦2 is necessary to learn meaningful splits. When we remove ⌦2, ls learns to
create training and testing splits with vastly different label distributions (Figure 7.c). For
example in the training split of Beer Look, 61% of the examples are positive. In contrast,
only 9% of the testing split is positive.

• Regularizer ⌦1 stabilizes the train/test ratio across datasets. When we remove ⌦1, the
resulting size ratio between Dtrain and Dtest varies a lot across different datasets (89% : 11%
in Beer Look and 69% : 31% in Tox21). This is not surprising as biases may be distributed
differently for different datasets.

Time complexity Table 2 presents the running time of ls. For MNLI, ls takes 27 hours to finish
on a single GPU. Compared to empirical risk minimization, ls needs to perform second-order
reasoning, and this brings in the extra time cost.

Improving the scalability of ls is crucial for large-scale applications. As we have emphasized in
Section 4.2, ls requires training a new Predictor for each outer-loop iteration. While it guarantees
faithfulness of the Predictor (to the current splits), this procedure can be costly for large datasets.
Exploring training-free predictors will be a promising future direction to reduce time cost.

Multiple bias sources Real-world applications often have multiple bias sources. In CelebA, we
observe that the same train-test split that correlates with the gender attribute (Figure 4) also corre-
lates with other unknown attributes (Figure 8). In other words, ls combines minority groups from
different bias sources ({Blond hair with Male}, {Blond hair with Hat}, {Blond hair
with eyeglasses} and {Blond hair with Blurry}) to form its challenging testing split Dtest.
Disentangling different bias sources will be an interesting future direction.

17

Under review as a conference paper at ICLR 2023

0

25

50

75

100

generalization gap

55.659.0
43.3

0.50

0.63

0.75

0.88

1.00

0.79

0.89
0.83

0.00

0.18

0.35

0.53

0.70

0.09

0.61

0.460.50 0.470.51

(b) How many percentages of the
data are split into ?

<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

(a) Generalization gap w/ & w/o
the regularity constraints.

�(z = 1)

�(y = 1 � z = 1) �(y = 1 � z = 0)

(c) Label distributions for (left) and (right).
<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>

Dtest
ls

ls

w/o �1

w/o �2

Beer
Look

0

25

50

75

100

generalization gap

52.354.361.6

0.50

0.63

0.75

0.88

1.00

0.77
0.69

0.73

0.00

0.03

0.06

0.09

0.12 0.12

0.01

0.07

0.03
0.05

0.03

(b) How many percentages of the
data are split into ?

<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

(a) Generalization gap w/ & w/o
the regularity constraints.

�(z = 1)

�(y = 1 � z = 1) �(y = 1 � z = 0)

(c) Label distributions for (left) and (right).
<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>

Dtest
ls

ls

w/o �1

w/o �2

Tox21
AR

Figure 7: Ablation study of the two regularizer: ⌦1 (controlling the size ratio between Dtrain and
Dtest) and ⌦2 (balancing the label distributions across Dtrain and Dtest). Three takeaways: (a) ls
produces challenging splits regardless of the regularity constraints; (b) Without ⌦1, the size ratio
between Dtrain and Dtest varies a lot across datasets (89% : 11% in Beer Look and 69% : 31% in
Tox21); (c) Without ⌦2, the learned splits exhibit huge label imbalance across Dtrain and Dtest.

Table 2: Time cost of ls on a single V100 GPU. The results here are obtained from a shared internal
server. Many other factors (such as cpu utilization, I/O and network) may impact the running time.

Tox 21 Beer Look Beer Aroma Waterbirds CelebA MNLI

Data size
(#annotations) 10,240 15,000 15,000 11,788 202,599 412,349

Model size
(#parameters) 3.7M 1.9M 1.9M 23.5M 23.5M 109.4M

Time cost for ls
(Algorithm 1) 0.6 hour 1.5 hours 2 hours 6.1 hours 5.6 hours 27.0 hours

D APPLICATION: LABEL NOISE DETECTION

In the presence of label noise, ls can reach high generalization gap by allocating all clean examples
to the training split and all mislabeled examples to the testing split. Here we verify the effectiveness
of ls as a label noise detector.

Data We consider the standard digit classification dataset MNIST as our test bed (LeCun & Cortes,
2010). The dataset is freely available at http://yann.lecun.com/exdb/mnist/.

89.3%

99.1%

10.7%

0.9%

Blond_hair No_blond_hair

Inputs with Hat=True

<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>

Dtest
ls

82.9%

97.7%

17.1%

2.3%

Blond_hair No_blond_hair

Inputs with Eyeglasses=True

<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>

Dtest
ls

65.9%

91.1%

34.1%

8.9%

Blond_hair No_blond_hair

Inputs with Blurry=True

<latexit sha1_base64="dIC/ql0jyBokHBqNo+ZsMBy0lks=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiHjxWsB/QxLLZbtqlm03YnYglBLz4V7x4UMSrf8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bpYXFpeWV8mplbX1jc8vc3mmpKJGENknEI9nxsaKcCdoEBpx2Yklx6HPa9keXud++p1KxSNzCOKZeiAeCBYxg0FLP3HNDDEOCeXqV3aUu0AdIQWImsqxnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d/JBZh1rpW0EkdQmwJurviRSHSo1DX3fmF6tZLxf/87oJBOdeykScABVkuihIuAWRlQdi9ZmkBPhYE0wk07daZIglJqBjq+gQnNmX50nruOac1pybk2r9ooijjPbRATpCDjpDdXSNGqiJCHpEz+gVvRlPxovxbnxMW0tGMbOL/sD4/AF5Ppi0</latexit>

Dtrain
ls

<latexit sha1_base64="RpTYTVzCwdllttDHviZyhs/zecE=">AAACAnicbVBNS8NAEN3Ur1q/qp7ES7AInkoioh6LevBYwX5AE8tmO22Xbj7YnYglBC/+FS8eFPHqr/Dmv3HT5qCtDwYe780wM8+LBFdoWd9GYWFxaXmluFpaW9/Y3Cpv7zRVGEsGDRaKULY9qkDwABrIUUA7kkB9T0DLG11mfusepOJhcIvjCFyfDgLe54yilrrlPcenOGRUJFfpXeIgPGCCoDBNu+WKVbUmMOeJnZMKyVHvlr+cXshiHwJkgirVsa0I3YRK5ExAWnJiBRFlIzqAjqYB9UG5yeSF1DzUSs/sh1JXgOZE/T2RUF+pse/pzuxgNetl4n9eJ8b+uZvwIIoRAjZd1I+FiaGZ5WH2uASGYqwJZZLrW002pJIy1KmVdAj27MvzpHlctU+r9s1JpXaRx1Ek++SAHBGbnJEauSZ10iCMPJJn8krejCfjxXg3PqatBSOf2SV/YHz+ALspmEw=</latexit>

Dtest
ls

CelebA CelebA CelebA

Figure 8: The dataset CelebA contains annotations for multiple face attributes. We observe that
the same train-test split in Figure 4 correlates with other unknown attributes such as Hat (left),
Eyeglasses (mid) and Blurry (right).

18

http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2023

W
or

st
-g

ro
up

 a
cc

ur
ac

y
de

fin
ed

 b
y

bi
as

 a
nn

ot
at

io
ns

30

45

60

75

90

Worst-group accuracy defined by ls
45 53 60 68 75

Waterbirds CelebA MNLI

W
or

st
-g

ro
up

 a
cc

ur
ac

y
de

fin
ed

 b
y

bi
as

 a
nn

ot
at

io
ns

10

30

50

70

90

Worst-group accuracy defined by ls
25 40 55 70 85

W
or

st
-g

ro
up

 a
cc

ur
ac

y
de

fin
ed

 b
y

bi
as

 a
no

nt
at

io
ns

30

41

53

64

75

Worst-group accuracy defined by ls
40 47 53 60 66

Figure 9: The spurious splits identified by ls provide a surrogate metric for model selection when
biases are not known a priori.

We use the official training data (10 classes and 60,000 examples in total) and inject random label
noise. Specifically, for a given noise ratio ⌘, we sample a noisy label ỹ of each image based on its
original clean label y:

P(ỹ) =
⇢

1 � ⌘ for ỹ = y,
⌘/9 for ỹ 6= y.

We apply ls to identify spurious splits from this noisy data collection for various ⌘. In practice,
we cannot assume access to the noise ratio. Therefore we keep � = 0.75 (Eq 1) as in our other
experiments.

Representation backbone We follow the architecture from PyTorch’s MNIST example3. Each
input image is passed to a CNN with 2 convolution layers followed by max pooling (2 ⇥ 2). The
first convolution layer has 32 filters, and the second convolution layer has 64 filters. Filter sizes are
set to 3 ⇥ 3 in both layers.

Predictor The Predictor is a multi-layer perceptron with two hidden layers (each with 100 units).
We apply ReLU activations and dropout (with rate 0.25) to the hidden units.

Splitter The Splitter concatenates the CNN features with the one-hot input label. Similar to the
Predictor, we use a multi-layer perceptron with two hidden layers (each with 100 units). We apply
ReLU activations and dropout (with rate 0.25) to the hidden units.

Optimization The optimization strategy is the same as the one for Tox 21 (Section B.1).

Evaluation metrics Given the spurious splits produced by ls, we can evaluate its precision and
recall of identifying the polluted annotations:

• Precision = #polluted annotations in the testing split / #annotations in the testing split;
• Recall = #polluted annotations in the testing split / #polluted annotations.

We note that ls controls the train-test split ratio through the regularity constraint (⌦1 in Eq1). For
ease of optimization, this constraint is implemented as a soft regularizer. As a result, the train-test
split ratio needs to compete with other objectives (such as maximizing the generalization gap), and
the resulting split ratio can be different for different noise ratios. To better understand the precision
and recall, given the train-test split ratio produced by ls, we define an oracle which allocates as
many polluted annotations as possible into the testing split:

• if #polluted annotations  #annotations in the testing split:
– Oracle precision = #polluted annotations / #annotations in the testing split;
– Oracle recall = 100%;

• else:
– Oracle precision = 100%;
– Oracle recall = #annotations in the testing split / #polluted annotations.

3https://github.com/pytorch/examples/blob/master/mnist/main.py

19

Under review as a conference paper at ICLR 2023

Pr
ec

is
io

n

0.0%
25.0%
50.0%
75.0%

100.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

100.0%100.0%100.0%100.0%100.0%98.7%

79.8%

42.6%

99.6%99.6%99.5%99.5%99.3%98.3%

79.6%

42.4%

ls oracle

R
ec

al
l

70.0%
77.5%
85.0%
92.5%

100.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

89.8%
95.3%

99.4%99.1%99.8%100.0%100.0%100.0%

89.5%
94.9%

98.9%98.7%99.1%99.6%99.7%99.7%

Noise ratio �

Figure 10: ls identifies label noise. X-axis: portion of the data that is mis-labeled.

Results We consider different noise ratios and present our results in Figure 10. We observe that
ls consistently approaches to the oracle performance. When the noise ratio ⌘ is small (0.1, 0.2),
ls allocates most of the polluted annotations (¿99%) into the testing split. However, to meet the
train-test ratio constraint, it also has to include some of the clean annotations into the testing split
(non-perfect precision). When the noise ratio ⌘ is large (0.7, 0.8), the testing split consists of mostly
polluted annotations (> 99%). The recall is not perfect because allocating all polluted annotations
to the testing split will violate the regularity constraint.

E ADDITIONAL DISCUSSIONS

Why do we need a parametric Splitter? One may wonder if we can directly use the prediction
correctness to create the final split (instead of learning the Splitter). The answer is no, and there are
two reasons: 1) It may not satisfy the regularity constraints; 2) It ignores under-represented examples
in the original training split that we used to train the Predictor. In this work, we parameterize the
splitting decisions through a learnable mapping, the Splitter. This encourages similar inputs to
receive similar splitting decisions, and we can also easily incorporate different constraints into the
learning objective (Eq 3). Moreover, by iteratively refining the Predictor based on the updated
Splitter, we obtain more challenging splits (Figure 6).

20

Under review as a conference paper at ICLR 2023

Algorithm 2 ls: learning to split (detailed version)
Input: dataset Dtotal

Output: data splits Dtrain, Dtest

1: Initialize Splitter, PSplitter(zi | xi, yi), from scratch or from pre-trained representations (such
as ResNet, BERT, etc.)

2:
3: Set outer iter = 0.
4: repeat
5: # Step 1: create train/test splits from Dtotal

6: if outer iter is 0 then
7: Split Dtotal into Dtrain and Dtest uniformly at random.
8: else
9: Set Dtrain,Dtest = ;, ;.

10: for each input label pair (xi, yi) in Dtotal do
11: Sample zi ⇠ PSplitter(zi | xi, yi;w).
12: Add (xi, yi) into Dtrain if zi = 1. Otherwise add it into Dtest.
13: end for
14: end if
15:
16: # Step 2: train and evaluate Predictor based on the current splits.
17: Initialize Predictor, PPredictor(yi | xi), from scratch or from pre-trained representations

(such as ResNet, BERT, etc.)
18: Randomly sample 1/3 of Dtrain as Predictor’s validation data D̃val. We denote the remaining

2/3 of Dtrain as D̃train.
19: repeat
20: Train Predictor to minimize the empirical risk on D̃train for one epoch.
21: Evaluate Predictor on D̃val.
22: until validation performance on D̃val hasn’t improved in the past 5 iterations
23: Evaluate Predictor on Dtest.
24: Compute the gap between Predictor’s performance on D̃val and its performance on Dtest.
25:
26: # Step 3: train Splitter to identify more challenging splits.
27: repeat
28: # train Splitter for one epoch
29: Set step = 0.
30: repeat
31: Randomly sample a batch of examples from Dtotal and compute the regularity constraints

⌦1,⌦2 over this batch (Eq 1).
32: Randomly sample another batch of examples from Dtest and compute Lgap (Eq 2).
33: Compute the overall loss Ltotal = Lgap + ⌦1 + ⌦2 (Eq 3).
34: Backprop Ltotal and update Splitter’s parameters.
35: step += 1
36: until step = 100
37: Set L̄total to be the average loss over the current epoch.
38:
39: until L̄total fails to improve by at least 10�3 in the past 5 iterations
40:
41: outer iter += 1
42:
43: until gap stops increasing in the past 5 iterations

21

	Introduction
	Related work
	Learning to Split
	Motivation
	Splitter and Predictor
	Regularity constraints
	Training strategy

	Experiments
	Dataset
	Identifying non-generalizable splits
	Automatic de-biasing

	Discussion
	Conclusion
	Datasets and model architectures
	Beer Review
	Tox21
	Waterbird
	CelebA
	MNLI

	Implementation details
	Identifying non-generalizable splits using ls
	Automatic de-biasing
	Computing resources

	Additional analyses
	Application: label noise detection
	Additional discussions

