
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYBRID TRAINING FOR
VISION-LANGUAGE-ACTION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Using Large Language Models to produce intermediate thoughts, a.k.a. Chain-of-
thought (CoT), before providing an answer has been a successful recipe for solv-
ing complex language tasks. In robotics, similar embodied CoT strategies, gener-
ating thoughts before actions, have also been shown to lead to improved perfor-
mance when using Vision-Language-Action models (VLAs). As these techniques
increase the length of the model’s generated outputs to include the thoughts, the
inference time is negatively affected. Delaying an agent’s actions in real-world
executions, as in robotic manipulation settings, strongly affects the usability of a
method, as tasks require long sequences of actions. However, is the generation of
long chains-of-thought a strong prerequisite for achieving performance improve-
ments? In this work, we explore the idea of Hybrid Training (HyT), a framework
that enables VLAs to learn from thoughts and benefit from the associated perfor-
mance gains, while enabling the possibility to leave out CoT generation during in-
ference. Furthermore, by learning to conditionally predict a diverse set of outputs,
HyT supports flexibility at inference time, enabling the model to either predict ac-
tions directly, generate thoughts or follow instructions. We evaluate the proposed
method in a series of simulated benchmarks and real-world experiments.

1 INTRODUCTION

1 Hz 2 Hz 3 Hz
Inference frequency

45%

50%

55%

Su
cc

es
s r

at
e

Figure 1: Hybrid Training (HyT)
of VLAs increases the agent’s per-
formance similarly to ECoT, but
also maintains the same fast infer-
ence as standard VLAs. Perfor-
mance refers to the ClevrSkills ex-
periments (9 tasks, 3000 demos) in
the Experiments section.

Despite recent advances in robotics, truly generalist robot poli-
cies have long been elusive. Thanks to the joint efforts of
collecting large-scale robot data (O’Neill et al., 2024) and
making large Vision Language Models (VLM) open-source
(Steiner et al., 2024; Tong et al., 2024), we have entered a
new era in robotics foundation models. By fine-tuning VLMs
on robotic datasets containing actions, we obtain so-called
Vision-Language-Action models (VLAs) (Kim et al., 2024;
Brohan et al., 2023b;a): large policy models that are trained
end-to-end to take language instructions and raw camera im-
ages as inputs, and output low-level robotic actions.

VLAs possess several advantages over previous work, such
as multimodal prompting of the agent and the availability of
knowledge from the base pre-trained VLM. However, gener-
alization to out-of-distribution (OOD) settings, e.g., task con-
figurations not available in the robotics fine-tuning dataset, re-
mains challenging. Indeed, the knowledge of the agent is vast
about general concepts, but remains limited in the robotics set-
tings, where the data distribution is often narrow.

In order to further unleash the capabilities of VLAs with little
data, recent works have trained models to predict intermediate
outputs, representing the agent’s intentions, before predicting actions (Zawalski et al., 2024; Zhao
et al., 2025). One notable example is Embodied CoT (ECoT) (Zawalski et al., 2024), where the
VLA learns to output useful information about the given task in language form (Wei et al., 2023),
before generating the actions to execute. This not only has shown to improve performance, but it

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

also allows humans to more easily interpret the agent’s intentions and potentially intervene on them,
i.e. correcting the agent’s intentions, before action generation. However, due to the intermediate
reasoning outputs generated before actions, the action inference frequency of these models can be
significantly lower.

The human cognition process from observation to action is hypothesized to leverage the interaction
of two systems (Kahneman, 2011). The fast and intuitive System I handles most daily tasks, taking
control in contexts that our brain judges as unchallenging. The slow and deliberate System II is
activated when decisions require additional computation, such as comparing options or processing
complex information. The tendency of the brain is to delegate as many decisions as possible to
System I, to save energy and time. However, in order to do so, humans need to improve their capa-
bilities to deal with complex decisions. This is done by developing a skilled intuition (Kahneman
& Klein, 2009; Simon, 1992) that allows leveraging previously learned cues to solve familiar tasks,
effortlessly.

In this work, we explore the hypothesis that VLA models can similarly develop skilled intuition,
when trained with the right objective. Learning from CoT reasoning traces, a model can further
internalize knowledge about environments and tasks. Then, at test-time, the model more eagerly
recognizes patterns and can leverage such knowledge to generate actions, even in the absence of
intermediate thoughts generation. With this hypothesis in mind, we develop a Hybrid Training
(HyT) framework, which allows the agent to learn from a combination of CoT and actions data.

Hybrid training presents a more flexible learning objective, which encompasses both ECoT and
standard VLAs. During training, we implement the HyT objective using a Monte Carlo estimate,
consisting of sampling a variety of conditional inputs and outputs with different probabilities. The
model learns to predict a set of ouputs, modelling a multitude of conditional action probabilities,
which mainly depends on a newly introduced modality variable. During test-time, it’s the modality
variable that allows us to influence the model’s generation. By default, the modality variable con-
ditions the model to directly predict actions. This allows VLAs trained with HyT to maintain the
same inference time as standard VLAs, while benefitting from training on reasoning traces.

Furthermore, the modality variable can be used for manipulating the VLA into operating in different
inference modes. The ”act” mode, as mentioned, resembles standard VLA’s inference and allows
to generate actions directly. In addition, we show a ”think” mode, where the VLAs generates in-
termediate thoughts as in ECoT, and a ”follow” mode, where the VLA follows a set of provided
intentions, e.g. by a human or an oracle, similarly to the lower level policies in hierarchical systems
(Shi et al., 2025; Hafner et al., 2022).

In addition to investigating and validating our proposed HyT framework, on a set of simulated
benchmarks (ClevrSkills (Haresh et al., 2024), LIBERO (Liu et al., 2023)) and real-world tasks (on
a UFactory xArm 6), we aim to address a fundamental question regarding VLA models:

What is the contribution of CoT techniques to VLAs performance?

2 RELATED WORK

Vision-Language-Action models. Open-source efforts in the robotics field, such as the Open X-
Embodiment dataset (O’Neill et al., 2024), have fueled progress in the development of large VLAs
(Kim et al., 2024; Black et al., 2024; Wen et al., 2024; Ghosh et al., 2024; Jiang et al., 2023). Recent
works have also explored hierarchical VLA architectures (Shi et al., 2025; NVIDIA et al., 2025),
showing they can be beneficial for solving open-ended and long-horizon tasks. Our work aims to
improve VLA’s performance, by improving the way available reasoning annotations and action data
is used, independently of the architecture used.

Chain-of-Thought (CoT) and reasoning. Generating a chain of thought has shown improved
performance in LLMs solving complex reasoning tasks (Wei et al., 2022). Additionally, reasoning
has shown notable success using RL with verifiable rewards, coupled with Supervised Finetuning
(SFT) on example reasoning traces (DeepSeek-AI et al., 2025; Havrilla et al., 2024). CoT techniques
specifically for VLMs (Shao et al., 2024) and VLAs have also been researched (Zawalski et al., 2024;
Zhao et al., 2025). In particular, ECoT (Zawalski et al., 2024) shows that embodied thoughts can
greatly improve the agent’s predictions in robotics, despite the higher inference costs. Our work

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

grounds on their findings and proposes a method that accomplishes both strong performance and
fast inference.

Hybrid reasoning. Recent works have attempted to distill slow thinking capabilities into faster
models (Deng et al., 2024; Yu et al., 2024). Closely related to our method is DualFormer (Su et al.,
2025), which proposes to train a language model by systematically dropping out reasoning traces.
In robotics domain, RFST (Zhu et al., 2024) proposes a hierarchical setup that uses a discriminator
to decide whether to switch to the fast or slow system, with the respective model of the chosen mode
being then used as the policy. Our work, instead, provides a method to train a single hybrid system
that learns to conditionally generate a variety of outputs.

3 PRELIMINARIES

Vision-Language Action (VLA) models are multimodal policies generally trained with imita-
tion learning. A VLA processes language inputs through a Transformer-based LLM architecture
(Vaswani et al., 2023; Brown et al., 2020; Team et al., 2024). Language is first ”tokenized” into
language tokens that are then processed by the LLM. Similarly, VLAs can process visual inputs
through a vision encoder, e.g., a vision transformer (Dosovitskiy et al., 2021), that transforms image
patches into visual tokens, which are then processed by the LLM.

Given a language description of a task l, the goal of the VLA policy is to solve the task in a given en-
vironment. The policy observes the environment through images x, generally captured by a camera
in the environment. The policy interacts with the environment using actions a. Through imitation
learning, the policy’s objective is to learn, at each discrete timestep, the distribution p(at|xt, l) that
solves the given task, which is empirically observed from a dataset of demonstrations.

In addition to predicting actions, thinking VLAs, like ECoT (Zawalski et al., 2024), also generate
intermediate language outputs. These reasonings are expressed as thoughts τ in language form,
predicted by the model. Generally, thoughts include information about the overall plan of action,
the current subtask to execute, the location of objects in the image, or the direction of the agent’s
ongoing motion (Zawalski et al., 2024). Thinking VLA models are trained to predicts the joint
probability distribution over actions and thoughts: p(at, τt|xt, l) = pθ(at|xt, l, τt)pθ(τt|xt, l).

Thinking VLAs learn a single set of parameters θ to predict both actions and thoughts. Hierarchical
VLAs (Shi et al., 2025; NVIDIA et al., 2025) use a two-level hierarchy of models, where one model
provides an actionable language instruction for solving the task, while the second model executes
the plan. By treating high-level plans and thoughts interchangeably, action prediction in hierarchi-
cal VLAs can be modelled as: p(at, τt|xt, l) = pθl(at|xt, τt) pθh(τt|xt, l), where θh denotes the
parameters of the “high-level” model and θl of the “low-level” model.

4 METHOD

VLAs that learn to predict thoughts and actions, like thinking and hierarchical VLAs, have demon-
strated improved performance in several works (Shi et al., 2025; NVIDIA et al., 2025; Zawalski
et al., 2024; Zhao et al., 2025). Compared to standard VLAs, these models learn to: (i) predict
thoughts in language form, and (ii) condition the actions’ probability on the generated thoughts.
Thoughts in language form generally consist of significantly more tokens than their action counter-
part. Thus, generating thoughts at test-time comes at a high inference cost. This can significantly
slow down the agent’s action execution in the environment.

We hypothesize that the primary benefits of these models arise not from the generated thoughts
themselves, but from the knowledge learned by the model through thought prediction and thought-
conditioned actions prediction. This suggests that the model refines its capabilities by internalizing
the patterns present in the thoughts, akin to the development of intuitive expertise (Kahneman &
Klein, 2009). Under this hypothesis, after a learning process that involves thoughts conditioning and
thoughts prediction, a VLA should be able to predict actions with higher accuracy, independently of
the presence of thoughts as an intermediate output.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

<think>

carry the red triangle to the mug

move: forward right down

<act>

[∆x, ∆Φ, gripper]

<act>

[∆x, ∆Φ, gripper]

Task: “What should the robot do to

put the red triangle on the mug?”

Large Language Model (LLM)

Modality token:
<think> / <act>

Think
mode

Act
mode

Vision-Language-Action (VLA) model

Image:

Hybrid Training

Figure 2: Hybrid Training (HyT) framework. Given a set of inputs, on the left, including a
modality variable, the VLA model learns to conditionally generate a variety of outputs. Examples
for the ‘think’ and ‘act’ conditional distributions are presented on the right.

To address the need for agents capable of producing multiple probability distributions within a single
model, we introduce a new training strategy, Hybrid Training (HyT), designed to integrate structured
reasoning with flexible policy learning.

Definition 4.1 (Hybrid Training) Given a task description l and the current environment observa-
tion xt, the conditional distribution over actions at can be expressed as:

p(at|xt, l) =
∑
i

∑
j

pθ(at, τ
i,mj |xt, l) =

∑
i

∑
j

pθ(at, τ
i|xt, l,m

j)p(mj), (1)

by marginalizing out thoughts τ and the set of values assumed by the “modality” variable m.

The hybrid training formulation allows us to describe a singla VLA model, with parameters θ, that
learns different conditional action distributions, mainly depending on a modality variable.

4.1 HYBRID TRAINING IMPLEMENTATION

The HyT formulation presented in Eq. 1 generalizes the definition of previous VLAs and enables the
possibility to combine multiple objectives into a single model. In particular, leveraging the insights
from other VLA models, we can use the hybrid training framework to conditionally learn three
distributions:
p(at|xt, l) = pθ(at|xt, l,m

a)pθ(m
a)︸ ︷︷ ︸

act

+ pθ(at|xt, l, τt)pθ(τt|xt, l,m
τ)pθ(m

τ)︸ ︷︷ ︸
think

+ pθ(at|xt, τt,m
f)pθ(m

f)︸ ︷︷ ︸
follow

.

(2)

This way the agent will learns to generate different outputs depending on the modality variable value
m ∈ {ma,mτ ,mf}. The meaning of each distribution is defined as follows:

• “Act” distribution: similarly to standard VLAs, it instructs the model to directly predicts actions.
It follows from pθ(τ = ∅|ma) = 1.

• “Think” distribution: similarly to ECoT, it instructs the model to first predict intermediate
thoughts and then generate actions.

• “Follow” distribution: similarly to a low-level policy in a hierarchical system, it instructs the
model to closely follow provided thoughts/instructions for action prediction. It follows from
pθ(at|xt, τt,m

f) = pθ(at|xt, l, τt,m
f) (conditional independence) and pθ(τ = ∅|mf) = 1.

Referring to our hypothesis, combining the three distributions should enable the agent to learn to
output actions directly (act distribution) while also learning to predict thoughts and to follow in-
structions. The learning objective for the model can be described as:

min
θ

Lhyt(θ) = wαLact(θ) + wτLthink(θ) + wfLfollow(θ) (3)

where all the terms L□ are negative log-likelihood losses with respect to the corresponding outputs
(actions or thoughts and actions)1.

1For action prediction, the loss is negative log-likelihood in case the actions are discretized and predicted
by the LLM. Alternatively, the loss can be an L1 or L2 loss, for continuous action prediction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

While one could compute the loss directly as the weighted sum of the three terms, for each datapoint,
this would reduce variability in the batches, as the model would contain the same thoughts and
actions multiple times in the same batch. In order to avoid this, we propose to use a Monte Carlo
estimate of the objective in Equation 3. Rather than being used as loss coefficients, the weights
wa, wτ , wf define the probabilities of sampling the corresponding inputs and outputs for the model
during training. This way, at each batch sampled during training, the model receives modality
tokens, actions and thoughts, with probabilities that are defined by the coefficients.

To summarize, in order to train a VLA with HyT, one needs to specify: (i) the probability distri-
butions to be learned, (ii) a set of values to use for the modality variable, and (iii) a set of coeffi-
cients/probabilities for sampling data during training. In this work, we adopt the distributions de-
fined in Eq. 2, with modality variables defined as simple texts, such as “< act >” or “< think >”,
and with the set of coefficients {wa : 0.25, wτ : 0.5, wf : 0.25}. A simplified diagram illustrating
HyT (with only two kinds of outputs) is shown in Figure 2.

4.2 INFERENCE TIME

At test-time, the VLA is tasked to predict actions that solve a task. Thanks to HyT, it is possible
to predict actions directly, leveraging the model’s “act” distribution. In order to do so, we provide
the model with the task description, the environments inputs, e.g. a camera image, and the modality
variable ma =< act > which instructs the model to directly output actions. This enables the
model to leverage the more extensive knowledge coming from learned thoughts and actions, without
incurring any additional inference costs compared to standard VLAs.

While the main goal of this work is to show that HyT enables higher performance at high control
frequency, the flexibibility of the HyT framework also enables the possibility to instruct the agent to
operate in different “modes”, i.e. conditionally predict different forms of outputs. Other than using
the VLA in ‘act’ mode, it is indeed possible to use the model in ‘think’ or ‘follow’ modes.

Q: What’s the value in using other inference modalities?

While we expect no major performance difference, e.g. when operating the model in ‘think’ mode
rather than in ‘act’ mode, additional inference modes support greater flexibility in the use of the
VLA. For example, the ‘think’ mode can be used to read the VLA’s intentions, for greater inter-
pretability. Instead, the ‘follow’ mode enables to provide a set of more fine-grained embodied in-
structions for the agent to follow, such as ‘move to the left’ or ‘pick up the object below the gripper’.
Note that, as also shown in the ECoT work (Zawalski et al., 2024), the ‘thought’ mode can also en-
able instruction-following, by overriding the agent’s intentions. We verify whether these modalities
can be useful with HyT in the Experiments section.

Q: How to operate the VLA in different modalities?

Generally, we set the modality variable to ma =< act >, enforcing the model to directly predict
actions. If we want to use a different mode, e.g. to predict intermediate thoughts, we can use the
mτ =< think > variable. In practice, we observed that models trained with HyT always diligently
attend to the modality token and generate their outputs accordingly.

In this work, we do not explore the possibility of switching the modality token dynamically during
executions, as we observed that, after HyT training, different operating modes have different gener-
ative behaviors, but similar performance. The modality variable is thus set at the beginning of a task
execution and not updated during the episode. Further understanding and studying the tradeoffs and
potential advantages that could derive from a switching mechanism between different modalities is
left for future work.

5 EXPERIMENTS

We validate the proposed HyT method in a series of simulated benchmarks, which we use to exten-
sively assess the framework’s capabilities, and on a set of real-world tasks, which demonstrates the
practical utility of the approach.

General setup. Across all experiments, the task description is provided in the same format,
i.e. ”What should the robot do to {task}?”. Image inputs are 224 × 224 RGB images from

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

300 750 1500 3000
Dataset size (# of demos)

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s r

at
e

Overall (9 tasks)

ECoT HiRobot HyT VLA

Figure 3: ClevrSkills benchmark Aggregated performance on 9 ClevrSkills environments (exam-
ples shown on the left). Shaded areas indicate standard errors.

a camera pointing at the robot’s workspace. The action space is 7-dimensional and defined as:
[∆x,∆ϕ, gripper]. The end-effector position x and orientation ϕ are controlled in delta space,
while the gripper pose is in absolute value.

5.1 CLEVRSKILLS BENCHMARK

The ClevrSkills benchmark (Haresh et al., 2024) is based on the ManiSkill2 manipulation environ-
ments (Gu et al., 2023). The environment includes an oracle solver to collect demonstrations, and
reasoning traces from the oracle, which we can use to discriminate subtasks and extract thoughts.
ClevrSkills also adopts a vacuum gripper and mostly uses simple shapes and objects, isolating the
challenges of manipulating complex objects, and focussing on planning and generalization instead.

Baselines. In this Section, we focus on comparing the HyT training methodology with other training
paradigms, namely the standard VLA training (Kim et al., 2024), ECoT-like thinking VLA training
(Zawalski et al., 2024), and HiRobot-like hierarchical VLA training (Shi et al., 2025).

Dataset. Using the oracle, we collect a diverse dataset that spans three main task groups: Place At,
Place OnTop, and Stack Tower, with several variations in terms of object types and numbers. The
overall dataset is made of 3000 trajectories. For all the thoughts, we adopt the same format, which
includes the current subtask and the high-level motion, i.e. coarse direction instructions. This simple
definition has proven effective in early stages of our analysis and in related work (Shi et al., 2025).
A more detailed dataset description is given in the Appendix.

Training. For all approaches, we start training the VLA from the PaliGemma-2 VLM model with
3B parameters (Steiner et al., 2024), which is based on the Gemma-2 LLM (Team et al., 2024) and
on the SigLIP vision encoder (Zhai et al., 2023). For action prediction, actions are tokenized using a
set of 256 discrete bins, and predicted by the LLM (Kim et al., 2024). We perform full-finetuning of
the model with a batch size of 32 and a learning rate of 2e−5, using the Adam optimizer (Kingma &
Ba, 2017). For the HiRobot approach, we train two distinct PaliGemma-2 models (Shi et al., 2025).

Evaluation. During evaluation, we run the agent in the environment for 100 evaluation episodes.
At each episode, objects and positions are resampled randomly (but consistently among evaluation
runs), making no evaluation environment exactly the same as any of the training examples. The
agent is, thus, required to generalize actions to new settings in order to succeed. For each model, we
evaluate 3 checkpoints taken at epochs 5, 7 and 10 during training. In general, we found no strong
correlation between validation losses and performance on the task. Though, with additional training
after 10 epochs, models tend to start overfitting.

Q: How does HyT performance scales with data, compared with other training paradigms?

With this experiment, we aim to verify the hypothesis that VLAs using HyT can develop intuitive
‘thinking’. If the hypothesis is correct, we expect increased performance compared to standard
VLAs, thanks to the knowledge internalized by training on reasoning traces.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s r

at
e

Overall (3 tasks)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s r

at
e

Place At (4 obj)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Stack Tower (3 obj)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Stack Tower (4 obj)

HyT (think mode)
HyT (think mode) + Oracle

HyT
HyT (follow mode) + Oracle

HiRobot
HiRobot + Oracle

ECoT
ECoT + Oracle

Figure 4: Instruction-following and other inference modalities. Comparing performance when
using own generated thoughts (default) or following instructions generated by an oracle.

As imitation learning performance can greatly vary with the number of demonstrations, we evaluate
models trained with different amounts of demonstrations: 300, 750, 1500, 3000. Overall perfor-
mance is summarized in Figure 3 and detailed performance per task is provided in Appendix. The
most evident result is that the hypothesis behind this work is confirmed: the models trained with
HyT not only outperform standard VLAs, but they also generally perform better than models trained
with the ECoT and HiRobot recipes, at all data scales.

Among the baselines ECoT performs (second) best at all data scales. Hierarchical VLAs have higher
performance than standard VLAs with smaller amount of demos, but their performance increase is
slower than for other methods, eventually being outperformed by standard VLAs from 1500 demos
on. In terms of inference time, we found that standard VLAs and HyT output actions at around 3Hz
on A100 GPUs (4 models acting in parallel). ECoT models are 3× slower. HiRobot hierarchical
generation is, overall, 4× slower.

Q: How can we use the other inference modalities enabled by HyT and how do they perform?

As described in the Method section, HyT enables the VLA to be used in multiple inference modali-
ties, other than the ‘acting’ mode, directly generating actions. This can be useful in situations where
interpretability or the ability to follow fine-grained instructions are useful. In order to verify em-
pirically that these modalities are actually usable, we perform a study on the instruction following
capabilities of the models on a restricted set of tasks.

In order to test instruction following from external sources, we provide the agent with a set of
“Oracle thoughts”, which we extract using the code from the the ClevrSkills’ oracle. Oracle thoughts
replace the agent’s thoughts only during moving subtasks, i.e. ”move to location X”. This is because
the oracle has precise conditions for picking and placing, compared to the VLAs. A learned policy
not always satisfies them, while still being successful, causing the agent to get stuck.

We use the models trained on the multitask dataset with the largest size (3000 demos) and present
results in Figure 4 for three of the most complex tasks in the ClevrSkills benchmark adopted. HyT
performance is shown in all inference modalities: ‘act’ mode (default, in blue), ‘think’ mode (in
green), and ‘follow’ and ‘think’ modes with oracle thoughts (barred). First, we can observe that for
all the methods tested, following instructions from an oracle, rather than self-predicted thoughts, can
improve the performance of the agent. For HyT, this means that the additional inference modalities
(‘think’ and ‘follow’) can actually be useful in such contexts.

Furthermore, we observe that, without oracle thoughts, models trained with HyT perform similarly
in ‘act’ and ‘think’ modes, corroborating the idea that, with HyT, in the evaluated settings, interme-
diate thought generation at test-time may be unnecessary. Nonetheless, for future work, it would be
worth verifying whether this finding holds for tasks requiring more complex embodied reasoning.

5.2 LIBERO BENCHMARK

The LIBERO benchmark is one of the most adopted in the VLA community (Zheng et al., 2025;
Ghosh et al., 2024; Kim et al., 2024; Zhao et al., 2025; Huang et al., 2025; Pertsch et al., 2025; Lee

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: LIBERO benchmark Aggregated performance on 4 LIBERO task suites (examples
shown on the left). Mean performance evaluated on 100 evaluation episodes.

LIBERO Spatial Object Goal Long Avg.
Finetuned from VLA

TraceVLA (Zheng et al., 2025) 84.6 85.2 75.1 54.1 74.8
Octo (Ghosh et al., 2024) 78.9 85.7 84.6 51.1 75.1
OpenVLA (Kim et al., 2024) 84.7 88.4 79.2 53.7 76.5
CoT-VLA (Zhao et al., 2025) 87.5 91.6 87.6 69.0 81.1
ThinkAct (Huang et al., 2025) 88.3 91.4 87.1 70.9 84.4
π0-FAST (Pertsch et al., 2025) 96.4 96.8 88.6 60.2 85.5
MolmoAct (Lee et al., 2025) 87.0 95.4 87.6 77.2 86.6
Finetuned from VLM

VLA-OFT (Kim et al., 2025) 94.2 97.8 91.4 84.8 92.1
HyT (ours) 94.0 97.2 96.2 89.4 93.7

et al., 2025; Kim et al., 2025). The agent is evaluated on 4 suites of tasks: Spatial, Object, Goal and
Long (10).

In LIBERO, oracle thoughts are not available. Thus, to extract CoT, we first use the simulator
to obtain labelled object bounding boxes and high-level motion primitives, including the gripper
changes. Then, we feed this information step-wise, along with the task description, to an LLM that
generates a plan made of subtasks and associate subtasks with temporal steps. More information
about the thoughts extraction and structure can be found in the Appendix.

Q: Can HyT be employed in combination with different VLA designs and how does perfor-
mance compare to other VLAs in the literature?

Previous work on LIBERO has shown that there are some important choices in the VLA design that
are crucial to obtain high performance, such as the adoption of action chunking (Lee et al., 2025;
Zhao et al., 2025; Pertsch et al., 2025; Kim et al., 2025). For this reason, we chose to implement HyT
in combination with the OFT fine-tuning recipe (Kim et al., 2025), which employs action chunking
and continuous actions prediction (L1 head).

For both the VLA-OFT model and HyT, we fine-tune the model starting from the Prismatic VLM
(Karamcheti et al., 2024). This allows us to better leverage the language pre-training of the VLM,
as also shown in (Zawalski et al., 2024). Hyperparameters and training settings are the same as in
(Kim et al., 2025). Results are presented in Figure 5.

Compared to other fine-tuning recipes, the OFT strategy leverages data efficiently, outperforming
all other baselines in all suites of tasks but LIBERO Spatial. Training the model with HyT allows
the model to increase performance even further, especially in the most complex suites of tasks: Goal
and Long. This shows that HyT can be successfully combined with well-established VLA designs,
potentially improving state-of-the-art performance.

We also tested fine-tuning VLA-OFT and HyT starting from the OpenVLA pre-trained VLA model.
However, in this settings, we found no difference in performance (overall success: 95.3%±0.1), as
both methods nearly saturate the benchmark’s performance. One plausible conclusion is that HyT
and other Chain-of-Thought (CoT) strategies, by leveraging additional thought data during training,
can compensate for the lack of robotics pre-training or the scarcity of fine-tuning data, as simlarly
shown in the other experimental results in this work.

5.3 REAL-WORLD EXPERIMENTS

One of the major benefits of the HyT approach is the capability to achieve higher performance while
retaining lower inference time. This is particularly useful in real-world use-cases, where faster
execution is important to carry out tasks quickly and to increase the perceived quality of the agent.

For our real-world experiments, we collected a dataset comprising 320 trajectories using a robotic
setup featuring an UFactory xArm 6 with a flexible two-fingered gripper, operating on a white
tabletop. The agent observes the environment through RGB images captured by a RealSense D435

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Real-world experiments. Success rates with standard error on the real-world tasks (on the
left). Additional details about experimental settings are provided in the Appendix.

OpenVLA HyT

In-distribution tasks 52% ±10 72% ±9

banana in green bowl 70% ±15 70% ±15

red cube in brown bag 50% ±20 100% ±0

tomato left of lettuce 60% ±22 60% ±22

zucchini in front of green cube 0% ±0 50% ±25

Out-of-distribution tasks 29% ±9 54% ±10

rubber duck in green bowl 40% ±15 20% ±13

mushroom in brown bag 0% ±0 100% ±0

purple die left of lettuce 0% ±0 50% ±25

zucchini in front of red hexagon 75% ±22 75% ±22

Overall 41% ±7 63% ±7

camera, positioned at a corner of the table. For the models, we start from the pre-trained OpenVLA
model with 7B parameters (Kim et al., 2024) and compare directly to it. We perform LoRA fine-
tuning with rank 32 (Hu et al., 2021), a batch size of 32 and a learning rate of 5e − 4, using the
Adam optimizer (Kingma & Ba, 2017).

Our evaluation spans two categories of tasks: in-distribution and out-of-distribution. The in-
distribution set includes tasks for which the dataset contains at least 10 demonstrations. For the
out-of-distribution set, we modify the in-distribution tasks with alterations, such as different objects
or placements, ensuring the agent encounters novel scenarios not present in the training data. See
the Appendix for additional details.

The results, shown in Table 1, show that HyT overall outperforms OpenVLA, especially in out-of-
distribution tasks. From a qualitative perspective, we notice that OpenVLA and HyT have similar
flaws, e.g., they tend to pick objects with the wrong orientation. However, HyT tends to be more
precise when reaching picking and placing positions, e.g. it never reached for the wrong object
while OpenVLA did, eventually leading to a noticeable performance gap.

6 DISCUSSION

Thinking strategies for VLAs (Zawalski et al., 2024; Shi et al., 2025) have shown important bene-
fits in terms of performance and interpretability over standard VLAs, with the drawback of slower
inference. In this work, we support the idea that the thinking process can be “internalized” by the
model, developing some form of expert intuition (Kahneman & Klein, 2009). We proposed the
Hybrid Training framework, which enables the possibility of learning from thoughts, for higher
performance, while also being able to predict actions directly for faster inference, as empirically
validated through simulated and real-world experiments. To conclude, we attempt to answer the
question: What is the contribution of CoT techniques to VLAs performance?

From analyzing the HyT framework, our understanding is that learning to generate CoT and learning
to predict actions from CoT improves the agent’s understanding of the environment. This is closely
related to how auxiliary losses have been used for imitation and reinforcement learning (Yarats et al.,
2020; Srinivas et al., 2020), improving the learning dynamics of the model and generalization per-
formance. We do not exclude that thoughts generation might be useful at test-time in more complex
settings, but this would require evaluating on tasks that require advanced reasoning capabilities,
which are currently sparse and rarely adopted in the robotics literature.

One limitation of CoT, hierarchical and HyT methods is that they require additional human labelling,
providing thoughts for the agent to learn from. In this respect, one advantage of HyT approach
is that it does not require the CoT to be present for the whole dataset. Instead, given that HyT
relies on sampling for approximating its objective, thoughts can be sampled just for the trajectories
that contain them. Automated reasoning approaches to extract useful thoughts in a self-supervised
manner would be a promising direction to explore in future work (DeepSeek-AI et al., 2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Robotic agents that are interpretable could have a positive societal impact, as they allow users to
read and/or verify the agent’s intention. Intervenability can both have positive and negative social
impact, as it allows users to correct the agent’s intentions, but it could also allow malicious users to
steer the agent’s behavior towards unethical behaviors.

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, we made use of open-source simulation benchmarks (ClevrSkills,
LIBERO) and open-source models (Paligemma, Prismatic, OpenVLA). In the main text and/or in the
Appendix, we state all the important hyperparameters for fine-tuning the models using our approach
and replicate our results. We also provide details about all the tasks, chains-of-thoughts, and models’
prompts employed.

REFERENCES

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0: A vision-
language-action flow model for general robot control, 2024. URL https://arxiv.org/
abs/2410.24164.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control, 2023a. URL
https://arxiv.org/abs/2307.15818.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vin-
cent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023b. URL
https://arxiv.org/abs/2212.06817.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,

10

https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2005.14165

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to inter-
nalize cot step by step, 2024. URL https://arxiv.org/abs/2405.14838.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna,
Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yunliang Chen, Pannag
Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo: An
open-source generalist robot policy, 2024. URL https://arxiv.org/abs/2405.12213.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
Su. Maniskill2: A unified benchmark for generalizable manipulation skills, 2023. URL https:
//arxiv.org/abs/2302.04659.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels, 2022. URL https://arxiv.org/abs/2206.04114.

Sanjay Haresh, Daniel Dijkman, Apratim Bhattacharyya, and Roland Memisevic. Clevrskills: Com-
positional language and visual reasoning in robotics, 2024. URL https://arxiv.org/abs/
2411.09052.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching
large language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642,
2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Chi-Pin Huang, Yueh-Hua Wu, Min-Hung Chen, Yu-Chiang Frank Wang, and Fu-En Yang.
Thinkact: Vision-language-action reasoning via reinforced visual latent planning, 2025. URL
https://arxiv.org/abs/2507.16815.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2302.04659
https://arxiv.org/abs/2302.04659
https://arxiv.org/abs/2206.04114
https://arxiv.org/abs/2411.09052
https://arxiv.org/abs/2411.09052
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2507.16815

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts, 2023. URL https://arxiv.org/abs/2210.03094.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Daniel Kahneman and Gary Klein. Conditions for intuitive expertise: a failure to disagree. Am
Psychol, 64(6):515–526, September 2009.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models,
2024. URL https://arxiv.org/abs/2402.07865.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Jason Lee, Jiafei Duan, Haoquan Fang, Yuquan Deng, Shuo Liu, Boyang Li, Bohan Fang, Jieyu
Zhang, Yi Ru Wang, Sangho Lee, Winson Han, Wilbert Pumacay, Angelica Wu, Rose Hendrix,
Karen Farley, Eli VanderBilt, Ali Farhadi, Dieter Fox, and Ranjay Krishna. Molmoact: Action
reasoning models that can reason in space, 2025. URL https://arxiv.org/abs/2508.
07917.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning, 2023. URL https://arxiv.
org/abs/2306.03310.

NVIDIA, :, Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding,
Linxi ”Jim” Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang,
Jan Kautz, Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu,
Edith Llontop, Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed,
You Liang Tan, Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie, Yinzhen
Xu, Zhenjia Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao, Ruijie Zheng,
and Yuke Zhu. Gr00t n1: An open foundation model for generalist humanoid robots, 2025. URL
https://arxiv.org/abs/2503.14734.

Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri, Abhishek Gupta, Abhishek
Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, Albert
Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky, Anant Rai, Anchit Gupta,
Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg, Aniruddha Kembhavi, Annie
Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh Yavary, Arhan Jain, Ashwin Bal-
akrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim, Bernhard Schölkopf, Blake
Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea Finn, Chen Wang, Chenfeng
Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher Agia, Chuer Pan, Chuyuan Fu,
Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne Chen, Deepak Pathak, Dhruv
Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa Sadigh, Edward Johns,
Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao, Felipe Vieira Frujeri, Freek
Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng, Giulio Schi-
avi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang, Hao Su, Hao-Shu Fang,
Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen, Hiroki Furuta, Homanga
Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Radosavovic, Isabel
Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider,
Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen Gao, Jiaheng Hu,
Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu,
Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério, Joey Hejna, Jonathan Booher, Jonathan

12

https://arxiv.org/abs/2210.03094
https://arxiv.org/abs/2402.07865
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2508.07917
https://arxiv.org/abs/2508.07917
https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2503.14734

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan Wang, Kan-
ishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken Goldberg,
Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin Zhang,
Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan Fang, Ku-
nal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yunliang Chen,
Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca Weihs, Magnum
Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina, Mateo Guaman
Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong Zhang, Mingyu
Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki Kanazawa,
Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman Di Palo,
Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani, Pannag R Sanketi,
Patrick ”Tree” Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David Fagan, Peter Mitrano,
Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan Vuong, Rafael Rafailov,
Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario Scalise, Rose Hendrix,
Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Ju-
lian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry Moore, Shikhar Bahl,
Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun Xu, Siddhant Haldar,
Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Ste-
fan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel Belkhale, Sungjae
Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya
Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao,
Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vincent Vanhoucke,
Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong Wang, Xinghao
Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao Lu, Yecheng Ja-
son Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying Xu, Yixuan
Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yue Cao,
Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang Li, Yunzhu Li,
Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen Zhang, Zipeng
Fu, and Zipeng Lin. Open x-embodiment: Robotic learning datasets and rt-x models, 2024. URL
https://arxiv.org/abs/2310.08864.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models, 2025. URL https://arxiv.org/abs/2501.09747.

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hong-
sheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset and
benchmark for chain-of-thought reasoning, 2024. URL https://arxiv.org/abs/2403.
16999.

Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
Tanner, Anna Walling, Haohuan Wang, Niccolo Fusai, Adrian Li-Bell, Danny Driess, Lachy
Groom, Sergey Levine, and Chelsea Finn. Hi robot: Open-ended instruction following with
hierarchical vision-language-action models, 2025. URL https://arxiv.org/abs/2502.
19417.

Herbert A Simon. What is an “explanation” of behavior? Psychological science, 3(3):150–161,
1992.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning, 2020. URL https://arxiv.org/abs/2004.04136.

Andreas Steiner, André Susano Pinto, Michael Tschannen, Daniel Keysers, Xiao Wang, Yonatan
Bitton, Alexey Gritsenko, Matthias Minderer, Anthony Sherbondy, Shangbang Long, Siyang
Qin, Reeve Ingle, Emanuele Bugliarello, Sahar Kazemzadeh, Thomas Mesnard, Ibrahim Alab-
dulmohsin, Lucas Beyer, and Xiaohua Zhai. Paligemma 2: A family of versatile vlms for transfer,
2024. URL https://arxiv.org/abs/2412.03555.

13

https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2501.09747
https://arxiv.org/abs/2403.16999
https://arxiv.org/abs/2403.16999
https://arxiv.org/abs/2502.19417
https://arxiv.org/abs/2502.19417
https://arxiv.org/abs/2004.04136
https://arxiv.org/abs/2412.03555

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

DiJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinqing Zheng. Dualformer:
Controllable fast and slow thinking by learning with randomized reasoning traces, 2025. URL
https://arxiv.org/abs/2410.09918.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Fer-
ret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Char-
line Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Wein-
berger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang,
Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen
Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van
Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-
strom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee
Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-
gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Fara-
bet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical
size, 2024. URL https://arxiv.org/abs/2408.00118.

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Ziteng Wang, Rob Fergus, Yann
LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal
llms, 2024. URL https://arxiv.org/abs/2406.16860.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,
Chaomin Shen, Yaxin Peng, Feifei Feng, and Jian Tang. Tinyvla: Towards fast, data-efficient
vision-language-action models for robotic manipulation, 2024. URL https://arxiv.org/
abs/2409.12514.

14

https://arxiv.org/abs/2410.09918
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2406.16860
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2409.12514
https://arxiv.org/abs/2409.12514

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images, 2020. URL
https://arxiv.org/abs/1910.01741.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1, 2024. URL
https://arxiv.org/abs/2407.06023.

Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training, 2023. URL https://arxiv.org/abs/2303.15343.

Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
Qianli Ma, Song Han, Chelsea Finn, Ankur Handa, Ming-Yu Liu, Donglai Xiang, Gordon Wet-
zstein, and Tsung-Yi Lin. Cot-vla: Visual chain-of-thought reasoning for vision-language-action
models, 2025. URL https://arxiv.org/abs/2503.22020.

Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
awareness for generalist robotic policies, 2025. URL https://arxiv.org/abs/2412.
10345.

Minjie Zhu, Yichen Zhu, Jinming Li, Junjie Wen, Zhiyuan Xu, Zhengping Che, Chaomin Shen,
Yaxin Peng, Dong Liu, Feifei Feng, and Jian Tang. Language-conditioned robotic manipulation
with fast and slow thinking, 2024. URL https://arxiv.org/abs/2401.04181.

15

https://arxiv.org/abs/1910.01741
https://arxiv.org/abs/2407.06023
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2503.22020
https://arxiv.org/abs/2412.10345
https://arxiv.org/abs/2412.10345
https://arxiv.org/abs/2401.04181

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CLEVRSKILLS EXPERIMENTS

300 750 1500 3000
Dataset size (# of demos)

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s r

at
e

Overall (9 tasks)

750 3000
0.0

0.5

Su
cc

es
s r

at
e Place OnTop (2 obj)

750 3000
0.0

0.5

Place OnTop (3 obj)

750 3000
0.0

0.5

Place OnTop (4 obj)

750 3000

0.5

1.0

Su
cc

es
s r

at
e Place At (2 obj)

750 3000

0.25
0.50
0.75

Place At (3 obj)

750 3000

0.25
0.50

Place At (4 obj)

750 3000
0

1

Su
cc

es
s r

at
e Stack Tower (2 obj)

750 3000
0.0

0.5
Stack Tower (3 obj)

750 3000
0.0

0.1
Stack Tower (4 obj)

ECoT HiRobot HyT VLA

Figure 6: Detailed results on the ClevrSkills benchmark.

Tasks definition The tasks are defined as follows:

• Place At tasks evaluate the agent’s spatial understanding. The tasks require the agent to bring an
object to a location specified in relation to another object location, i.e. left/right/behind/in front
of the object. The objects used are mainly simple-shaped objects of different colors as in (Jiang
et al., 2023).

• Place OnTop tasks evaluate the agent’s understanding of object interactions, as they require plac-
ing an object on top of another in a stable position. The set of objects used contains simple shapes,
but also more complex objects from YCB, such as mugs, wooden blocks, bowls, etc.

• Stack Tower evaluates the long-horizon capabilities of the agent, as it requires multiple “place on
top” with simple object shapes, where the order of the objects in the stack is defined in the prompt.

For each task, we train and test the agent with three variants, containing varying number of objects.
In Place OnTop and Place At the number of additional objects is only distracting or increasing the
amount of clutter in the scene, e.g. making placing objects on the table harder. For the Stack Tower
tasks more objects also require more actions, as the agent should stack all the objects present in the
scene.

Training details. The training for all experiments and approaches is done using PyTorch DDP
(Paszke et al., 2017) on 4 A100 GPUs. Inference requires less than 20GB VRAM and is performed
on a multi-instance A100 for simulated environments.

Evaluation details At each episode, objects and positions are resampled randomly (but consistently
among evaluation runs), making no evaluation environment exactly the same as any of the training
examples. The agent is, thus, required to generalize actions to new settings in order to succeed. For
each model, we evaluate 3 checkpoints taken at epochs 5,7 and 10 during training. In general, we
found no strong correlation between validation losses and performance on the task. Though, with
additional training after 10 epochs, models tend to start overfitting.

Dataset definition. For each task group, we collected a set of 1000 demo trajectories composed
as follows: 250 demos in the 2 objects task, 500 demos in the 3 objects task, 250 demos in the 4
objects task. Then, to train agents with different sizes of the dataset, we subsample fixed subsets of
trajectories from each dataset. For the multitask dataset, the task group datasets are subsampled and
then aggregated.

Extracting thoughts. In ClevrSkills’ demonstrations (Haresh et al., 2024) a variety of solvers is ap-
plied to the task, following a pre-specificied order - the oracle’s plan. Each solver takes executes one
subtask from the overall plan and the solver parameters can be recovered in the demonstrations. In
order to create thoughts, we can use the ClevrSkills library to transform each subtask from the solver

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

into a natural language instruction, e.g. ”Move to X” or ”Pick up Y”. Then, for moving instructions
- e.g. ”Move to...” and ”Carry Z to...” - we extract the motion direction of the agent. Similarly to
(Shi et al., 2025), this is obtained at each timestep by computing the distance between the current
end-effector position and the position at the end of the motion subtask. This is then transformed into
language, in the form of ”left/right”, ”forward/backward” and ”up/down” instructions, as in (Zawal-
ski et al., 2024). Finally, for distances that are less than 1 cm the agent receives a ”close” moving
instruction. Two examples of thoughts and actions, in the HyT format, are provided in Figure 7.

<think>

carry the red triangle to the mug

move: forward right down

<act>

[∆x, ∆Φ, gripper]

(a)

<think>

pick up the red triangle

<act>

[∆x, ∆Φ, gripper]

(b)

Figure 7: Examples of thoughts and actions for a moving (a) and a non-moving (b) subtasks, ex-
pressed in language format following the format used for HyT.

Gripper information. The ClevrSkills benchmark adopts a vacuum-gripper robot which creates a
vacuum in the gripper’s suction cups to maintain contact with objects. Compared to a fingers-based
gripper, a suction gripper’s state, i.e. open or closed, cannot be easily assessed through images.
Thus, in order for the agent to be able to perform grasping actions reliably, we concatenate the state
of the gripper in language form to the task description (or to the thoughts for the hierarchical low-
level VLA). The gripper state information we pass to the agent is: (i) whether the gripper suction
cups are making contact with something, (ii) whether the gripper was on, grasping something, or not.
There’s no need for the gripper information in the real-world experiments, as we use a fingers-based
gripper, where the gripper state is visually observable.

A.2 LIBERO EXPERIMENTS

CoT extraction. In order to generate plans and subtasks we use the Gemma-2 9B model.

For plan generation we use the following prompt:

I want to provide a robotic arm with a short list of high-level steps to
complete the task: ’{instruction}’.

The robotic arm is operating in a scene that contains the following
objects:

{object_1}, {object_2}, ..., {object_n}

Break down the instruction into a Python list of high-level steps. These
steps describe the coarse primitive actions that the robot needs to
take to complete the task.

It is important not to invent subtasks unless they are explicitly
required by the instruction.

For example, if the task does not mention opening or closing a drawer, do
not include those actions.

After listing the steps, please provide a brief explanation for each one
of the subtasks.

Listing 1: Prompt for LLM to generate high-level robotic steps

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For inferring step-wise subtasks we use the following prompt:

I want to analyze each step my robot took to accomplish the task: ’{
instruction}’.

To complete this task, it followed these subtasks in order:
{subtask 1}
{subtask 2}
...
{subtask n}

Below is a mapping from each timestep to the motion the robot executed.
The final item in each entry represents the object closest to the
gripper. This information is used solely for reasoning purposes and
is not part of the motion itself:

{...}

Please provide a Python dictionary that maps each of the subtasks (as
strings) to the integer timestep at which that subtask begins. The
mapping should include only the subtasks listed above. Since the
subtasks are sequential, later subtasks must correspond to later
timesteps. Each subtask must be assigned a single timestep, and the
first subtask should always begin at step 0.

Listing 2: Prompt for LLM to associate subtasks with steps in an episode

The final CoTs look like this:

PLAN: locate the cabinet, position above the middle drawer, open the
drawer

VISIBLE OBJECTS: akita_black_bowl_1: [138,139,140,150], cream_cheese_1:
[157,147,170,166], wine_bottle_1: [104,96,116,122], plate_1:
[99,171,141,196], wooden_cabinet_1: [0,94,81,212], flat_stove_1:
[161,87,213,137], wine_rack_1: [13,27,95,123]

SUBTASK REASONING: the robot needs to move into the correct spatial
location relative to the cabinet

SUBTASK: position above the middle drawer
MOVE: move left
GRIPPER POSITION: [106, 149]

Listing 3: CoT for LIBERO experiments

A.3 REAL-WORLD EXPERIMENTS

(a) (b) (c) (d)

Figure 8: The setup for some of the real-world tasks: (a) banana in green bowl (b) red cube in brown
bag (c) zucchini in front of green cube (d) tomato left of lettuce.

Dataset preparation. The dataset for real-world experiments is collected via human tele-operation,
using a VR set and a controller to map the human motions and intentions, e.g., closing the gripper, to
the robot. After collecting the trajectories, we apply some basic pre-processing operations. First, we
take the sequences collected at 60 Hz, and we subsample them at 10 Hz. Then, we extract actions
in the format [∆x,∆ϕ, gripper] from the end-effector and gripper positions of the demonstrations.
Finally, we filter out no-motion operations, i.e. having ∆x and ∆θ equal to zero.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Extracting thoughts. For extracting the subtasks to use in the thoughts, we use a simple heuristic-
based approach. This is based on the assumption that all the tasks in the dataset are in the format
‘place the {obj1} {position} the {obj2}’, e.g. ‘place the {zucchini} {in front of} the {green cube}’.
We identify the position when the robot closes the gripper as the grasping position, and the posi-
tion when the robot opens the gripper as the releasing position. Then, we identify the following 3
keyframe moments: (i) the moment when the agent reaches within 3 cms distance from the grasping
position, (ii) the grasping moment, (iii) the moment when the agent reaches within 3 cms distance
from the releasing position. Finally, the subtasks are defined in the trajectory as follows:

• Move to the {obj1}: between the start of the trajectory and keyframe (i);
• Pick up the {obj1}: between keyframe (i) and keyframe (ii);
• Move {position} the {obj2}: between keyframe (ii) and keyframe (iii);
• Place object {position} the {obj2}: between keyframe (iii) and the end of the trajectory.

Also, to have the same thought structure as in the ClevrSkills’ experiments, we concatenate a ‘move:
{direction}’ to the moving subtasks, where the direction is computed using the end-effector position
(see Section A.1).

Evaluation. During evaluation, we limit the execution time to 150 agent steps, which is ∼ 2 minutes
per trajectory, considering 3 actions/second from the model and a control loop running at ∼ 2Hz for
stable motions. In case of failed grasps, we allow up to 3 attempts to the agent, before assessing the
outcome of the episode. In the following, you find a detailed description of how each in-distribution
task is executed and randomized. For out-of-distribution tasks, we follow the same procedures, but
we swap one of the main actors in the scene (e.g. the object to pick or the placing target). See Figure
8) for reference. Note: fruits are stuffed toys, while vegetables are hard foam models.

• Place the banana in the green bowl (10 trials). The scene includes a green bowl and
three objects: a banana, a tomato, and a blue hexagon, each with predefined positions. We
conduct five trials with the banana starting in one location, and five more from a different
location. In each location, the banana appears in three orientations: vertical (2/5 trials),
horizontal (2/5 trials), and diagonal (1/5 trial).

• Place the red cube in the brown bag. (6 trials). The setup features a brown bag and three
objects: a red cube, a banana, and a lettuce leaf, all placed at specific locations. We run two
trials for each location of the red cube. Its orientation varies between being aligned with
the robot’s base and being tilted.

• Place the tomato left of the lettuce (5 trials). The scene contains three objects: a lettuce leaf,
a carrot, and a tomato. Their positions are randomized within defined regions, though the
overall layout remains consistent. We perform five trials with these randomized placements.
A trial is only considered successful if the tomato ends up on the table, near the lettuce, and
to its left.

• Place the zucchini in front of the green cube (4 trials). The environment includes five ob-
jects: a shape sorting box, a zucchini, a purple die, a rubber duck, and a green cube. Object
positions are randomized within certain bounds, while maintaining the general layout. We
carry out four trials with these randomized setups. Success is defined as the zucchini being
placed on the table, close to and in front of the green cube.

19

	Introduction
	Related Work
	Preliminaries
	Method
	Hybrid Training implementation
	Inference Time

	Experiments
	ClevrSkills Benchmark
	LIBERO Benchmark
	Real-world Experiments

	Discussion
	Appendix
	ClevrSkills experiments
	LIBERO experiments
	Real-world experiments

