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ABSTRACT

Using Large Language Models to produce intermediate thoughts, a.k.a. Chain-of-
thought (CoT), before providing an answer has been a successful recipe for solv-
ing complex language tasks. In robotics, similar embodied CoT strategies, gener-
ating thoughts before actions, have also been shown to lead to improved perfor-
mance when using Vision-Language-Action models (VLAs). As these techniques
increase the length of the model’s generated outputs to include the thoughts, the
inference time is negatively affected. Delaying an agent’s actions in real-world
executions, as in robotic manipulation settings, strongly affects the usability of a
method, as tasks require long sequences of actions. However, is the generation of
long chains-of-thought a strong prerequisite for achieving performance improve-
ments? In this work, we explore the idea of Hybrid Training (HyT), a framework
that enables VLAs to learn from thoughts and benefit from the associated perfor-
mance gains, while enabling the possibility to leave out CoT generation during in-
ference. Furthermore, by learning to conditionally predict a diverse set of outputs,
HyT supports flexibility at inference time, enabling the model to either predict ac-
tions directly, generate thoughts or follow instructions. We evaluate the proposed
method in a series of simulated benchmarks and real-world experiments.

1 INTRODUCTION
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Figure 1: Hybrid Training (HyT)
of VLAs increases the agent’s per-
formance similarly to ECoT, but
also maintains the same fast infer-
ence as standard VLAs. Perfor-
mance refers to the ClevrSkills ex-
periments (9 tasks, 3000 demos) in
the Experiments section.

Despite recent advances in robotics, truly generalist robot poli-
cies have long been elusive. Thanks to the joint efforts of
collecting large-scale robot data (O’Neill et al., 2024) and
making large Vision Language Models (VLM) open-source
(Steiner et al., 2024; Tong et al., 2024), we have entered a
new era in robotics foundation models. By fine-tuning VLMs
on robotic datasets containing actions, we obtain so-called
Vision-Language-Action models (VLAs) (Kim et al., 2024;
Brohan et al., 2023b;a): large policy models that are trained
end-to-end to take language instructions and raw camera im-
ages as inputs, and output low-level robotic actions.

VLAs possess several advantages over previous work, such
as multimodal prompting of the agent and the availability of
knowledge from the base pre-trained VLM. However, gener-
alization to out-of-distribution (OOD) settings, e.g., task con-
figurations not available in the robotics fine-tuning dataset, re-
mains challenging. Indeed, the knowledge of the agent is vast
about general concepts, but remains limited in the robotics set-
tings, where the data distribution is often narrow.

In order to further unleash the capabilities of VLAs with little
data, recent works have trained models to predict intermediate
outputs, representing the agent’s intentions, before predicting actions (Zawalski et al., 2024; Zhao
et al., 2025). One notable example is Embodied CoT (ECoT) (Zawalski et al., 2024), where the
VLA learns to output useful information about the given task in language form (Wei et al., 2023),
before generating the actions to execute. This not only has shown to improve performance, but it
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also allows humans to more easily interpret the agent’s intentions and potentially intervene on them,
i.e. correcting the agent’s intentions, before action generation. However, due to the intermediate
reasoning outputs generated before actions, the action inference frequency of these models can be
significantly lower.

The human cognition process from observation to action is hypothesized to leverage the interaction
of two systems (Kahneman, 2011). The fast and intuitive System I handles most daily tasks, taking
control in contexts that our brain judges as unchallenging. The slow and deliberate System II is
activated when decisions require additional computation, such as comparing options or processing
complex information. The tendency of the brain is to delegate as many decisions as possible to
System I, to save energy and time. However, in order to do so, humans need to improve their capa-
bilities to deal with complex decisions. This is done by developing a skilled intuition (Kahneman
& Klein, 2009; Simon, 1992) that allows leveraging previously learned cues to solve familiar tasks,
effortlessly.

In this work, we explore the hypothesis that VLA models can similarly develop skilled intuition,
when trained with the right objective. Learning from CoT reasoning traces, a model can further
internalize knowledge about environments and tasks. Then, at test-time, the model more eagerly
recognizes patterns and can leverage such knowledge to generate actions, even in the absence of
intermediate thoughts generation. With this hypothesis in mind, we develop a Hybrid Training
(HyT) framework, which allows the agent to learn from a combination of CoT and actions data.

Hybrid training presents a more flexible learning objective, which encompasses both ECoT and
standard VLAs. During training, we implement the HyT objective using a Monte Carlo estimate,
consisting of sampling a variety of conditional inputs and outputs with different probabilities. The
model learns to predict a set of ouputs, modelling a multitude of conditional action probabilities,
which mainly depends on a newly introduced modality variable. During test-time, it’s the modality
variable that allows us to influence the model’s generation. By default, the modality variable con-
ditions the model to directly predict actions. This allows VLAs trained with HyT to maintain the
same inference time as standard VLAs, while benefitting from training on reasoning traces.

Furthermore, the modality variable can be used for manipulating the VLA into operating in different
inference modes. The ”act” mode, as mentioned, resembles standard VLA’s inference and allows
to generate actions directly. In addition, we show a ”think” mode, where the VLAs generates in-
termediate thoughts as in ECoT, and a ”follow” mode, where the VLA follows a set of provided
intentions, e.g. by a human or an oracle, similarly to the lower level policies in hierarchical systems
(Shi et al., 2025; Hafner et al., 2022).

In addition to investigating and validating our proposed HyT framework, on a set of simulated
benchmarks (ClevrSkills (Haresh et al., 2024), LIBERO (Liu et al., 2023)) and real-world tasks (on
a UFactory xArm 6), we aim to address a fundamental question regarding VLA models:

What is the contribution of CoT techniques to VLAs performance?

2 RELATED WORK

Vision-Language-Action models. Open-source efforts in the robotics field, such as the Open X-
Embodiment dataset (O’Neill et al., 2024), have fueled progress in the development of large VLAs
(Kim et al., 2024; Black et al., 2024; Wen et al., 2024; Ghosh et al., 2024; Jiang et al., 2023). Recent
works have also explored hierarchical VLA architectures (Shi et al., 2025; NVIDIA et al., 2025),
showing they can be beneficial for solving open-ended and long-horizon tasks. Our work aims to
improve VLA’s performance, by improving the way available reasoning annotations and action data
is used, independently of the architecture used.

Chain-of-Thought (CoT) and reasoning. Generating a chain of thought has shown improved
performance in LLMs solving complex reasoning tasks (Wei et al., 2022). Additionally, reasoning
has shown notable success using RL with verifiable rewards, coupled with Supervised Finetuning
(SFT) on example reasoning traces (DeepSeek-AI et al., 2025; Havrilla et al., 2024). CoT techniques
specifically for VLMs (Shao et al., 2024) and VLAs have also been researched (Zawalski et al., 2024;
Zhao et al., 2025). In particular, ECoT (Zawalski et al., 2024) shows that embodied thoughts can
greatly improve the agent’s predictions in robotics, despite the higher inference costs. Our work
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grounds on their findings and proposes a method that accomplishes both strong performance and
fast inference.

Hybrid reasoning. Recent works have attempted to distill slow thinking capabilities into faster
models (Deng et al., 2024; Yu et al., 2024). Closely related to our method is DualFormer (Su et al.,
2025), which proposes to train a language model by systematically dropping out reasoning traces.
In robotics domain, RFST (Zhu et al., 2024) proposes a hierarchical setup that uses a discriminator
to decide whether to switch to the fast or slow system, with the respective model of the chosen mode
being then used as the policy. Our work, instead, provides a method to train a single hybrid system
that learns to conditionally generate a variety of outputs.

3 PRELIMINARIES

Vision-Language Action (VLA) models are multimodal policies generally trained with imita-
tion learning. A VLA processes language inputs through a Transformer-based LLM architecture
(Vaswani et al., 2023; Brown et al., 2020; Team et al., 2024). Language is first ”tokenized” into
language tokens that are then processed by the LLM. Similarly, VLAs can process visual inputs
through a vision encoder, e.g., a vision transformer (Dosovitskiy et al., 2021), that transforms image
patches into visual tokens, which are then processed by the LLM.

Given a language description of a task l, the goal of the VLA policy is to solve the task in a given en-
vironment. The policy observes the environment through images x, generally captured by a camera
in the environment. The policy interacts with the environment using actions a. Through imitation
learning, the policy’s objective is to learn, at each discrete timestep, the distribution p(at|xt, l) that
solves the given task, which is empirically observed from a dataset of demonstrations.

In addition to predicting actions, thinking VLAs, like ECoT (Zawalski et al., 2024), also generate
intermediate language outputs. These reasonings are expressed as thoughts τ in language form,
predicted by the model. Generally, thoughts include information about the overall plan of action,
the current subtask to execute, the location of objects in the image, or the direction of the agent’s
ongoing motion (Zawalski et al., 2024). Thinking VLA models are trained to predicts the joint
probability distribution over actions and thoughts: p(at, τt|xt, l) = pθ(at|xt, l, τt)pθ(τt|xt, l).

Thinking VLAs learn a single set of parameters θ to predict both actions and thoughts. Hierarchical
VLAs (Shi et al., 2025; NVIDIA et al., 2025) use a two-level hierarchy of models, where one model
provides an actionable language instruction for solving the task, while the second model executes
the plan. By treating high-level plans and thoughts interchangeably, action prediction in hierarchi-
cal VLAs can be modelled as: p(at, τt|xt, l) = pθl(at|xt, τt) pθh(τt|xt, l), where θh denotes the
parameters of the “high-level” model and θl of the “low-level” model.

4 METHOD

VLAs that learn to predict thoughts and actions, like thinking and hierarchical VLAs, have demon-
strated improved performance in several works (Shi et al., 2025; NVIDIA et al., 2025; Zawalski
et al., 2024; Zhao et al., 2025). Compared to standard VLAs, these models learn to: (i) predict
thoughts in language form, and (ii) condition the actions’ probability on the generated thoughts.
Thoughts in language form generally consist of significantly more tokens than their action counter-
part. Thus, generating thoughts at test-time comes at a high inference cost. This can significantly
slow down the agent’s action execution in the environment.

We hypothesize that the primary benefits of these models arise not from the generated thoughts
themselves, but from the knowledge learned by the model through thought prediction and thought-
conditioned actions prediction. This suggests that the model refines its capabilities by internalizing
the patterns present in the thoughts, akin to the development of intuitive expertise (Kahneman &
Klein, 2009). Under this hypothesis, after a learning process that involves thoughts conditioning and
thoughts prediction, a VLA should be able to predict actions with higher accuracy, independently of
the presence of thoughts as an intermediate output.

3
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<think>

carry the red triangle to the mug

move: forward right down

<act>

[∆x, ∆Φ, gripper]

<act>

[∆x, ∆Φ, gripper]

Task: “What should the robot do to 

put the red triangle on the mug?” 

Large Language Model (LLM)

Modality token:
<think> / <act>

Think
mode

Act
mode

Vision-Language-Action (VLA) model

Image:

Hybrid Training

Figure 2: Hybrid Training (HyT) framework. Given a set of inputs, on the left, including a
modality variable, the VLA model learns to conditionally generate a variety of outputs. Examples
for the ‘think’ and ‘act’ conditional distributions are presented on the right.

To address the need for agents capable of producing multiple probability distributions within a single
model, we introduce a new training strategy, Hybrid Training (HyT), designed to integrate structured
reasoning with flexible policy learning.

Definition 4.1 (Hybrid Training) Given a task description l and the current environment observa-
tion xt, the conditional distribution over actions at can be expressed as:

p(at|xt, l) =
∑
i

∑
j

pθ(at, τ
i,mj |xt, l) =

∑
i

∑
j

pθ(at, τ
i|xt, l,m

j)p(mj), (1)

by marginalizing out thoughts τ and the set of values assumed by the “modality” variable m.

The hybrid training formulation allows us to describe a singla VLA model, with parameters θ, that
learns different conditional action distributions, mainly depending on a modality variable.

4.1 HYBRID TRAINING IMPLEMENTATION

The HyT formulation presented in Eq. 1 generalizes the definition of previous VLAs and enables the
possibility to combine multiple objectives into a single model. In particular, leveraging the insights
from other VLA models, we can use the hybrid training framework to conditionally learn three
distributions:
p(at|xt, l) = pθ(at|xt, l,m

a)pθ(m
a)︸ ︷︷ ︸

act

+ pθ(at|xt, l, τt)pθ(τt|xt, l,m
τ )pθ(m

τ )︸ ︷︷ ︸
think

+ pθ(at|xt, τt,m
f )pθ(m

f )︸ ︷︷ ︸
follow

.

(2)

This way the agent will learns to generate different outputs depending on the modality variable value
m ∈ {ma,mτ ,mf}. The meaning of each distribution is defined as follows:

• “Act” distribution: similarly to standard VLAs, it instructs the model to directly predicts actions.
It follows from pθ(τ = ∅|ma) = 1.

• “Think” distribution: similarly to ECoT, it instructs the model to first predict intermediate
thoughts and then generate actions.

• “Follow” distribution: similarly to a low-level policy in a hierarchical system, it instructs the
model to closely follow provided thoughts/instructions for action prediction. It follows from
pθ(at|xt, τt,m

f ) = pθ(at|xt, l, τt,m
f ) (conditional independence) and pθ(τ = ∅|mf ) = 1.

Referring to our hypothesis, combining the three distributions should enable the agent to learn to
output actions directly (act distribution) while also learning to predict thoughts and to follow in-
structions. The learning objective for the model can be described as:

min
θ

Lhyt(θ) = wαLact(θ) + wτLthink(θ) + wfLfollow(θ) (3)

where all the terms L□ are negative log-likelihood losses with respect to the corresponding outputs
(actions or thoughts and actions)1.

1For action prediction, the loss is negative log-likelihood in case the actions are discretized and predicted
by the LLM. Alternatively, the loss can be an L1 or L2 loss, for continuous action prediction.

4
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While one could compute the loss directly as the weighted sum of the three terms, for each datapoint,
this would reduce variability in the batches, as the model would contain the same thoughts and
actions multiple times in the same batch. In order to avoid this, we propose to use a Monte Carlo
estimate of the objective in Equation 3. Rather than being used as loss coefficients, the weights
wa, wτ , wf define the probabilities of sampling the corresponding inputs and outputs for the model
during training. This way, at each batch sampled during training, the model receives modality
tokens, actions and thoughts, with probabilities that are defined by the coefficients.

To summarize, in order to train a VLA with HyT, one needs to specify: (i) the probability distri-
butions to be learned, (ii) a set of values to use for the modality variable, and (iii) a set of coeffi-
cients/probabilities for sampling data during training. In this work, we adopt the distributions de-
fined in Eq. 2, with modality variables defined as simple texts, such as “< act >” or “< think >”,
and with the set of coefficients {wa : 0.25, wτ : 0.5, wf : 0.25}. A simplified diagram illustrating
HyT (with only two kinds of outputs) is shown in Figure 2.

4.2 INFERENCE TIME

At test-time, the VLA is tasked to predict actions that solve a task. Thanks to HyT, it is possible
to predict actions directly, leveraging the model’s “act” distribution. In order to do so, we provide
the model with the task description, the environments inputs, e.g. a camera image, and the modality
variable ma =< act > which instructs the model to directly output actions. This enables the
model to leverage the more extensive knowledge coming from learned thoughts and actions, without
incurring any additional inference costs compared to standard VLAs.

While the main goal of this work is to show that HyT enables higher performance at high control
frequency, the flexibibility of the HyT framework also enables the possibility to instruct the agent to
operate in different “modes”, i.e. conditionally predict different forms of outputs. Other than using
the VLA in ‘act’ mode, it is indeed possible to use the model in ‘think’ or ‘follow’ modes.

Q: What’s the value in using other inference modalities?

While we expect no major performance difference, e.g. when operating the model in ‘think’ mode
rather than in ‘act’ mode, additional inference modes support greater flexibility in the use of the
VLA. For example, the ‘think’ mode can be used to read the VLA’s intentions, for greater inter-
pretability. Instead, the ‘follow’ mode enables to provide a set of more fine-grained embodied in-
structions for the agent to follow, such as ‘move to the left’ or ‘pick up the object below the gripper’.
Note that, as also shown in the ECoT work (Zawalski et al., 2024), the ‘thought’ mode can also en-
able instruction-following, by overriding the agent’s intentions. We verify whether these modalities
can be useful with HyT in the Experiments section.

Q: How to operate the VLA in different modalities?

Generally, we set the modality variable to ma =< act >, enforcing the model to directly predict
actions. If we want to use a different mode, e.g. to predict intermediate thoughts, we can use the
mτ =< think > variable. In practice, we observed that models trained with HyT always diligently
attend to the modality token and generate their outputs accordingly.

In this work, we do not explore the possibility of switching the modality token dynamically during
executions, as we observed that, after HyT training, different operating modes have different gener-
ative behaviors, but similar performance. The modality variable is thus set at the beginning of a task
execution and not updated during the episode. Further understanding and studying the tradeoffs and
potential advantages that could derive from a switching mechanism between different modalities is
left for future work.

5 EXPERIMENTS

We validate the proposed HyT method in a series of simulated benchmarks, which we use to exten-
sively assess the framework’s capabilities, and on a set of real-world tasks, which demonstrates the
practical utility of the approach.

General setup. Across all experiments, the task description is provided in the same format,
i.e. ”What should the robot do to {task}?”. Image inputs are 224 × 224 RGB images from

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

300 750 1500 3000
Dataset size (# of demos)

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s r

at
e

Overall (9 tasks)

ECoT HiRobot HyT VLA

Figure 3: ClevrSkills benchmark Aggregated performance on 9 ClevrSkills environments (exam-
ples shown on the left). Shaded areas indicate standard errors.

a camera pointing at the robot’s workspace. The action space is 7-dimensional and defined as:
[∆x,∆ϕ, gripper]. The end-effector position x and orientation ϕ are controlled in delta space,
while the gripper pose is in absolute value.

5.1 CLEVRSKILLS BENCHMARK

The ClevrSkills benchmark (Haresh et al., 2024) is based on the ManiSkill2 manipulation environ-
ments (Gu et al., 2023). The environment includes an oracle solver to collect demonstrations, and
reasoning traces from the oracle, which we can use to discriminate subtasks and extract thoughts.
ClevrSkills also adopts a vacuum gripper and mostly uses simple shapes and objects, isolating the
challenges of manipulating complex objects, and focussing on planning and generalization instead.

Baselines. In this Section, we focus on comparing the HyT training methodology with other training
paradigms, namely the standard VLA training (Kim et al., 2024), ECoT-like thinking VLA training
(Zawalski et al., 2024), and HiRobot-like hierarchical VLA training (Shi et al., 2025).

Dataset. Using the oracle, we collect a diverse dataset that spans three main task groups: Place At,
Place OnTop, and Stack Tower, with several variations in terms of object types and numbers. The
overall dataset is made of 3000 trajectories. For all the thoughts, we adopt the same format, which
includes the current subtask and the high-level motion, i.e. coarse direction instructions. This simple
definition has proven effective in early stages of our analysis and in related work (Shi et al., 2025).
A more detailed dataset description is given in the Appendix.

Training. For all approaches, we start training the VLA from the PaliGemma-2 VLM model with
3B parameters (Steiner et al., 2024), which is based on the Gemma-2 LLM (Team et al., 2024) and
on the SigLIP vision encoder (Zhai et al., 2023). For action prediction, actions are tokenized using a
set of 256 discrete bins, and predicted by the LLM (Kim et al., 2024). We perform full-finetuning of
the model with a batch size of 32 and a learning rate of 2e−5, using the Adam optimizer (Kingma &
Ba, 2017). For the HiRobot approach, we train two distinct PaliGemma-2 models (Shi et al., 2025).

Evaluation. During evaluation, we run the agent in the environment for 100 evaluation episodes.
At each episode, objects and positions are resampled randomly (but consistently among evaluation
runs), making no evaluation environment exactly the same as any of the training examples. The
agent is, thus, required to generalize actions to new settings in order to succeed. For each model, we
evaluate 3 checkpoints taken at epochs 5, 7 and 10 during training. In general, we found no strong
correlation between validation losses and performance on the task. Though, with additional training
after 10 epochs, models tend to start overfitting.

Q: How does HyT performance scales with data, compared with other training paradigms?

With this experiment, we aim to verify the hypothesis that VLAs using HyT can develop intuitive
‘thinking’. If the hypothesis is correct, we expect increased performance compared to standard
VLAs, thanks to the knowledge internalized by training on reasoning traces.

6
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Figure 4: Instruction-following and other inference modalities. Comparing performance when
using own generated thoughts (default) or following instructions generated by an oracle.

As imitation learning performance can greatly vary with the number of demonstrations, we evaluate
models trained with different amounts of demonstrations: 300, 750, 1500, 3000. Overall perfor-
mance is summarized in Figure 3 and detailed performance per task is provided in Appendix. The
most evident result is that the hypothesis behind this work is confirmed: the models trained with
HyT not only outperform standard VLAs, but they also generally perform better than models trained
with the ECoT and HiRobot recipes, at all data scales.

Among the baselines ECoT performs (second) best at all data scales. Hierarchical VLAs have higher
performance than standard VLAs with smaller amount of demos, but their performance increase is
slower than for other methods, eventually being outperformed by standard VLAs from 1500 demos
on. In terms of inference time, we found that standard VLAs and HyT output actions at around 3Hz
on A100 GPUs (4 models acting in parallel). ECoT models are 3× slower. HiRobot hierarchical
generation is, overall, 4× slower.

Q: How can we use the other inference modalities enabled by HyT and how do they perform?

As described in the Method section, HyT enables the VLA to be used in multiple inference modali-
ties, other than the ‘acting’ mode, directly generating actions. This can be useful in situations where
interpretability or the ability to follow fine-grained instructions are useful. In order to verify em-
pirically that these modalities are actually usable, we perform a study on the instruction following
capabilities of the models on a restricted set of tasks.

In order to test instruction following from external sources, we provide the agent with a set of
“Oracle thoughts”, which we extract using the code from the the ClevrSkills’ oracle. Oracle thoughts
replace the agent’s thoughts only during moving subtasks, i.e. ”move to location X”. This is because
the oracle has precise conditions for picking and placing, compared to the VLAs. A learned policy
not always satisfies them, while still being successful, causing the agent to get stuck.

We use the models trained on the multitask dataset with the largest size (3000 demos) and present
results in Figure 4 for three of the most complex tasks in the ClevrSkills benchmark adopted. HyT
performance is shown in all inference modalities: ‘act’ mode (default, in blue), ‘think’ mode (in
green), and ‘follow’ and ‘think’ modes with oracle thoughts (barred). First, we can observe that for
all the methods tested, following instructions from an oracle, rather than self-predicted thoughts, can
improve the performance of the agent. For HyT, this means that the additional inference modalities
(‘think’ and ‘follow’) can actually be useful in such contexts.

Furthermore, we observe that, without oracle thoughts, models trained with HyT perform similarly
in ‘act’ and ‘think’ modes, corroborating the idea that, with HyT, in the evaluated settings, interme-
diate thought generation at test-time may be unnecessary. Nonetheless, for future work, it would be
worth verifying whether this finding holds for tasks requiring more complex embodied reasoning.

5.2 LIBERO BENCHMARK

The LIBERO benchmark is one of the most adopted in the VLA community (Zheng et al., 2025;
Ghosh et al., 2024; Kim et al., 2024; Zhao et al., 2025; Huang et al., 2025; Pertsch et al., 2025; Lee
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Figure 5: LIBERO benchmark Aggregated performance on 4 LIBERO task suites (examples
shown on the left). Mean performance evaluated on 100 evaluation episodes.

LIBERO Spatial Object Goal Long Avg.
Finetuned from VLA

TraceVLA (Zheng et al., 2025) 84.6 85.2 75.1 54.1 74.8
Octo (Ghosh et al., 2024) 78.9 85.7 84.6 51.1 75.1
OpenVLA (Kim et al., 2024) 84.7 88.4 79.2 53.7 76.5
CoT-VLA (Zhao et al., 2025) 87.5 91.6 87.6 69.0 81.1
ThinkAct (Huang et al., 2025) 88.3 91.4 87.1 70.9 84.4
π0-FAST (Pertsch et al., 2025) 96.4 96.8 88.6 60.2 85.5
MolmoAct (Lee et al., 2025) 87.0 95.4 87.6 77.2 86.6
Finetuned from VLM

VLA-OFT (Kim et al., 2025) 94.2 97.8 91.4 84.8 92.1
HyT (ours) 94.0 97.2 96.2 89.4 93.7

et al., 2025; Kim et al., 2025). The agent is evaluated on 4 suites of tasks: Spatial, Object, Goal and
Long (10).

In LIBERO, oracle thoughts are not available. Thus, to extract CoT, we first use the simulator
to obtain labelled object bounding boxes and high-level motion primitives, including the gripper
changes. Then, we feed this information step-wise, along with the task description, to an LLM that
generates a plan made of subtasks and associate subtasks with temporal steps. More information
about the thoughts extraction and structure can be found in the Appendix.

Q: Can HyT be employed in combination with different VLA designs and how does perfor-
mance compare to other VLAs in the literature?

Previous work on LIBERO has shown that there are some important choices in the VLA design that
are crucial to obtain high performance, such as the adoption of action chunking (Lee et al., 2025;
Zhao et al., 2025; Pertsch et al., 2025; Kim et al., 2025). For this reason, we chose to implement HyT
in combination with the OFT fine-tuning recipe (Kim et al., 2025), which employs action chunking
and continuous actions prediction (L1 head).

For both the VLA-OFT model and HyT, we fine-tune the model starting from the Prismatic VLM
(Karamcheti et al., 2024). This allows us to better leverage the language pre-training of the VLM,
as also shown in (Zawalski et al., 2024). Hyperparameters and training settings are the same as in
(Kim et al., 2025). Results are presented in Figure 5.

Compared to other fine-tuning recipes, the OFT strategy leverages data efficiently, outperforming
all other baselines in all suites of tasks but LIBERO Spatial. Training the model with HyT allows
the model to increase performance even further, especially in the most complex suites of tasks: Goal
and Long. This shows that HyT can be successfully combined with well-established VLA designs,
potentially improving state-of-the-art performance.

We also tested fine-tuning VLA-OFT and HyT starting from the OpenVLA pre-trained VLA model.
However, in this settings, we found no difference in performance (overall success: 95.3%±0.1 ), as
both methods nearly saturate the benchmark’s performance. One plausible conclusion is that HyT
and other Chain-of-Thought (CoT) strategies, by leveraging additional thought data during training,
can compensate for the lack of robotics pre-training or the scarcity of fine-tuning data, as simlarly
shown in the other experimental results in this work.

5.3 REAL-WORLD EXPERIMENTS

One of the major benefits of the HyT approach is the capability to achieve higher performance while
retaining lower inference time. This is particularly useful in real-world use-cases, where faster
execution is important to carry out tasks quickly and to increase the perceived quality of the agent.

For our real-world experiments, we collected a dataset comprising 320 trajectories using a robotic
setup featuring an UFactory xArm 6 with a flexible two-fingered gripper, operating on a white
tabletop. The agent observes the environment through RGB images captured by a RealSense D435
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Table 1: Real-world experiments. Success rates with standard error on the real-world tasks (on the
left). Additional details about experimental settings are provided in the Appendix.

OpenVLA HyT

In-distribution tasks 52% ±10 72% ±9

banana in green bowl 70% ±15 70% ±15

red cube in brown bag 50% ±20 100% ±0

tomato left of lettuce 60% ±22 60% ±22

zucchini in front of green cube 0% ±0 50% ±25

Out-of-distribution tasks 29% ±9 54% ±10

rubber duck in green bowl 40% ±15 20% ±13

mushroom in brown bag 0% ±0 100% ±0

purple die left of lettuce 0% ±0 50% ±25

zucchini in front of red hexagon 75% ±22 75% ±22

Overall 41% ±7 63% ±7

camera, positioned at a corner of the table. For the models, we start from the pre-trained OpenVLA
model with 7B parameters (Kim et al., 2024) and compare directly to it. We perform LoRA fine-
tuning with rank 32 (Hu et al., 2021), a batch size of 32 and a learning rate of 5e − 4, using the
Adam optimizer (Kingma & Ba, 2017).

Our evaluation spans two categories of tasks: in-distribution and out-of-distribution. The in-
distribution set includes tasks for which the dataset contains at least 10 demonstrations. For the
out-of-distribution set, we modify the in-distribution tasks with alterations, such as different objects
or placements, ensuring the agent encounters novel scenarios not present in the training data. See
the Appendix for additional details.

The results, shown in Table 1, show that HyT overall outperforms OpenVLA, especially in out-of-
distribution tasks. From a qualitative perspective, we notice that OpenVLA and HyT have similar
flaws, e.g., they tend to pick objects with the wrong orientation. However, HyT tends to be more
precise when reaching picking and placing positions, e.g. it never reached for the wrong object
while OpenVLA did, eventually leading to a noticeable performance gap.

6 DISCUSSION

Thinking strategies for VLAs (Zawalski et al., 2024; Shi et al., 2025) have shown important bene-
fits in terms of performance and interpretability over standard VLAs, with the drawback of slower
inference. In this work, we support the idea that the thinking process can be “internalized” by the
model, developing some form of expert intuition (Kahneman & Klein, 2009). We proposed the
Hybrid Training framework, which enables the possibility of learning from thoughts, for higher
performance, while also being able to predict actions directly for faster inference, as empirically
validated through simulated and real-world experiments. To conclude, we attempt to answer the
question: What is the contribution of CoT techniques to VLAs performance?

From analyzing the HyT framework, our understanding is that learning to generate CoT and learning
to predict actions from CoT improves the agent’s understanding of the environment. This is closely
related to how auxiliary losses have been used for imitation and reinforcement learning (Yarats et al.,
2020; Srinivas et al., 2020), improving the learning dynamics of the model and generalization per-
formance. We do not exclude that thoughts generation might be useful at test-time in more complex
settings, but this would require evaluating on tasks that require advanced reasoning capabilities,
which are currently sparse and rarely adopted in the robotics literature.

One limitation of CoT, hierarchical and HyT methods is that they require additional human labelling,
providing thoughts for the agent to learn from. In this respect, one advantage of HyT approach
is that it does not require the CoT to be present for the whole dataset. Instead, given that HyT
relies on sampling for approximating its objective, thoughts can be sampled just for the trajectories
that contain them. Automated reasoning approaches to extract useful thoughts in a self-supervised
manner would be a promising direction to explore in future work (DeepSeek-AI et al., 2025).
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ETHICS STATEMENT

Robotic agents that are interpretable could have a positive societal impact, as they allow users to
read and/or verify the agent’s intention. Intervenability can both have positive and negative social
impact, as it allows users to correct the agent’s intentions, but it could also allow malicious users to
steer the agent’s behavior towards unethical behaviors.

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility, we made use of open-source simulation benchmarks (ClevrSkills,
LIBERO) and open-source models (Paligemma, Prismatic, OpenVLA). In the main text and/or in the
Appendix, we state all the important hyperparameters for fine-tuning the models using our approach
and replicate our results. We also provide details about all the tasks, chains-of-thoughts, and models’
prompts employed.
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A APPENDIX

A.1 CLEVRSKILLS EXPERIMENTS
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Figure 6: Detailed results on the ClevrSkills benchmark.

Tasks definition The tasks are defined as follows:

• Place At tasks evaluate the agent’s spatial understanding. The tasks require the agent to bring an
object to a location specified in relation to another object location, i.e. left/right/behind/in front
of the object. The objects used are mainly simple-shaped objects of different colors as in (Jiang
et al., 2023).

• Place OnTop tasks evaluate the agent’s understanding of object interactions, as they require plac-
ing an object on top of another in a stable position. The set of objects used contains simple shapes,
but also more complex objects from YCB, such as mugs, wooden blocks, bowls, etc.

• Stack Tower evaluates the long-horizon capabilities of the agent, as it requires multiple “place on
top” with simple object shapes, where the order of the objects in the stack is defined in the prompt.

For each task, we train and test the agent with three variants, containing varying number of objects.
In Place OnTop and Place At the number of additional objects is only distracting or increasing the
amount of clutter in the scene, e.g. making placing objects on the table harder. For the Stack Tower
tasks more objects also require more actions, as the agent should stack all the objects present in the
scene.

Training details. The training for all experiments and approaches is done using PyTorch DDP
(Paszke et al., 2017) on 4 A100 GPUs. Inference requires less than 20GB VRAM and is performed
on a multi-instance A100 for simulated environments.

Evaluation details At each episode, objects and positions are resampled randomly (but consistently
among evaluation runs), making no evaluation environment exactly the same as any of the training
examples. The agent is, thus, required to generalize actions to new settings in order to succeed. For
each model, we evaluate 3 checkpoints taken at epochs 5,7 and 10 during training. In general, we
found no strong correlation between validation losses and performance on the task. Though, with
additional training after 10 epochs, models tend to start overfitting.

Dataset definition. For each task group, we collected a set of 1000 demo trajectories composed
as follows: 250 demos in the 2 objects task, 500 demos in the 3 objects task, 250 demos in the 4
objects task. Then, to train agents with different sizes of the dataset, we subsample fixed subsets of
trajectories from each dataset. For the multitask dataset, the task group datasets are subsampled and
then aggregated.

Extracting thoughts. In ClevrSkills’ demonstrations (Haresh et al., 2024) a variety of solvers is ap-
plied to the task, following a pre-specificied order - the oracle’s plan. Each solver takes executes one
subtask from the overall plan and the solver parameters can be recovered in the demonstrations. In
order to create thoughts, we can use the ClevrSkills library to transform each subtask from the solver

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

into a natural language instruction, e.g. ”Move to X” or ”Pick up Y”. Then, for moving instructions
- e.g. ”Move to...” and ”Carry Z to...” - we extract the motion direction of the agent. Similarly to
(Shi et al., 2025), this is obtained at each timestep by computing the distance between the current
end-effector position and the position at the end of the motion subtask. This is then transformed into
language, in the form of ”left/right”, ”forward/backward” and ”up/down” instructions, as in (Zawal-
ski et al., 2024). Finally, for distances that are less than 1 cm the agent receives a ”close” moving
instruction. Two examples of thoughts and actions, in the HyT format, are provided in Figure 7.

<think>

carry the red triangle to the mug

move: forward right down

<act>

[∆x, ∆Φ, gripper]

(a)

<think>

pick up the red triangle

<act>

[∆x, ∆Φ, gripper]

(b)

Figure 7: Examples of thoughts and actions for a moving (a) and a non-moving (b) subtasks, ex-
pressed in language format following the format used for HyT.

Gripper information. The ClevrSkills benchmark adopts a vacuum-gripper robot which creates a
vacuum in the gripper’s suction cups to maintain contact with objects. Compared to a fingers-based
gripper, a suction gripper’s state, i.e. open or closed, cannot be easily assessed through images.
Thus, in order for the agent to be able to perform grasping actions reliably, we concatenate the state
of the gripper in language form to the task description (or to the thoughts for the hierarchical low-
level VLA). The gripper state information we pass to the agent is: (i) whether the gripper suction
cups are making contact with something, (ii) whether the gripper was on, grasping something, or not.
There’s no need for the gripper information in the real-world experiments, as we use a fingers-based
gripper, where the gripper state is visually observable.

A.2 LIBERO EXPERIMENTS

CoT extraction. In order to generate plans and subtasks we use the Gemma-2 9B model.

For plan generation we use the following prompt:

I want to provide a robotic arm with a short list of high-level steps to
complete the task: ’{instruction}’.

The robotic arm is operating in a scene that contains the following
objects:

{object_1}, {object_2}, ..., {object_n}

Break down the instruction into a Python list of high-level steps. These
steps describe the coarse primitive actions that the robot needs to
take to complete the task.

It is important not to invent subtasks unless they are explicitly
required by the instruction.

For example, if the task does not mention opening or closing a drawer, do
not include those actions.

After listing the steps, please provide a brief explanation for each one
of the subtasks.

Listing 1: Prompt for LLM to generate high-level robotic steps
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For inferring step-wise subtasks we use the following prompt:

I want to analyze each step my robot took to accomplish the task: ’{
instruction}’.

To complete this task, it followed these subtasks in order:
{subtask 1}
{subtask 2}
...
{subtask n}

Below is a mapping from each timestep to the motion the robot executed.
The final item in each entry represents the object closest to the
gripper. This information is used solely for reasoning purposes and
is not part of the motion itself:

{...}

Please provide a Python dictionary that maps each of the subtasks (as
strings) to the integer timestep at which that subtask begins. The
mapping should include only the subtasks listed above. Since the
subtasks are sequential, later subtasks must correspond to later
timesteps. Each subtask must be assigned a single timestep, and the
first subtask should always begin at step 0.

Listing 2: Prompt for LLM to associate subtasks with steps in an episode

The final CoTs look like this:

PLAN: locate the cabinet, position above the middle drawer, open the
drawer

VISIBLE OBJECTS: akita_black_bowl_1: [138,139,140,150], cream_cheese_1:
[157,147,170,166], wine_bottle_1: [104,96,116,122], plate_1:
[99,171,141,196], wooden_cabinet_1: [0,94,81,212], flat_stove_1:
[161,87,213,137], wine_rack_1: [13,27,95,123]

SUBTASK REASONING: the robot needs to move into the correct spatial
location relative to the cabinet

SUBTASK: position above the middle drawer
MOVE: move left
GRIPPER POSITION: [106, 149]

Listing 3: CoT for LIBERO experiments

A.3 REAL-WORLD EXPERIMENTS

(a) (b) (c) (d)

Figure 8: The setup for some of the real-world tasks: (a) banana in green bowl (b) red cube in brown
bag (c) zucchini in front of green cube (d) tomato left of lettuce.

Dataset preparation. The dataset for real-world experiments is collected via human tele-operation,
using a VR set and a controller to map the human motions and intentions, e.g., closing the gripper, to
the robot. After collecting the trajectories, we apply some basic pre-processing operations. First, we
take the sequences collected at 60 Hz, and we subsample them at 10 Hz. Then, we extract actions
in the format [∆x,∆ϕ, gripper] from the end-effector and gripper positions of the demonstrations.
Finally, we filter out no-motion operations, i.e. having ∆x and ∆θ equal to zero.
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Extracting thoughts. For extracting the subtasks to use in the thoughts, we use a simple heuristic-
based approach. This is based on the assumption that all the tasks in the dataset are in the format
‘place the {obj1} {position} the {obj2}’, e.g. ‘place the {zucchini} {in front of} the {green cube}’.
We identify the position when the robot closes the gripper as the grasping position, and the posi-
tion when the robot opens the gripper as the releasing position. Then, we identify the following 3
keyframe moments: (i) the moment when the agent reaches within 3 cms distance from the grasping
position, (ii) the grasping moment, (iii) the moment when the agent reaches within 3 cms distance
from the releasing position. Finally, the subtasks are defined in the trajectory as follows:

• Move to the {obj1}: between the start of the trajectory and keyframe (i);
• Pick up the {obj1}: between keyframe (i) and keyframe (ii);
• Move {position} the {obj2}: between keyframe (ii) and keyframe (iii);
• Place object {position} the {obj2}: between keyframe (iii) and the end of the trajectory.

Also, to have the same thought structure as in the ClevrSkills’ experiments, we concatenate a ‘move:
{direction}’ to the moving subtasks, where the direction is computed using the end-effector position
(see Section A.1).

Evaluation. During evaluation, we limit the execution time to 150 agent steps, which is ∼ 2 minutes
per trajectory, considering 3 actions/second from the model and a control loop running at ∼ 2Hz for
stable motions. In case of failed grasps, we allow up to 3 attempts to the agent, before assessing the
outcome of the episode. In the following, you find a detailed description of how each in-distribution
task is executed and randomized. For out-of-distribution tasks, we follow the same procedures, but
we swap one of the main actors in the scene (e.g. the object to pick or the placing target). See Figure
8) for reference. Note: fruits are stuffed toys, while vegetables are hard foam models.

• Place the banana in the green bowl (10 trials). The scene includes a green bowl and
three objects: a banana, a tomato, and a blue hexagon, each with predefined positions. We
conduct five trials with the banana starting in one location, and five more from a different
location. In each location, the banana appears in three orientations: vertical (2/5 trials),
horizontal (2/5 trials), and diagonal (1/5 trial).

• Place the red cube in the brown bag. (6 trials). The setup features a brown bag and three
objects: a red cube, a banana, and a lettuce leaf, all placed at specific locations. We run two
trials for each location of the red cube. Its orientation varies between being aligned with
the robot’s base and being tilted.

• Place the tomato left of the lettuce (5 trials). The scene contains three objects: a lettuce leaf,
a carrot, and a tomato. Their positions are randomized within defined regions, though the
overall layout remains consistent. We perform five trials with these randomized placements.
A trial is only considered successful if the tomato ends up on the table, near the lettuce, and
to its left.

• Place the zucchini in front of the green cube (4 trials). The environment includes five ob-
jects: a shape sorting box, a zucchini, a purple die, a rubber duck, and a green cube. Object
positions are randomized within certain bounds, while maintaining the general layout. We
carry out four trials with these randomized setups. Success is defined as the zucchini being
placed on the table, close to and in front of the green cube.
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