A Theoretical Details

Here we derive|Equation § for € > 0 and ooy = o > 0. Since ESN(u, 02,0) = N E(u, o), we can
obtain |Equation 4|for ID activation by specializing the result to ¢ = 0. We begin with a useful lemma.

Lemma 1. Let X ~ ESN(0,02%,¢) andleta < b < 0,0 < c < d ThenPla < X < b) =
1+o o ()~ 0 ()| adPes x <) = (1= o () - @ (=55 )|

Proof.
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since the integral that of a N'(0, (1+¢)2?0?) distribution between a and b. The result for P(c < X <
follows analogously.
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Suppose that X,, ~ ESN(u, 02, €) with 1 > 0 and let Z,, = max(X,,,0). Define X = X, — p1 s0
that Z,, = max(X +p,0) = max(X, —u)+ p. We can derive the expectation of Z := max(X, —pu):
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since the integral is the expectation of an un-normalized truncated Gaussian between —u and 0.
Similarly, (IIT) is (1 — €) times the expectation of an un-normalized Gaussian between 0 and oo, thus
) = (1 — €)?¢(0)o. Combining (I)-(II) gives:
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follows since E[Z,, ] E[Z] + p. To derive | note that the expectation of

Z :=min(Z,c — p) is given by:

o —4ep(0)o

E[Z] :(I)+(H)+/C_M§¢ ((m> dz+(c—p) - P(X >c—p).

=0 1- 6)0

avy

V)
AV) = (1 —¢)? |:¢)(O) —¢ (ﬁ)} o follows from a similar argument as above, and
— (e— _ _p
W =(e-w-a [1-2 (4]

can be derived using Lemma |I Combining (I),(II),IV),(V) and observing that E[min(Z,, c)] =

E[Z] + p gives[Equation 7,
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B Descriptions of Baseline Methods

For the reader’s convenience, we summarize in detail a few common techniques for defining OOD
scores that measure the degree of ID-ness on the given sample. All the methods derive the score
post hoc on neural networks trained with in-distribution data only. By convention, a higher score is
indicative of being in-distribution, and vice versa.

Softmax score One of the earliest works on OOD detection considered using the maximum softmax
probability (MSP) to distinguish between D;, and D,y [15]]. In detail, suppose the label space is
Y ={1,...,K}. We assume the classifier f is defined in terms of a feature extractor f : X — R™
and a linear multinomial regressor with weight matrix W € R¥*™ and bias vector b € R¥. The
prediction probability for each class is given by:

P(y = k | x) = Softmax(Wh(x) + b)y. (10)
The softmax score is defined as Symsp (x; f) := maxy, P(y = k | x).

ODIN score Liang et al. [31] introduced the ODIN score which incorporates temperature scaling
and input preprocessing to improve the separation of MSP for ID and OOD data.

P(y = k | x) = Softmax[(Wh(X) + b) /T, (11)

where X is the perturbed input. The ODIN score is defined as Sopin(x; f) := maxy P(y = k | X).

Energy score The energy function [33] maps the logit outputs to a scalar Sgnergy (X; f) € R, which
is relatively lower for ID data:

K
SEncrgy (X; f) = IOg Z exp(w:h(x) + bl) (12)
k=1

Note that Liu et al. [33]] used the negative energy score for OOD detection, in order to align with the
convention that S(x; f) is higher for ID data and vice versa.

Mahalanobis distance All the scores above operate on K -dimensional outputs of the multinomial
regressor. In [29]], the authors instead model the feature-level distribution as a mixture of class
conditional Gaussians, and propose the Mahalanobis distance-based score:

Shtahatanobis (X; 1) := max —(h(x) — jiux) " B((x) — f1x), (13)

where [ij, is the estimated feature vector mean for class k and 3 is the estimated covariance matrix
(tied across classes).

C Selected Categories in OOD Datasets

We use the following list of concepts as OOD test data, selected from the iNaturalist [16], SUN
[55]], and Places365 [61] datasets. The concepts are curated to be disjoint from the ImageNet-1k
labels [18]. For Textures [5], we use the entire dataset.

iNaturalist Coprosma lucida, Cucurbita foetidissima, Mitella diphylla, Selaginella bigelovii, Toxi-
codendron vernix, Rumex obtusifolius, Ceratophyllum demersum, Streptopus amplexifolius, Portulaca
oleracea, Cynodon dactylon, Agave lechuguilla, Pennantia corymbosa, Sapindus saponaria, Prunus
serotina, Chondracanthus exasperatus, Sambucus racemosa, Polypodium vulgare, Rhus integrifolia,
Woodwardia areolata, Epifagus virginiana, Rubus idaeus, Croton setiger, Mammillaria dioica, Opun-
tia littoralis, Cercis canadensis, Psidium guajava, Asclepias exaltata, Linaria purpurea, Ferocactus
wislizeni, Briza minor, Arbutus menziesii, Corylus americana, Pleopeltis polypodioides, Myopo-
rum laetum, Persea americana, Avena fatua, Blechnum discolor, Physocarpus capitatus, Ungnadia
speciosa, Cercocarpus betuloides, Arisaema dracontium, Juniperus californica, Euphorbia prostrata,
Leptopteris hymenophylloides, Arum italicum, Raphanus sativus, Myrsine australis, Lupinus stiversii,
Pinus echinata, Geum macrophyllum, Ripogonum scandens, Echinocereus triglochidiatus, Cupressus
macrocarpa, Ulmus crassifolia, Phormium tenax, Aptenia cordifolia, Osmunda claytoniana, Datura
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wrightii, Solanum rostratum, Viola adunca, Toxicodendron diversilobum, Viola sororia, Uropap-
pus lindleyi, Veronica chamaedrys, Adenocaulon bicolor, Clintonia uniflora, Cirsium scariosum,
Arum maculatum, Taraxacum officinale officinale, Orthilia secunda, Eryngium yuccifolium, Diodia
virginiana, Cuscuta gronovii, Sisyrinchium montanum, Lotus corniculatus, Lamium purpureum, Ra-
nunculus repens, Hirschfeldia incana, Phlox divaricata laphamii, Lilium martagon, Clarkia purpurea,
Hibiscus moscheutos, Polanisia dodecandra, Fallugia paradoxa, Oenothera rosea, Proboscidea
louisianica, Packera glabella, Impatiens parviflora, Glaucium flavum, Cirsium andersonii, Heliopsis
helianthoides, Hesperis matronalis, Callirhoe pedata, Crocosmia x crocosmiiflora, Calochortus
albus, Nuttallanthus canadensis, Argemone albiflora, Eriogonum fasciculatum, Pyrrhopappus pauci-
florus, Zantedeschia aethiopica, Melilotus officinalis, Peritoma arborea, Sisyrinchium bellum, Lobelia
siphilitica, Sorghastrum nutans, Typha domingensis, Rubus laciniatus, Dichelostemma congestum,
Chimaphila maculata, Echinocactus texensis

SUN  badlands, bamboo forest, bayou, botanical garden, canal (natural), canal (urban), catacomb,
cavern (indoor), cornfield, creek, crevasse, desert (sand), desert (vegetation), field (cultivated), field
(wild), fishpond, forest (broadleaf), forest (needle leaf), forest path, forest road, hayfield, ice floe,
ice shelf, iceberg, islet, marsh, ocean, orchard, pond, rainforest, rice paddy, river, rock arch, sky,
snowfield, swamp, tree farm, trench, vineyard, waterfall (block), waterfall (fan), waterfall (plunge),
wave, wheat field, herb garden, putting green, ski slope, topiary garden, vegetable garden, formal
garden

Places badlands, bamboo forest, canal (natural), canal (urban), cornfield, creek, crevasse, desert
(sand), desert (vegetation), desert road, field (cultivated), field (wild), field road, forest (broadleaf),
forest path, forest road, formal garden, glacier, grotto, hayfield, ice floe, ice shelf, iceberg, igloo,
islet, japanese garden, lagoon, lawn, marsh, ocean, orchard, pond, rainforest, rice paddy, river, rock
arch, ski slope, sky, snowfield, swamp, swimming hole, topiary garden, tree farm, trench, tundra,
underwater (ocean deep), vegetable garden, waterfall, wave, wheat field

D Hardware

All experiments are conducted on NVIDIA GeForce RTX 2080Ti GPUs.

E Ablation Study on Different Layers

We provide the activation patterns for intermediate layers in Figure [6 and the OOD detection
performance of applying ReAct to these layers in Table[6] In particular, there are four residual blocks
in the original ResNet-50 network [12]. The four layers (denoted by layer 1 - layer 4) are taken
from the output of each residual block. Interestingly, early layers display less distinctive signatures
between ID and OOD data and ReAct performs worse than the baseline [33] when it is applied
on layer 1 - layer 3. This is expected because neural networks generally capture lower-level
features in early layers (such as Gabor filters [60]), whose activations can be very similar between ID
and OOD. The semantic-level features only emerge as with deeper layers, where ReAct is the most
effective.

Lavers of applyine ReAct ID: CIFAR-100 ID: ImageNet

Y pplying FPR95] AUROCT TFPR95] AUROC
Layerl 90.86 68.17 84.83 74.88
Layer2 84.12 75.32 76.25 79.37
Layer3 73.4 80.91 63.87 86.46
Layer4 (ReAct) 59.61 87.48 31.43 92.95
No ReAct [33] 71.93 82.82 58.41 86.17

Table 6: Ablation study of applying ReAct on different layers. We used ResNet-18 [11] pre-trained on
CIFAR-100 and ResNet-50 pre-trained on ImageNet. 1 indicates larger values are better and | indicates smaller
values are better. All values are percentaged over multiple OOD test datasets described in Section 4.2]and

Section 4.1,
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Figure 6: The distribution of per-unit activations in the penultimate layer for ID (ImageNet, blue) and OOD
(iNaturalist, gray) on different layers. Each layer (denoted by layer 1 -layer 4) corresponds to the output of
each residual block in ResNet-50 [12].

F Using True BatchNorm Statistics on OOD Data

Typically, for a unit activation denoted by z, the network estimates the running mean E;,(z) and
variance Varj,(z), over the entire ID training set during training. During inference time, the network
applies BatchNorm statistics [22] E,(z) and Vary,(z), which helps normalize the activations for the
test data with the same distribution Dj,:

z — E[2]

BatchNorm(z; 7, 8, €) = —————
(z37,5:€) Varj,[z] + €

Y+ 8 (14)

However, our key observation is that using mismatched BatchNorm statistics—that are estimated on
D, yet blindly applied to the OOD D, —can trigger abnormally high unit activations (see bottom of
Figure ). As a thought experiment, for OOD data, we instead apply the true BatchNorm statistics
estimated on a batch of OOD images:

z — Eou[2]
v/ Vargy[z] + €

As a result, we observe well-behaved activation patterns with near-constant mean and standard
deviations (see the top of Figure ). Our study therefore reveals one of the fundamental causes
for neural networks to produce overconfident predictions for OOD data. Despite the interesting
observation, we note that estimating the true BN statistics for OOD poses a strong and impractical
assumption of having access to a batch of OOD data during test time. In contrast, using ReAct does
not operate under such an assumption and can be applied on any single OOD instance, as well as for
neural networks trained with alternative normalization mechanisms (as we show in Section|[6).

BatchNorm(z;, 8, €) = ~+ B. (15)

G Unit Activation Patterns for Gaussian Noise

We provide the activation patterns for Gaussian noise input (our validation data) in Figure[7. The
experiment is based on ResNet-50 architecture [12]. We show that using Gaussian noise as input can
lead to overly high unit activations, which is consistent with the observation in Figure [I|and Figure [5]
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Figure 7: The distribution of per-unit activations in the penultimate layer for OOD data (Gaussian Noise) and
ID data (ImageNet) on ResNet50.
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