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Frame-mAP report on AVA.
AVA (Gu et al. [2018) is not the Ve

. 1004 —— MultiSports
target dataset for our work, as it lacks UCF101-24 92%  —
tube-level annotations. Our ART JHMDB51-21 84%

framework is specifically designed 80—

for detecting complex action tubes,
and frame-mAP does not adequately
capture the effectiveness of ART.
Following the main paper, Fig [I]
illustrates the cumulative density |
function of the IoU for ground-truth 551 20%
bounding box pairs taken one second //9%'/_/
apart, plotted for the training sets of _/%
MultiSports, UCF, JHMDB, and AVA. 0] 3%, ‘ ‘ ‘
On AVA, 90% of the box pairs have 0.0 02 ?n'?ra_mbe I%S 0.8 L0
an IoU greater than 0.5, indicating

that the motion in AVA is relatively
small. However, for those interested
in performance on AVA, we provide
a comparison with existing methods
on AVA 2.2 in Tab [I] Notably, most
state-of-the-art methods rely on an
offline person detector (typically
Faster-RCNN) to first localize actors
and then focus solely on action recognition. In contrast, our ART method operates end-to-end,
simultaneously localizing actors and recognizing their actions. Using only Kinetics-400 pre-trained
weights and without incorporating an additional detector, the pure transformer version of ART
achieves 40.1 mAP. Although ART is specifically designed for complex-shaped tube detection, its
architecture does not compromise performance on actions with small motion trajectories.
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Figure 1: Cumulative density function of intra-tube IoU
is presented for four action detection datasets: MultiSports,
UCF101-24, JHMDB51-21, and AVA. Notably, only 10% of
box pairs in AVA exhibit an IoU below 0.5, indicating that
90% of instances in this dataset experience small motion,
with bounding boxes overlapping by more than 0.5.

More visualizations. We present additional action tube detection results on the MultiSports, UCF101-
24, and JHMDBS51-21 datasets in Fig 2] MultiSports features complex-shaped action tubes, including
challenges such as camera motion, deformable shapes, and multiple actors as shown in Fig [2{a).
UCF101-24 contains similarly complicated scenarios, such as intertwined actors and multiple actor
interactions, as illustrated in Fig2Jb). ART effectively handles these intricate action tubes by lever-
aging actor information to construct tubelets. As noted in the main paper, JHMDB51-21 (Fig[2{c))
consists of simpler cases, characterized by short-length tubes, single actors, and small motion, as
shown in the figure. As expected, ART performs well on this dataset.

Failure case. Our ART framework encounters challenges when handling extremely small actors,
which complicates the extraction of actor-related information. An example of this issue is illustrated
in Fig. 3] In particular, ART occasionally misses bounding boxes within a tube when actors are
very tiny. We consider to apply multi-scale technology on both temporal and spatial dimensions to
eliminate the issue. We will make it in the future work.
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Model Detector = Backbone Pre-train Inference mAP
SlowFast (Feichtenhofer et al., 2019)  F-RCNN R101 K600 6 views 29.8
ACAR-slowtast (Pan et al., 2021 F-RCNN R101 K600 6 views 33.3
AIA-slowfast @ﬁgmr 2 F-RCNN R101 K700 18 views | 32.2
X3D-XL (Feichtenhofer| [2020) F-RCNN X3D-XL K700 1 view 27.4
Unified (Arnab et al.}2021) F-RCNN R101 K400 1 view 28.8
WOO-slowfast (Chen et al.,|2021) X R101 K600 1 view 28.3
TubeR-CSN (Zhao et al | [2022) X R152 IG65M 1 view 31.1
MViTv1-24 (Fan et al}[2021) F-RCNN | MViT-B-24 K600 1 views 28.7
MViTv2-L, 312° (Li et al., 2022) F-RCNN MViT-L IN21K+K700 1 views 344
MemViT-24 (Wu et al.,[2022) F-RCNN | MViT-B-24 K700 1 views 35.4
VideoMAE (Tong et al.|[2022) F-RCNN ViT-L K400 NA 37.0
ART-ViT-L (ours) X ViT-L K400 1 view 38.1
VideoMAE F-RCNN | ViT-H K400 NA 39.5
ART-ViT-H (ours) X ViT-H K400 1 view 40.1

Table 1: Comparisons on AVA v2.2 validation set. Detector shows if additional detector is required;
IG denotes the IG-65M dataset, SF denotes the slowfast network. Our ART performs best without an
offline person detector.
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Figure 2: Action tube visualization.(a) Complex-shaped tubes involving camera motion and multiple
actors in MultiSports. (b) Complex-shaped tubes with intertwisted actors and multiple actors in
UCF101-24. (c) JHMDB51-21 has tubes characterized with single actor, small motion and short
length. ART performs well for various cases.
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Figure 3: Failure case. ART faces challenges when dealing with extremely small actors, as it becomes
difficult to incorporate precise actor information necessary for constructing actor-related tubelets.
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