
Published as a conference paper at ICLR 2025

SELF-MOE: TOWARDS COMPOSITIONAL LARGE LAN-
GUAGE MODELS WITH SELF-SPECIALIZED EXPERTS

Junmo Kang∗
Georgia Tech

Leonid Karlinsky
MIT-IBM Watson AI Lab

Hongyin Luo
MIT

Zhen Wang
UCSD

Jacob Hansen
MIT

James Glass
MIT

David Cox
MIT-IBM Watson AI Lab

Rameswar Panda
MIT-IBM Watson AI Lab

Rogerio Feris
MIT-IBM Watson AI Lab

Alan Ritter
Georgia Tech

ABSTRACT

We present Self-MoE, an approach that transforms a monolithic LLM into a com-
positional, modular system of self-specialized experts, named MiXSE (MiXture
of Self-specialized Experts). Our approach leverages self-specialization, which
constructs expert modules using self-generated synthetic data, each equipping a
shared base LLM with distinct domain-specific capabilities, activated via self-
optimized routing. This allows for dynamic and capability-specific handling of
various target tasks, enhancing overall capabilities, without extensive human-
labeled data and added parameters. Our empirical results reveal that specializing
LLMs may exhibit potential trade-offs in performances on non-specialized tasks.
On the other hand, our Self-MoE demonstrates substantial improvements (6.5%p
on average) over the base LLM across diverse benchmarks such as knowledge,
reasoning, math, and coding. It also consistently outperforms other methods, in-
cluding instance merging and weight merging, while offering better flexibility and
interpretability by design with semantic experts and routing. Our findings high-
light the critical role of modularity, the applicability of Self-MoE to multiple base
LLMs, and the potential of self-improvement in achieving efficient, scalable, and
adaptable systems.

1 INTRODUCTION

The remarkable success of Large Language Models (LLMs) has been largely attributed to their gen-
eralist nature, allowing them to perform a wide variety of tasks (Brown et al., 2020; Touvron et al.,
2023; Jiang et al., 2023; Team et al., 2024). Predominantly designed as monolithic architectures,
these models rely extensively on large-scale data to embed generalized language capabilities across
vast parameter spaces. While effective, this monolithic architecture, as illustrated in Figure 1, in-
herently suffers from significant drawbacks such as inefficiency in scaling (Zhang et al., 2024; Wan
et al., 2024), susceptibility to forgetting previously learned information when adapted to special-
ized tasks (Kotha et al., 2024; Huang et al., 2024), and a lack of transparency which leads to the
black-box nature (Zhao et al., 2023).

Meanwhile, the increasing demand to handle domain-specific or expert-level tasks has highlighted
the need for specialization of LLMs (Cheng et al., 2024; Ling et al., 2023; Feng et al., 2024). How-
ever, effective tuning often relies on high-quality, human-annotated data, which is costly and chal-
lenging to scale (Kang et al., 2023), especially in specialized domains where expertise is scarce and
valuable (Wu et al., 2023). Self-specialization (Kang et al., 2024) offers a promising alternative,
aligning models with self-generated synthetic data. While this technique has proven effective in
cross-task generalization within a target expert domain, we posit that it may compromise perfor-
mance in areas outside the target domain.
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Figure 1: Concept of Self-MoE, illustrating the transformation from a monolithic LLM to a compo-
sitional system, MiXSE, without extensive resources and addition of significant parameters. MiXSE
distinguishes itself from traditional MoEs and other models in post-training, lightweight semantic
experts, and/or self-generated synthetic data. The results showcase MiXSE’s improved capabilities
over the base LLM (e.g., Gemma-7B) across all domains, unlike the knowledge-specialized LLM
that compromises other capabilities.

In this paper, we explore the following question: How can we build compositional LLMs that enjoy
versatile expertise, while using minimal resources? We introduce Self-MoE (Figure 1), an approach
that transforms a monolithic model into a compositional (Zaharia et al., 2024) system, called MiXSE
(MiXture of Self-specialized Experts). This approach differs from prior MoE work using LoRA (Hu
et al., 2022), which either relies on human-labeled data (Wu et al., 2024) or assumes the existence
of trained modules (Huang et al., 2023; Muqeeth et al., 2024). Instead, our Self-MoE constructs
individual lightweight expert modules from scratch using synthetic data, inspired by the concept of
self-specialization. Each module is integrated with a shared base LLM, and the entire system is
enhanced by a self-optimized routing mechanism. In contrast to monolithic models, which often
suffer from forgetting issues when adapted or merged under fixed, static parameters, our modu-
lar design preserves the integrity and semantics of each expert. This allows for dynamic, precise
handling of various target domain tasks, boosting the model’s overall capability, adaptability, and
interpretability.

Through extensive empirical studies conducted across a variety of popular domains, including
knowledge, reasoning, math, and coding, we find that specialization often comes with trade-offs,
typically degrading performance in non-targeted domains. However, our Self-MoE demonstrates
substantial overall improvements over a base LLM across all target domains without compromising
performance on other tasks. Notably, the compositional nature of our MiXSE appears to exploit
synergies among experts, even outperforming all individual specialized experts.

Moreover, MiXSE clearly surpasses other strong baselines such as instance merging and weight
merging, under similar settings, while offering better flexibility and interpretability. Detailed anal-
yses highlight the critical role of the routing mechanism and the contribution of semantic experts
in achieving these results. Our interpretable visualizations of routing distributions further elucidate
how tasks are dynamically allocated to the most relevant experts. Lastly, we further validate that
there are no issues related to forgetting unlike monolithic baselines, and that our approach can be
applied to various model families and sizes. In summary, our key contributions are as follows:

• We highlight the inherent limitations of monolithic model specialization, where focusing on a
specific capability often comes at the cost of degrading performance in other domains.

• We propose Self-MoE, which allows a base, monolithic LLM to upgrade into a modular system
of lightweight, self-specialized experts, without requiring extensive human supervision, compute
resources, or overhead in active parameters.

• We provide comprehensive experiments and analyses across a range of benchmarks, where Self-
MoE demonstrates consistent improvements with an average of 6.5%p across domains over a base
LLM, outperforming various baselines. Our ablation studies validate the impact of modularity,
routing strategies, and the use of self-generated synthetic data. Moreover, our analyses explore
routing distributions, forgetting issues, and the applicability to five different base LLMs.

2 PROBLEM STATEMENT

The primary focus of this work is on self-improving LLMs’ target capabilities on the fly, specifically
under settings constrained by minimal resources and without the addition of significant parameters.
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Figure 2: Overview of the Self-MoE approach to building a compound system of specialized experts
and a router in a self-improving manner. In the Self-Specialization phase (left side), the base LLM
is aligned with self-generated synthetic data for each target specialization, producing lightweight
expert modules. The right side shows MiXSE where each self-specialized expert is dynamically
engaged based on the decisions of the self-optimized router.

Traditional LLMs, which are generally monolithic, require expensive human-labeled data to be bet-
ter specialized, thereby limiting their adaptability and scalability when resources are constrained.
We hypothesize that a modular, compositional model utilizing self-generated synthetic data for self-
improvement can dramatically improve specific target capability, adaptability, and interpretability
while reducing dependency on expensive human-annotated datasets.

Specifically, given a base LLM Θ0 and a minimal set of seed data (e.g., 100) for each of the target
capabilities {Ti}ni=1 (e.g., knowledge, math), our goal is to transform Θ0 into an enhanced composi-
tional model Θcomp where n target expert modules {∆Θi}ni=1 are effectively integrated. Formally,
the Self-MoE transformation function is defined as:

ftrans : (Θ0, {Ti}ni=1) → Θcomp = Θ0 ∪ {∆Θi}ni=1

Here, under our problem setting, the number of parameters of Θ0 and Θcomp should not be signif-
icantly different, necessitating that the expert modules ∆Θi be lightweight (i.e., LoRA (Hu et al.,
2022)). The available seed data are limited but can be reasonably collected (e.g., 100). Importantly,
we do not assume the availability of larger/teacher models at one’s hand; instead, we aim to develop
a method that enables self-improvement and is designed to be universally applicable.

3 METHOD: SELF-MOE

In this section, we describe Self-MoE, our proposed framework designed to build a compositional
model in which specialized expert modules and a routing component are learned in a self-training
manner to cooperate effectively. At a high level, Self-MoE decomposes the monolithic structure
of a base LLM into a dynamic mixture of self-specialized units, each equipped with distinct target
capabilities. This section outlines the overall pipeline and architecture of Self-MoE, illustrated in
Figure 2, which details both the self-specialization of individual target expert modules and their
integration to form a compositional system, MiXSE (MiXture of Self-specialized Experts).

3.1 BUILDING EXPERT MODULES THROUGH SELF-SPECIALIZATION

The first step of Self-MoE is creating specialized modules {∆Θi}ni=1 for each target expertise, while
adhering to the desiderata discussed in Section 2. That is, the modules should be lightweight and
self-improving. We employ self-specialization (Kang et al., 2024) where a base LLM is aligned with
self-generated data for target specialization, resulting in lightweight LoRA (Hu et al., 2022) experts.

Targeted Generation. Self-specialization involves generating synthetic instruction-response data
Di = {(inst(1)i , resp(1)i ), (inst(2)i , resp(2)i ), ...} tailored to each target domain Ti. We ensure the data
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is both diverse and highly relevant to the specialized tasks/domains each module will address. The
generation includes the following steps:

(1) Seed Construction: First, given a target Ti identified, we prepare a small number of seed ex-
amples (e.g., 100) that capture essential characteristics and scenarios relevant to each target domain
Ti. While we exploit existing datasets for the purpose of demonstration, we posit manual annotation
for such a small number should be reasonable in real-world applications. These seeds serve as the
foundational dataset from which synthetic variations are generated.

(2) Instruction Brainstorming: Once the seed examples are established, the next step is to diver-
sify the range of instructions (and corresponding input contexts) through a brainstorming process.
Specifically, we prompt1 a base LLM Θ0 to create new instructions following sequences of seed
instructions given in-context.

(3) Response Generation: The final step involves generating corresponding responses for the newly
created instructions. We use seed instruction-response pairs as in-context demonstrations to extract
latent relevant knowledge from Θ0.

Self-Align with LoRA With each specialized synthetic data Di in place, we now proceed with the
self-alignment of Θ0 to induce specialization, separately producing lightweight expert components
∆Θi. Note that Di are self-generated by Θ0 and used to specialize the same Θ0 using an adapter
module ∆Θi, resulting in an specialized model Θspec = Θ0 + ∆Θi. Specifically, we utilize Low-
Rank Adaptation (LoRA) (Hu et al., 2022), which integrates additional trainable parameters that are
specific to each domain Ti while keeping Θ0 intact. Within the corresponding Θ, we define θ as
the weights at a certain layer where LoRA is attached. Let θspec ∈ Rd×k be updated weights at a
specific LoRA layer which can be decomposed as:

θspec = θ0 +∆θi

= θ0 + θBi
θAi

where θBi ∈ Rd×rank and θAi ∈ Rrank×k, with rank ≪ min(d, k). The forward pass becomes:

h = θspecx = θ0x+ θBi
θAi

x

This applies to all LoRA layers, and only ∆Θi = {∆θ
(1)
i ,∆θ

(2)
i , ...} is updated during training

using Di. As a whole, this process of self-specialization can be defined as producing an expert
module ∆Θi for the i-th target along with the corresponding synthetic data Di (Left in Figure 2):

fss : (Θ0, Ti) → (∆Θi, Di)

We iterate this process for each target domain, focusing on knowledge, reasoning, math, and coding.

3.2 MIXTURE OF SELF-SPECIALIZED EXPERTS

After each expert module is individually specialized through the self-specialization process, they are
integrated into a compound system Θcomp, MiXSE (MiXture of Self-specialized Experts). MiXSE
is designed to leverage the distinct capabilities of each module, orchestrating their cooperation to
handle diverse tasks dynamically and efficiently. To achieve this benefit, a router module θr is also
incorporated, which analyzes each input token to dynamically route to the most appropriate expert
module based on the task at hand.

Specifically, within each layer, the output h for each input x is calculated by combining the contri-
butions of the selected expert modules ∆θi, weighted by their relevance determined by the router:

h = θ0x+
∑n

i=1
αi∆θix

= θ0x+
∑n

i=1
αi∆θBi

θAi
x

where α represents a set of weights computed by the router (i.e., a linear layer) θr ∈ Rn×k.

α = top-k(softmax(θrx))

1The prompts can be found in Table 11-14 in Appendix.
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Note that we only take top-k probabilities and mask out the others to efficiently reduce computation.
In essence, this also allows the pre-trained base weights θ0 to be sufficiently able to contribute,
mitigating potential issues of over-specialization such as forgetting or diminished generalizability.
The router θr is a linear layer, shared across all LoRA layers, and is trained using the aggregated
self-generated data D = {Di}ni=1 to learn how to optimally select modules for a given task:

L(θr) = −E(inst, resp)∼D[logPΘ0
(resp | inst; θr, {∆Θi}ni=1)]

It can be noted that the router is not provided with explicit supervision about which expert should
be selected for each token, as there is no fixed label for each token indicating the correct single
expert. Instead, it learns the optimal expert selection indirectly through training on self-generated
instructions and responses. The supervision comes from the responses, where the routing decisions
are determined dynamically based on the token-level features to allow the model to produce better
responses. Importantly, the router is optimized separately after the expert modules are trained and
frozen, ensuring the explicit semantic distinction of the expert modules is preserved.

4 EXPERIMENTS AND RESULTS

Datasets. We evaluate Self-MoE across diverse domains categorized into knowledge, reasoning,
math, and coding: MMLU (0- & 5-shot) (Hendrycks et al., 2021a), BBH (3-shot) (Suzgun et al.,
2022), GSM8K (8-shot) (Cobbe et al., 2021), and HumanEval (0-shot) (Chen et al., 2021), respec-
tively. For MMLU, we primarily employ the 0-shot setting unless otherwise specified, based on
established observations (Dettmers et al., 2023; Lin et al., 2024) that tuning yields only marginal ef-
fects in the 5-shot setting for this task. To test generalization (Section 4.4), we additionally evaluate
on MATH (4-shot) (Hendrycks et al., 2021b), MBPP (3-shot) (Austin et al., 2021), NaturalQues-
tions (5-shot) (Kwiatkowski et al., 2019), TriviaQA (5-shot) (Joshi et al., 2017), Hellaswag (0-shot)
(Zellers et al., 2019), PIQA (0-shot) (Bisk et al., 2020), and TruthfulQA (0-shot) (Lin et al., 2022).

Baselines. To assess the effectiveness of Self-MoE, we compare performance against several base-
lines that are similarly trained using LoRA and that use the same number of active parameters during
inference for fair comparisons:

• Four Self-Specialized Models (Kang et al., 2024): Trained on self-generated synthetic data for
individual domains: knowledge, reasoning, math, and coding.

• Instance Merging (Multi-Task Tuning) (Chung et al., 2024): Leverages the aggregated synthetic
data generated by self-specialization to train a model capable of handling multiple tasks.

• TIES (Yadav et al., 2023), DARE (Yu et al., 2024): Advanced weight merging methods integrating
multiple expert strengths into a unified model.

Note that Self-MoE does not require the base models to be implemented using specific architec-
tures. Rather, Self-MoE builds upon purely any base LLMs using LoRA-based fine-tuning like other
baselines, which ensures fair and consistent comparisons. We also contextualize these results with
computationally intensive methods reported in the literature, despite indirect comparisons: BTM (Li
et al., 2022), Sparse Upcycling (Komatsuzaki et al., 2023), BTX (Sukhbaatar et al., 2024), GLAN
(Li et al., 2024a), Orca (Mitra et al., 2023), and Merlinite (Sudalairaj et al., 2024) in Appendix D.1.

Implementation Details. We adopt Gemma-7B (Team et al., 2024) as a base LLM for our main
experiments, and additionally apply Self-MoE to various models, such as LLaMA-2 7B & 13B
(Touvron et al., 2023), Mistral 7B (Jiang et al., 2023), and LLaMA-3 8B (AI@Meta, 2024) in
Section 4.5. We use 100 seeds to generate 5K synthetic data for each domain, resulting in 20K data.
Each LoRA module contributes less than 0.3% to the parameters of the base model, and the router’s
parameters are negligible, resulting in the added parameters of MiXSE amounting to only about 1%.

4.1 MAIN RESULTS

In Table 1, we showcase comparative benchmark results of various approaches across four special-
ized domains: knowledge, reasoning, math, and coding. All baselines use self-generated synthetic
data based on the same Base LLM, Gemma-7B, and LoRA for tuning to ensure fair comparisons.
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Table 1: Main results. All models are built upon the same base LLM, Gemma-7B, taking
self-improving approaches and having the same active parameters during inference. Corresponding
aligned performances of self-specialization are underscored. Each column’s best performance is
highlighted in bold, while the gains achieved by our MiXSE over the base LLM are indicated.

Method Active Knowledge Reasoning Math Coding Avg.Params (MMLU) (BBH) (GSM8K) (HumanEval)

Base LLM 7B 58.4 56.1 42.5 34.1 47.8

Specialized LLM for Each Capabiility

Knowledge Self-Spec. 7B + 0.3% 64.0 41.7 40.5 28.0 43.6
Reasoning Self-Spec. 7B + 0.3% 60.1 60.2 41.0 28.7 47.5
Math Self-Spec. 7B + 0.3% 59.3 58.9 50.0 36.0 51.1
Coding Self-Spec. 7B + 0.3% 57.2 57.2 46.0 37.2 49.4

Merging Methods

Instance Merging 7B + 0.3% 62.6 57.6 53.5 36.0 52.4
TIES Merging 7B + 0.3% 63.7 56.3 38.5 32.9 47.9
DARE Merging 7B + 0.3% 37.7 59.6 45.0 34.8 44.3

MiXSE (Ours) 7B + 0.3% 65.6 ↑ 7.2 61.1 ↑ 5.0 52.5 ↑ 10.0 37.8 ↑ 3.7 54.3 ↑ 6.5

First, we confirm self-specialization markedly enhances target-specific expertise, compared to the
base LLM. For instance, we can see substantial gains from corresponding specialized models (e.g.,
Knowledge Self-Spec. in the knowledge domain): 58.4 to 64.0 in knowledge, 56.1 to 60.2 in rea-
soning, and so on. However, this focused improvement sometimes comes at the cost of reduced
performance in non-targeted areas, as evidenced by the drop in scores for the Knowledge Self-Spec.
model in reasoning, math, and coding. This trade-off highlights the inherent limitation of over-
specialization. In contrast, our MiXSE, demonstrates consistent improvements across all domains,
due to its modular, compositional architecture that makes use of dynamic routing to leverage opti-
mal experts. Surprisingly, it even outperforms all corresponding specialized models, indicating that
it effectively synergizes the strengths of each specialization.

In comparison with other static merging methods like Instance Merging, TIES, and DARE, MiXSE
stands out for its superior adaptability. While they attempt to combine the strengths of different spe-
cialization areas into a single model, they lack the dynamic flexibility that MiXSE offers. Notably,
simple instance merging (i.e., multi-task tuning), though effective in enhancing the base LLM across
domains, still falls short of achieving the superior average performance of 54.3 seen with MiXSE.
This validates the advantages of dynamic expert integration in a compositional system.

4.2 ABLATION STUDY

Now that we have verified the effectiveness of MiXSE as a whole, we evaluate the impact of different
configurations and components of the system, presented in Table 2. The configurations vary in
terms of routing strategies and integration of experts, offering insights into the contributions of each
element to the system’s overall effectiveness.

We start by examining the Top-k routing strategy, which plays a crucial role in our model. Our
findings show that both the Top-1 and Top-2 expert configurations deliver the best performance.
This suggests that identifying and leveraging the most relevant expert for a given task is typically
sufficient and most effective. On a side note, the similar performances of the different configurations
may highlight the robustness of our method. Given the similar performances, we prefer the Top-1
expert setup for better efficiency.

Interestingly, the results also indicate a drop in performance when using All Experts. This can be
attributed to that involving all experts regardless of their relevance can introduce noise and dilute
the specific contributions of the most pertinent experts. Additionally, involving more experts than
necessary can increase computational overhead.

We observe that the performance significantly decreases with random routing (i.e., w/o Self-
Optimized Router), highlighting the router’s role in dynamically tailoring the selection of experts
according to the specific requirements of each task. The router’s ability to discern and activate the
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Table 2: Analysis and ablation of the router in our MiXSE. Configurations vary to investigate the
optimal number of experts used, to verify the possibility of self-learning for the router, and to see
the importance of semantic distinctions among experts within the compositional system.

Configuration Knowledge Reasoning Math Coding Avg.
(MMLU) (BBH) (GSM8K) (HumanEval)

Base LLM 58.4 56.1 42.5 34.1 47.8

Top-k Routing

w/ Top-1 Expert 65.6 61.1 52.5 37.8 54.3
w/ Top-2 Experts 65.5 60.9 52.5 38.4 54.3
w/ All Experts 65.4 58.9 54.0 33.5 53.0

Routing Strategy

w/o Self-Optimized Router 59.9 58.5 48.0 36.6 50.8
w/o Shared Router 59.5 59.1 50.5 32.9 50.5

Experts & Router Joint Training

w/o Semantic Experts (Top-1) 64.5 58.1 46.0 33.5 50.5
w/o Semantic Experts (Top-2) 64.2 53.3 48.5 36.5 50.6

most suitable experts based on the context is critical for optimizing performance. Notably, this
ability is learned by relying on a very small amount of seed data. When employing layer-specific
routers instead of the shared router, we found that the performance substantially drops, despite hav-
ing about 200x more parameters, justifying our choice. This might be attributed to the fact that
the layer-specific ones may introduce conflicting routing decisions, possibly requiring more data or
hyperparameter tuning to become effective.

Another interesting finding comes from the configuration where experts and the router are jointly
trained, which means that the semantic distinctions among experts may be diluted. This setup (w/
either Top-1 or Top-2) substantially decreases performance relative to scenarios where the router
and experts are optimized independently. This decline validates that semantic experts play a crucial
role in enhancing the system’s capability to handle tasks requiring specific expertise, while offering
better interpretability (Section 4.3).

4.3 ROUTING ANALYSIS
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Figure 3: Routing analysis that shows routing dis-
tributions over four domains for each benchmark,
averaging the weights across tokens within indi-
vidual tasks.

Understanding how MiXSE allocates tasks to
its various experts is crucial for gauging its in-
terpretability. By analyzing the routing distri-
butions across four distinct domains, we aim
to see whether the system matches queries to
the most suitable experts. Figure 3 presents the
routing distributions used to solve each bench-
mark, where the weights are averaged across to-
kens and layers within individual tasks.

We first observe that the MiXSE’s router ef-
fectively selects the correct expert for each
corresponding target. This is evident from
the impressive alignment between tasks and
the experts chosen by the router; for exam-
ple, the knowledge expert predominantly han-
dles knowledge tasks, while the coding expert
is routed coding tasks. This highlights the router’s ability to learn and apply this routing automati-
cally and consistently, making the system’s decisions interpretable and trustworthy.

Beyond the direct matching of tasks to domain-specific experts, the router also demonstrates its abil-
ity to exploit synergies between different areas of expertise. For instance, the reasoning expert is
frequently involved in tasks across the knowledge, math, and coding, reflecting the system’s com-
positional use of expertise. This explains the reason for MiXSE’s superior performances across all
domains even beyond all specialized modules in Table 1.
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Table 3: Investigation on generalization and a forgetting issue of Self-MoE. Non-Target (In-
Expertise) indicates where MiXSE does not directly specialize using seed data directly while
relevant to targets. Non-Target (Out-of-Expertise) refers to irrelevant cases.

Category Benchmark Base Instance MiXSELLM Merging

Target

Academic Knowledge MMLU 58.4 62.6 65.6
Reasoning BBH 56.1 57.6 61.1

Math GSM8K 42.5 53.5 52.5
Coding HumanEval 34.1 36.0 37.8

Target Average 47.8 52.4 54.3

Non-Target (In-Expertise)

Math MATH 20.7 15.3 21.4
Coding MBPP 37.8 37.6 39.6

Non-Target (Out-of-Expertise)

World Knowledge Natural Questions 24.2 22.3 24.5
TriviaQA 63.9 58.6 62.5

Commonsense Hellaswag 80.6 78.0 80.7
PIQA 81.1 80.1 81.2

Safety TruthfulQA 44.7 42.2 44.3

Non-Target Average 50.4 47.7 50.6

4.4 GENERALIZABILITY TEST

While Self-MoE has shown clear benefits in target benchmarks such as MMLU, BBH, GSM8K,
and HumanEval, one may be curious about its generalizability to non-targets, or concerned with the
potential issues of specialization such as forgetting. In Table 3, we conduct an investigation using
non-targeted benchmarks that were not utilized in building MiXSE.

On MATH and MBPP benchmarks, which can be considered highly relevant to target benchmarks,
GSM8K and HumanEval, we find our Self-MoE can still improve over the base LLM even though
they were not directly targeted in our training regime, indicating generalizability.

Concerning the potential side effect of forgetting, we extend our testing to include domains such as
world knowledge, common sense, and safety, which are rarely associated with the targets directly.
Our experiments show that overall, there are rarely meaningful performance drops when applying
our Self-MoE. Only a minor drop is observed with MiXSE in TriviaQA, but this is substantially less
than in the case of instance merging. This suggests our approach almost maintains existing knowl-
edge for non-targets while significantly boosting target performances, unlike monolithic baselines.

4.5 APPLICABILITY TO OTHER BASE LLMS
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Figure 4: Results of Self-MoE w/ other LLMs.

Following the successful demonstration of our
Self-MoE approach based on Gemma-7B, we
now present Figure 4 where we apply Self-MoE
to other base LLMs beyond Gemma-7B. We
use diverse model variants including LLaMA-2
7B & 13B, Mistral 7B, and LLaMA-3 8B. Our
findings suggest that our approach improves all
models on average regardless of the model fam-
ily, size, and level of base performance, outperforming the strong instance merging baseline.

4.6 IMPACT OF THE NUMBER OF SYNTHETIC DATA
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Figure 5: Analysis with the varied sizes
of self-generated synthetic data.

Figure 5 illustrates the impact of scaling self-generated
synthetic data for Self-MoE. As the data scales from 0
to 20K, our MiXSE model demonstrates substantial and
consistent improvements over the base one in average per-
formance across domains, suggesting the scalable poten-
tial of Self-MoE. Instance Merging, serving as a strong
baseline, also benefits from increased data, but the gains
progress at a slower rate, as evidenced by linear trend-
lines. This reflects the inefficiency of the static merging
scheme, which, being monolithic, suffers from trade-offs
in knowledge gains and forgetting.
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4.7 SCALING THE NUMBER OF EXPERTS

Table 4: Scaling the number of experts. K: Knowledge
expert. R: Reasoning expert. M: Math expert. C:
Coding expert.

# Experts Knowledge Reasoning Math Coding Avg.(MMLU) (BBH) (GSM8K) (HumanEval)

0 (Base LLM) 58.4 56.1 42.5 34.1 47.8

1 (K) 64.0 41.7 40.5 28.0 43.6
2 (K+R) 65.8 58.0 43.0 32.3 49.8
3 (K+R+M) 62.7 61.5 54.5 32.9 52.9
4 (K+R+M+C) 65.6 61.1 52.5 37.8 54.3

In Table 4, we present the results of
MiXSE composed of varying numbers of
experts, with experts added progressively
one at a time in the order of knowledge,
reasoning, math, and coding. The re-
sults indicate that starting with the knowl-
edge expert, which initially exhibits a per-
formance trade-off, subsequent additions
of reasoning, math, and coding experts
consistently enhance overall performance.
This highlights the compositional MiXSE’s advantage of adaptability and modularity.

4.8 ANALYSES ON SELF-GENERATED SYNTHETIC DATA

Table 5: Analyses of self-generated synthetic data in terms of
diversity, complexity, and naturalness.

Metric Knowledge Reasoning Math Coding Avg.(MMLU) (BBH) (GSM8K) (HumanEval)

Type-to-Token Ratio (TTR) (↑)

Human-Labeled Data 0.2671 0.1672 0.1683 0.1121 0.1787
Synthetic Data 0.2639 0.1889 0.1484 0.0961 0.1743

Semantic Similarity (↓)

Human-Labeled Data 0.2625 0.1757 0.4125 0.4608 0.3279
Synthetic Data 0.3129 0.1948 0.3360 0.4791 0.3307

Classification Accuracy (↓)

LLM as-a-judge (GPT-4o) 55.0 68.0 60.0 50.0 58.3

Model Performance using Different Data (↑)

w/ Human-labeled data (Seed) 57.4 57.0 45.0 34.1 48.4
w/ Synthetic data (1x) 57.7 55.9 45.5 32.9 48.0
w/ More Synthetic data (5x) 61.3 58.4 48.4 36.6 51.2
w/ More Synthetic data (50x) 65.6 61.1 52.5 37.8 54.3

We conduct analyses of the
self-synthesized datasets in Ta-
ble 5. For diversity measure-
ment, we first analyze the lin-
guistic diversity using Type-to-
Token Ratio (TTR), and the se-
mantic similarity of the pairwise
instructions’ embeddings using
SBERT (Reimers & Gurevych,
2019). Synthetic data demon-
strates comparable linguistic di-
versity to human-labeled data,
with a slightly higher TTR for
BBH, suggesting that the syn-
thetic data includes richer lexical variation, especially in reasoning tasks. For semantic similarity,
synthetic data achieves generally low similarity within each dataset, similar to human-labeled data
(0.3307 vs. 0.3279) on average. This suggests a high semantic diversity overall, reflecting the natural
diversity found in human-labeled data.

Next, we leverage a strong instruction-following model, GPT-4o, as a judge to classify which in-
struction was synthetic. Given 100 pairs of human-labeled and synthetic instructions, the classifica-
tion accuracy ranged from 50% (random guessing) to 68%, with the lowest accuracy for HumanEval
and MMLU, suggesting that synthetic data closely mimics human complexity and naturalness in
these domains. Conversely, the higher accuracy for BBH and GSM8K indicates that synthetic data
in these domains has room to improve.

Finally, we compare the performance of Self-MoE fine-tuned with synthetic data against human-
labeled seed data. We observe that with the same quantity (400) as the seed, synthetic data achieves
performance similar to human-labeled data on average. When scaling up the size (5x and 50x),
synthetic data demonstrates effectiveness and scalability.

4.9 DISCUSSION ON THE OVERHEAD OF SELF-MOE

One possible concern in adapting LLMs into compositional systems using Self-MoE is the potential
introduction of overhead. Here, we discuss this aspect in detail, emphasizing that the additional
overhead of Self-MoE is minimal while yielding significant performance gains. Essentially, the
expert modules in Self-MoE are lightweight LoRA modules, contributing only about 1% additional
parameters (total) for four experts, as detailed in Table 7 (Total Params). These experts are sparsely
activated, which maintains low active parameters (7B + 0.3%) during inference, thus efficiently
minimizing inference overhead. In contrast, traditional MoE models like Mixtral (Jiang et al., 2024)
and BTX (Sukhbaatar et al., 2024) typically employ a feedforward network (FFN) layer for each
expert, resulting in a significant proportional increase in total parameters as the number of experts
grows, as indicated in Table 7, which demands much more memory for model loading. The design
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choice in Self-MoE leads to better scalability and resource efficiency, especially when the number
of experts is scaled to incorporate numerous domains of expertise.

5 RELATED WORK

Combination of Experts. There have been numerous efforts to combine the strengths of multiple
models or modules. The Mixture of Experts (MoE) models such as Switch Transformer (Fedus
et al., 2022), GLAM (Du et al., 2022), and Mixtral (Jiang et al., 2024) exemplify this, dynamically
allocating tasks based on the expertise of each component for better efficiency and scalability. These
models contrast with ours by not prioritizing lightweight experts, resulting in a larger model with
more parameters. Unlike their experts implicitly learned during pre-training, Self-MoE explicitly
creates semantic experts for targeted improvements.

Another relevant area is merging, involving the weighted averaging of multiple models to form a
single, aggregated model (Wortsman et al., 2022; Matena & Raffel, 2022; Ilharco et al., 2023; Jin
et al., 2023). One of the leading methods, TIES (Yadav et al., 2023) tackles conflicts and parameter
inconsistencies among models. DARE (Yu et al., 2024) further reduces the redundancy of param-
eters. However, these methods are fundamentally static in that they operate with fixed parameters
once merged, which may lead to interference, lacking the dynamic flexibility that MiXSE offers.

There exist notable recent MoE models that similarly explore the utilization of semantic experts, al-
beit in distinct contexts (Gururangan et al., 2022; Wu et al., 2024; Muqeeth et al., 2024; Sukhbaatar
et al., 2024). MOLE relies on human-labeled data, and PHATGOOSE assumes the availability of
existing expert models trained by external creators and necessitates additional training for a router on
the creators’ side. DEMix and BTX rely on extensive pre-training, demanding significant resources,
yet it as a pre-trained model holds the potential to complement our self-training approach. Un-
like MOLE and PHATGOOSE, our Self-MoE framework creates experts and a router from scratch
through self-improvement, while using minimal resources, as contrasted to DEMix and BTX. To
offer a broader perspective, Table 7 in Appendix presents a comprehensive summary of various
models that, while relevant, are not directly comparable. For further discussions and a more detailed
comparison, please refer to Appendix D.1.

Self-Improvement and Specialization of LLMs. The pursuit of enhancing the capabilities of
LLMs often revolves around an instruction-tuning scheme, which can significantly boost cross-
task generalizability (Ouyang et al., 2022; Su et al., 2022; Mishra et al., 2022; Wei et al., 2022).
Due to the bottlenecks of expensive annotation costs which lead to limited scalability, the self-
training concept (Luo, 2022) has gained attention from the community, where LLMs are aligned
with automatically self-generated synthetic instructions (Wang et al., 2023; Sun et al., 2023; Li
et al., 2024b). These are distinguished from distillation techniques (Hinton et al., 2015; Kang et al.,
2023), which assume a stronger teacher model (Mitra et al., 2023; Li et al., 2024a; Sudalairaj et al.,
2024), limiting their applicability.

With the growing need to adapt generalist models to specific domains, Kang et al. (2024) adopts
the self-training for specialization, tackling that general instruction tuning is rarely effective in ex-
pert domains. While this work lays a foundation for enhancing specialized expertise with minimal
resources, we recognize inherent trade-offs in a monolithic structure, such as performance compro-
mises outside specialized domains. Conversely, our Self-MoE achieves uncompromising multiple
expertise with a modular approach without extensive resources and adding many parameters.

6 CONCLUSION

In this study, we proposed Self-MoE to build compositional LLMs with self-specialized experts,
MiXSE, to enhance targeted capabilities, adaptability, and interpretability without the reliance on ex-
tensive human-labeled data. Empirical evaluations across diverse domains with multiple base mod-
els demonstrated that MiXSE significantly enhances base LLM performance and overcomes spe-
cialization trade-offs. We believe this work offers a step towards modular, self-improving paradigms
which can address the inherent limitations of monolithic models, providing a promising direction
for future LLM research.
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A EXPERIMENT DETAILS

We provide each of our self-specialization prompts for knowledge, reasoning, math, and coding
experts in Tables 11, 12, 13, and 14. We largely follow Kang et al. (2024)’s prompt structure to
ensure quality, with additional domain-specific instructions that inform task-related information.

For our evaluation, we employ popular and widely accepted evaluation frameworks to pursue stan-
dard evaluation setups and protocols: HELM (Liang et al., 2023), LM Evaluation Harness (Gao
et al., 2023), and BigCode Evaluation Harness (Ben Allal et al., 2022). We use Huggingface PEFT
(Mangrulkar et al., 2022) and XLoRA (Buehler & Buehler, 2024) for the implementation of MoE
compatible with LoRA.

Regarding seed instructions, we sampled 100 training instances from each of the MMLU, BBH,
and GSM8K datasets, for knowledge, reasoning, and math domains, respectively. For coding, since
the size of the HumanEval dataset is very small and thus the training set is not available, we took
100 samples from the MBPP training set and converted the task format to make them suit the Hu-
manEval.

During instruction generation, we use three seed data, which are randomly sampled, as in-context
examples, using a temperature of 1 and top-p of 0.98, whereas we use five seed data in-context for
response generation with greedy decoding. For specialization, we use LoRA applied to all modules
with a rank of 8 and alpha of 16, and train it using a learning rate of 3e-4, epochs of 3, and batch
size of 32. We train each module and MiXSE using a standard Alpaca (Taori et al., 2023) prompt
template on a single A100-80GB, which takes only a few hours.

B LIMITATIONS

While our study demonstrates promising results for the Self-MoE, we recognize areas requiring
further investigation in future work. Employing self-specialization Kang et al. (2024) to generate
synthetic data within our framework may raise concerns about potential data contamination and
noise. Nonetheless, findings from Kang et al. (2024), which conducted an n-gram overlap analysis
between the self-specialization data and test data, confirmed no significant overlap, thus alleviating
the concerns about contamination. Despite this, the need for continuous monitoring of potential bi-
ases from pre-training and the development of enhanced data validation and noise filtering strategies
remain important, and may present interesting direction for future work. Moreover, due to compu-
tational constraints, we did not scale our model and data to their full potential. We also did not work
on the optimization of the XLoRA, the MoE module we used, to focus purely on the research prob-
lem defined in this study. Future work should therefore concentrate on overcoming these limitations,
which will enable better data quality and more extensive training to unveil the full potential of the
Self-MoE framework.

Table 6: Dataset statistics. Non-Target (In-Expertise) indicates where MiXSE does not directly
specialize using seed data directly while relevant to targets. Non-Target (Out-of-Expertise) refers to
irrelevant cases.

Category Benchmark # Examples

Target

Academic Knowledge MMLU (57 Tasks) 14,079
Reasoning BBH (27 Tasks) 6,511

Math GSM8K 8,790
Coding HumanEval 164

Non-Target (In-Expertise)

Math MATH 12,500
Coding MBPP 257

Non-Target (Out-of-Expertise)

World Knowledge Natural Questions 3,610
TriviaQA 17,200

Commonsense Hellaswag 10,000
PIQA 3,000

Safety TruthfulQA 817
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Table 7: Additional comparisons with other models for references. Results are extracted from
each corresponding paper, except for pre-training methods where the numbers are all from BTX
(Sukhbaatar et al., 2024).

Method Total Active Compos- Semantic Light- Data & Resrc w/o Teacher Knowledge Reasoning Math Coding
Params Params itional Experts weight -Efficient & Labels (MMLU 5-shot) (BBH) (GSM8K) (HumanEval)

Base LLM

Gemma 7B (Team et al., 2024) 7B 7B é - - - - 65.7 56.1 42.5 34.1
LLaMA-2 70B (Touvron et al., 2023) 70B 70B é - - - - 68.9 51.2 35.2 29.9
Mixtral 8x7B (Jiang et al., 2024) 47B 13B Ë é é - - 70.6 67.1 65.7 32.3

Pre-training Methods

Branch-Train-Merge (4x7B) (Li et al., 2022) <24B 11.1B Ë Ë é é Ë 44.3 - 27.7 30.6
Sparse Upcycling (4x7B) (Komatsuzaki et al., 2023) <24B 11.1B Ë Ë é é Ë 52.1 - 40.1 26.2
Branch-Train-Mix (4x7B) (Sukhbaatar et al., 2024) <24B 11.1B Ë Ë é é Ë 52.5 - 37.1 28.7

MoE w/ LoRA

PHATGOOSE (Muqeeth et al., 2024) <4B >3B Ë Ë Ë é é - 35.6 - -
MOLE (Wu et al., 2024) - - Ë Ë Ë é é - 42.2 - -

Distillation/Synthetic Data from Larger Models

GLAN 7B (w/ GPT-4) (Li et al., 2024a) 7B 7B é - - é é 62.9 60.7 80.8 48.8
Orca-2 7B (w/ GPT-4) (Mitra et al., 2023) 7B 7B é - - é é 53.9 42.8 55.7 17.1
Merlinite 7B (w/ Mixtral 8x7B) (Sudalairaj et al., 2024) 7B 7B é - - é é 64.9 - 44.6 -

Self-Improving

Ours 7B + 1% 7B + 0.3% Ë Ë Ë Ë Ë 66.2 61.1 52.5 37.8

C DATASET DESCRIPTIONS

The statistics for each dataset are provided in Table 6. The target datasets used are as follows:

• MMLU (Massive Multitask Language Understanding) (Hendrycks et al., 2021a): A collection of
57 academic knowledge tasks.

• BBH (BIG-Bench Hard (Suzgun et al., 2022): A set of 27 challenging reasoning tasks.

• GSM8K (Grade School Math 8K) (Cobbe et al., 2021): A diverse set of grade school math word
problems.

• HumanEval (Chen et al., 2021): A hand-written evaluation set for python programming prob-
lems.

D ADDITIONAL RESULTS

D.1 ADDITIONAL COMPARISON AND DISCUSSION

In Table 7, we present additional comparisons with various other models and methods to provide a
broader perspective, though comparisons may not appear to be direct, due to factors involved such
as parameters, resources, etc. We discuss some noteworthy points.

Notably, although MiXSE significantly improves upon its base model, Gemma 7B, it does not yet
reach the performance levels of the more powerful Mixtral 8x7B. It is important to understand
that Mixtral also utilizes an MoE (Mixture of Experts) architecture, but unlike MiXSE, it does not
prioritize lightweight experts, leading to a much larger model with significantly more parameters.
Moreover, while Mixtral’s experts are implicitly built during pre-training, MiXSE explicitly creates
semantic experts, allowing for targeted improvements and clearer interpretability. Importantly, our
self-improving method can be potentially applied on top of any pre-trained model including Mixtral
in principle.

Similarly, BTX (Branch-Train-MiX) uses a pre-training MoE strategy where parameter-heavy se-
mantic experts are employed, yielding substantial enhancements over the base LLM. This approach
highlights the effectiveness of using semantically rich experts to refine the model’s capabilities. To
make comparisons in terms of efficiency, our model uses fewer parameters (7B), compared to BTX
(12B active with much more whole parameters) and requires only about 1 GPU day for training,
compared to 900 GPU days for BTX. In essence, since BTX is also a pre-training method while spe-
cialized, we expect it to be complementary to our Self-MoE, as evidenced in previous work (Kang
et al., 2024).

With a shared spirit, MOLE and PHATGOOSE build a MoE (Mixture of Experts) using LoRA,
which is semantic and lightweight. However, there are significant differences in foundational as-
sumptions: MOLE depends on human-labeled data, while PHATGOOSE requires access to pre-
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Table 8: Detailed results of Self-MoEs w/ other LLMs, comparing with each corresponding
LLM and instance merging on top of it. For MMLU, we employ the 0-shot setting, based on
established observations (Dettmers et al., 2023; Lin et al., 2024) that tuning yields only marginal
effects in the 5-shot setting for this task. Notably, we see that any tunings improve MMLU yet
still, our MiXSE demonstrates noticeable average gains over instance merging for most base models.

Method Knowledge Reasoning Math Coding Avg.
(MMLU) (BBH) (GSM8K) (HumanEval)

LLaMA-3 8B

Base LLM 31.6 60.8 49.0 26.2 41.9
Instance Merging 62.5 46.9 47.5 24.4 45.3
MiXSE 61.7 61.5 52.0 29.3 51.1

Gemma 7B

Base LLM 58.4 56.1 42.5 34.1 47.8
Instance Merging 62.6 57.6 53.5 36.0 52.4
MiXSE 65.6 61.1 52.5 37.8 54.3

LLaMA-2 7B

Base LLM 17.8 38.5 13.0 12.8 20.5
Instance Merging 45.2 36.8 13.0 13.4 27.1
MiXSE 44.0 38.3 13.5 14.0 27.5

LLaMA-2 13B

Base LLM 20.4 45.6 22.5 16.5 26.2
Instance Merging 51.2 43.0 25.5 17.1 34.2
MiXSE 52.1 45.6 25.0 17.1 35.0

Mistral 7B

Base LLM 29.8 54.9 38.0 27.4 37.5
Instance Merging 61.7 51.5 30.5 29.2 43.2
MiXSE 62.0 58.1 38.0 28.0 46.5

trained expert models developed externally. In contrast, our Self-MoE framework independently
constructs both experts and a router entirely from scratch, focusing on self-improvement without
such dependencies. While their scenarios are considered reasonable in a certain context, we aim for
broader applicability by minimizing assumptions on conditions.

Lastly, GLAN demonstrates outstanding performance across various domains. This is attributed
to their reliance on distilling from the larger and stronger model, GPT-4, using a huge amount of
data (e.g., 10 million). As outlined in our problem statement (Section 2), we deliberately avoid
assuming the availability of such advanced models to ensure the broader applicability of our method
which self-improves from scratch. Consequently, while acknowledging each of their own value, it is
crucial to recognize that direct comparisons may not be entirely appropriate, given the fundamental
differences in resource assumptions and initial conditions.

D.2 DETAILED RESULTS OF SELF-MOE WITH OTHER BASE LLMS

Table 8 presents the detailed results of our Self-MoE applied to a diverse set of base LLMs includ-
ing LLaMA-3 8B, Gemma 7B, LLaMA-2 7B and 13B, Mistral 7B. As discussed in 4.5, overall, our
approach can improve base models, outperforming the strong instance merging baseline, particu-
larly with newer/stronger models like Gemma 7B, Mistral 7B, and LLaMA-3 8B. In specific cases
like LLaMA-2 for reasoning, however, we see no improvement, while improving on average. This
can be attributed to the weaker baseline performance, which hinders the generation of high-quality
specialized synthetic data for specific capabilities. Through manual inspection of small sample sets,
we identified instances where the generated instructions exhibited poor quality, including issues
such as repeated tokens, off-topic content, and other inconsistencies, not following given instruc-
tions. This highlights an opportunity for further refinement in synthetic data generation techniques,
which we view as a complementary area of ongoing research. As methods for synthetic data genera-
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Table 9: Results of MiXSE using only seed data. Seed Only training shows only marginal
improvements over the Base LLM in some benchmarks, validating that the effect of Self-MoE is
not merely due to the use of seed data.

Benchmark Base LLM Seed Only MiXSE

Knowledge 58.3 57.4 65.6
(MMLU)

Reasoning 56.1 57.0 61.1
(BBH)
Math 42.5 45.0 52.5

(GSM8K)
Coding 34.1 34.1 37.8

(HumanEval)

Avg. 47.8 48.4 54.3

Table 10: Visualized examples of the token-level routing, where each token is highlighted according
to assigned experts ( knowledge , reasoning , math , coding ). Different experts can be dynam-
ically activated within an instance, as the routing operates at token-level, while the most relevant
expert is primarily selected.

GSM8K

Q: Shawnda decides that her neighborhood kids could really use a bike inflation service. She decides the best way to charge is by

the tire. Each tire costs 25 cents to inflate. On the first day, 5 people on bicycles came by to get both tires inflated.

3 people came by to get all their tricycle tires inflated. Finally, one person actually came by on a unicycle.

How many dollars did she make that day?

A: 5 people on bicycles came by to get both tires inflated. So that is 5 * 2 = 10 tires.

3 people came by to get all their tricycle tires inflated. So that is 3 * 3 = 9 tires.

Finally, one person actually came by on a unicycle. So that is 1 * 1 = 1 tire.

So in total, there were 10 + 9 + 1 = 20 tires. Since each tire costs 25 cents, she made 20 * 0.25 = 5 dollars. The answer is 5 .

HumanEval

from typing import List

def has close elements(numbers: List[float], threshold: float) → bool:

””” Check if in given list of numbers, are any two numbers closer to each other than given threshold.

⟩⟩⟩ has close elements( [ 1.0 , 2.0 , 3.0 ], 0.5 )

False

⟩⟩⟩ has close elements( [ 1.0 , 2.8 , 3.0 , 4.0 , 5.0 , 2.0 ], 0.3 )

True

”””

for i in range(len(numbers )):

for j in range(i + 1 , len(numbers )):

if abs(numbers[i] - numbers[j]) ¡ threshold:

return True

return False
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tion advance, they can directly enhance Self-MoE’s performance with better self-specialized expert
modules.

D.3 MIXSE USING ONLY SEED DATA

Table 9 shows the results of the MiXSE when exploiting only seed data for training, clarifying the
benefits derived from our methodological enhancements beyond the mere inclusion of seed data
in training. While the Seed Only shows slight improvements over the Base LLM in some bench-
marks, the significant enhancements of our MiXSE across all benchmarks confirm that the enhanced
capabilities of Self-MoE are not merely due to the use of seed data. This further highlights the
achievement of self-improvement with our method.

D.4 VAILDITY OF COMPARATIVE RESULTS

In an effort to address the concern related to the sensitivity of in-context learning (Min et al., 2022),
we perform three runs with the different lists of few-shot samples where applicable. As a result, we
see that the mean of the base LLM (Gemma-7B)’s average performance across domains is 47.9 with
a standard deviation (SD) of 0.56, that of our MiXSE is 53.6 with an SD of 0.60, and that of instance
merging is 51.6 with an SD of 0.87. A statistical analysis between MiXSE and instance merging
yields a p-value of 0.03, confirming the significant difference.

D.5 VISUALIZED EXAMPLES OF ROUTING DECISION

Table 10 provides a detailed visualization of token-level routing decisions based on the Top-1 se-
lection configuration. This table highlights how the routing module dynamically activates different
experts within a single instance, reflecting the flexibility of token-level operation. As illustrated, the
most relevant expert is predominantly selected for each token; however, the system occasionally ac-
tivates other experts dynamically, depending on the specific token context within the instance. This
behavior contrasts with self-specialization, which consistently relies on a single expert to handle all
tokens uniformly, lacking the token-level granularity observed in the routing mechanism.
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Table 11: Prompts for knowledge-related instruction and response generation.

Instruction Brainstorming Prompt

You are asked to come up with a set of task instructions about diverse domains across STEM,
humanities, social sciences, and others. These task instructions will be given to a language
model and we will evaluate the model for completing the instructions.

Here are the requirements:
1. The type of task should be multiple-choice question answering. That is, a question along
with multiple options (A, B, C, D) should be provided.
2. The language used for the instruction/question also should be diverse.
3. A language model should be able to complete the instruction. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant
to wake you up at 5pm or set a reminder because it cannot perform any action.
4. The instructions should be in English.
5. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a
question is permitted.
6. You should generate an appropriate input to the instruction. The input field should
contain a specific example provided for the instruction. It should involve realistic data and
should not contain simple placeholders. The input should provide substantial content to make
the instruction challenging.
7. Ensure diverse domains are covered for extensive expert-level knowledge. The subjects
may include Abstract Algebra, Anatomy, Astronomy, Business Ethics, Clinical Knowledge,
College-level Biology, Chemistry, Computer Science, Mathematics, Medicine, Physics, Computer
Security, Conceptual Physics, Econometrics, Electrical Engineering, Elementary Mathematics,
Formal Logic, Global Facts, High School-level Biology, Chemistry, Computer Science, European
History, Geography, Gov’t and Politics, Macroeconomics, Mathematics, Microeconomics, Physics,
Psychology, Statistics, US History, World History, Human Aging, Human Sexuality, International
Law, Jurisprudence, Logical Fallacies, Machine Learning, Management, Marketing, Medical
Genetics, Miscellaneous, Moral Disputes, Moral Scenarios, Nutrition, Philosophy, Prehistory,
Professional-level (Accounting, Law, Medicine, Psychology), Public Relations, Security
Studies, Sociology, US Foreign Policy, Virology, World Religions, etc.

List of tasks:

Response Generation

You are a knowledgeable domain expert. Given an instruction and a question, generate the
best answer to solve the given task about STEM, humanities, social sciences, and others.

Table 12: Prompts for reasoning-related instruction and response generation.

Instruction Brainstorming Prompt

You are asked to come up with a set of task instructions focusing on challenging tasks that
require multi-step reasoning. These task instructions will be given to a language model and
we will evaluate the model for completing the instructions.

Here are the requirements:
1. The type of task should be question answering, requiring multi-step reasoning.
2. The language used for the instruction/question also should be diverse.
3. The generated problem should have a single correct answer.
4. The instructions should be in English.
5. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a
question is permitted.
6. You should generate an appropriate input question to the instruction. It should
involve realistic data and should not contain simple placeholders. The input should provide
substantial content to make the instruction challenging.
7. Ensure diverse topics and levels are covered for extensive expert-level reasoning. The
tasks may be about boolean expression, causal judgement, date understanding, disambiguation
of question, closing Dyck-n words, formal fallacies, geometric shapes, hyperbaton, logical
deduction of objects, movie recommendation, multi-step arithmetic problem, navigation, object
counting, table reasoning, reasoning about colored objects, selecting one that ruins the name
in an input, salient translation error detection, sarcastic sentence classification, sports
understanding, temporal sequences, tracking shuffled objects, web of lies, word sorting, etc.

List of tasks:

Response Generation

You are a multi-step reasoning expert. Given an instruction and a challenging question,
generate step-by-step reasoning and the answer.
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Table 13: Prompts for math-related instruction and response generation.

Instruction Brainstorming Prompt

You are asked to come up with a set of task instructions focusing on mathematical problems.
These task instructions will be given to a language model and we will evaluate the model for
completing the instructions.

Here are the requirements:
1. The type of task should be question answering, requiring multi-step reasoning.
2. The language used for the instruction/question also should be diverse.
3. The generated mathematical problem should have a solution.
4. The instructions should be in English.
5. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a
question is permitted.
6. You should generate an appropriate input question to the instruction. It should
involve realistic data and should not contain simple placeholders. The input should provide
substantial content to make the instruction challenging.
7. Ensure diverse topics and levels are covered for extensive expert-level reasoning. The
subjects may include Algebra, Counting, Probability, Calculus, Statistics, Geometry, Linear
Algebra, Number Theory and grade school math, etc.

List of tasks:

Response Generation

You are a math expert. Given an instruction and a mathematical question, generate
step-by-step reasoning and the answer.

Table 14: Prompts for coding-related instruction and response generation.

Instruction Brainstorming Prompt

You are asked to come up with a set of task instructions focusing on coding problems.
These task instructions will be given to a language model and we will evaluate the model
for completing the instructions.

Here are the requirements:
1. The type of task should be about coding problems, such as writing a python function given
a specific instruction and test examples.
2. The language used for the instruction should be diverse, but the programming language
should be python.
3. The generated problem should have a solution.
4. The instructions should be in English.
5. You should generate appropriate and correct test examples for the given problem.
6. Ensure diverse functions and levels are covered for extensive expert-level coding.

List of tasks:

Response Generation

You are a coding expert. Given an instruction and test cases, write a python function that
passes the test cases.
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