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ABSTRACT

There is growing evidence of the effectiveness of Shampoo, a higher-order pre-
conditioning method, over Adam in deep learning optimization tasks. How-
ever, Shampoo’s drawbacks include additional hyperparameters and computa-
tional overhead when compared to Adam, which only updates running averages
of first- and second-moment quantities. This work establishes a formal connec-
tion between Shampoo (implemented with the 1/2 power) and Adafactor — a
memory-efficient approximation of Adam — showing that Shampoo is equivalent
to running Adafactor in the eigenbasis of Shampoo’s preconditioner. This insight
leads to the design of a simpler and computationally efficient algorithm: ShampoO
with Adam in the Preconditioner’s eigenbasis (SOAP). With regards to improving
Shampoo’s computational efficiency, the most straightforward approach would be
to simply compute Shampoo’s eigendecomposition less frequently. Unfortunately,
as our empirical results show, this leads to performance degradation that worsens
with this frequency. SOAP mitigates this degradation by continually updating the
running average of the second moment, just as Adam does, but in the current
(slowly changing) coordinate basis. Furthermore, since SOAP is equivalent to
running Adam in a rotated space, it introduces only one additional hyperparam-
eter (the preconditioning frequency) compared to Adam. We evaluate SOAP on
language model pre-training, with experiments on 360m and 660m sized models.
In the large batch regime, SOAP reduces the number of iterations by over 40% and
wall clock time by over 35% compared to AdamW, with approximately 20% im-
provements in both metrics compared to Shampoo. An implementation of SOAP
is available at https://github.com/nikhilvyas/SOAP.

1 INTRODUCTION

With ever-increasing costs of LLM training, optimization efficiency has become a central question
in the field of deep learning. Several recent works have tackled this challenge by addressing both
the memory (Zhao et al., 2024a; Wang et al., 2024) and compute (Anil et al., 2020) footprint of
optimizers. In Algoperf (Dahl et al., 2023), a recent optimization efficiency benchmark, Sham-
poo (Gupta et al., 2018a), a second-order algorithm, outperformed all other submissions, including
Adam (Kingma & Ba, 2015), reducing wall-clock time by 28% (MLCommons, 2024). Higher-
order preconditioning has also been applied in large-scale training runs, such as Gemini-1.5 Flash
(Gemini Team, 2024).

The success of Shampoo has drawn increasing attention from the deep learning community. Several
works have explored ways to scale Shampoo by improving its memory and compute efficiency
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(Wang et al., 2024; Anil et al., 2020; Shi et al., 2023). Other research (Morwani et al., 2024) has
examined the theoretical foundations of Shampoo and proposed minor adjustments (such as using
power 1/2 rather than 1/4) that align with prior empirical findings (Anil et al., 2020). Moreover,
Morwani et al. (2024) also showed that Shampoo with the aforementioned modifications is close to
the optimal Kronecker approximation of the Adagrad (Duchi et al., 2011b) optimizer.

Our first contribution is demonstrating that the variant of Shampoo proposed by Morwani et al.
(2024) is equivalent1 to running Adafactor (Shazeer & Stern, 2018; Zhai et al., 2022) in the eigenba-
sis provided by Shampoo’s preconditioner. This interpretation of Shampoo connects it to a broader
family of methods (e.g. (George et al., 2018)) that design second-order algorithms by running a first-
order method in the eigenbasis provided by a second-order method. Building on this insight, we can
explore a broader design space for combining first and second order methods. Many of our design
choices are a synthesis of conceptual ideas from prior works of George et al. (2018); Anil et al.
(2020); Morwani et al. (2024) as well as implementation ideas from works of Wang et al. (2024);
Zhao et al. (2024a).

Explicitly, we study SOAP (ShampoO with Adam in the Preconditioner’s eigenbasis) an algorithm
that runs AdamW in the eigenbasis provided by Shampoo. Our main contributions are as follows:

• We make a formal connection between the Shampoo and the Adafactor algorithm. This
insight leads us to consider the SOAP algorithm, which runs AdamW in the preconditioned
space provided by Shampoo.

• SOAP outperforms both Shampoo and Adam in language model pre-training tasks with
model sizes 360m and 660m, even after extensive hyperparameter tuning of Shampoo.

• SOAP reduces the number of hyperparameters compared to Shampoo, resulting in only one
additional hyperparameter compared to AdamW: preconditioning frequency.

• SOAP demonstrates greater robustness to large preconditioning frequency compared to
Shampoo on language model pre-training tasks.

We should also note that while similar algorithmic variants have been discussed in the literature (e.g.
see the appendix of Anil et al. (2020)), we are the first to systematically evaluate it.

Organization: In Section 3, we discuss related works. In Section 4, we start by showing an equiv-
alence between Shampoo (with exponent 1/2) and running Adafactor in the eigenspace given by
Shampoo, then with this equivalence as the starting point we describe SOAP. In Section 5, we pro-
vide our experimental methodology and in Section 6, we compare the performance of AdamW,
Shampoo and SOAP on language modeling tasks. In Appendices B.2 and B.3 we discuss the the
space and time complexity of SOAP and how it can be improved. In Appendix C we show that
efficiency benefits of SOAP over AdamW are maintained for longer duration runs where #tokens =
100 × model size.

2 NOTATION AND BACKGROUND

We denote the weight matrix of a neural network layer by W ∈ Rm×n, and the corresponding
gradient by G ∈ Rm×n. At a given time step t, these are denoted as Wt and Gt, respectively. For a
batch of inputs at time t, denoted by Bt, the loss and its gradient evaluated at Wt are represented as
ϕBt(Wt) and ∇WϕBt(Wt), respectively.

Adagrad (Duchi et al., 2011b) is an online learning second-order algorithm that maintains a precon-
ditioner H ∈ Rmn×mn. If the vectorized gradient at time t is denoted by gt (i.e., gt = vec(Gt) ∈
Rmn), then the update of the preconditioner and the vectorized weights wt ∈ Rmn with learning
rate η is given by

Ht = Ht−1 + gtg
⊤
t ; wt = wt−1 − ηH

−1/2
t gt

Adam (Kingma & Ba, 2015), a widely used first-order optimization algorithm in deep learning is a
diagonal approximation of Adagrad. It maintains an exponential moving average of the gradients

1Given this connection, the results of Morwani et al. (2024) can be interpreted as showing that the eigenbasis
provided by Shampoo’s preconditioner is close to the “optimal” basis for running Adafactor.
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Figure 1: Comparing performance of tuned runs for AdamW, Shampoo (using DistributedSham-
poo (Shi et al., 2023) implementation) and SOAP. In left and middle figures, Shampoo and SOAP
use a preconditioning frequency of 10. The ”shorter LR schedule” plot is where we tuned the cosine
decay so as to achieve the same terminal performance as AdamW. There we observe a ≥ 40% re-
duction in the number of iterations and a ≥ 35% reduction in wall clock time compared to AdamW,
and approximately a 20% reduction in both metrics compared to Shampoo. In the right figure we
ablate preconditioning frequency and observe a slower degradation of performance of SOAP as
compared to Shampoo. See Section 6 for a discussion of experimental results and ablation of batch
size and Section 5 for experimental methodology.

Gt (denoted as Mt) and of element-wise squared gradients G2
t (denoted as Vt) for a given weight

matrix W . Its update rule with learning rate η is given by

Wt ←Wt−1 − η
Mt√
Vt

,

where the division is performed element-wise.

Adafactor (Shazeer & Stern, 2018; Zhai et al., 2022), a variant of Adam, replaces Vt with its best
rank-1 approximation V ′

t to reduce memory usage. While the original Adafactor paper (Shazeer &
Stern, 2018) proposed additional modifications, such as changes to the learning rate schedule, we
focus on the version of Adafactor proposed in recent works (Zhai et al., 2022; Zhao et al., 2024c),
whose update with learning rate η is given by

Wt ←Wt−1 − η
Mt√
V ′
t

.

Shampoo (Gupta et al., 2018b) is a second-order optimization algorithm that approximates Adagrad
and maintains two preconditioners, Lt ∈ Rm×m and Rt ∈ Rn×n, for a given weight matrix W ∈
Rm×n. The updates for the preconditioners and the weights with learning rate η are as follows:

Lt ← Lt−1 +GtG
T
t ; Rt ← Rt−1 +GT

t Gt; Wt ←Wt−1 − ηL
−1/4
t GtR

−1/4
t .

In practice, Shampoo is implemented with several other modifications such as layerwise learning
rate grafting and exponents other than −1/4. We will use the DistributedShampoo (Shi et al., 2023)
implementation which has these variations available as hyperparameters.

3 RELATED WORK

We begin by discussing works that are closely related, including George et al. (2018); Anil et al.
(2020) and Zhao et al. (2024a). Subsequently, we cover extended related works.

KFAC (Martens & Grosse, 2015) is a well-known second-order optimization algorithm designed
for neural networks. E-KFAC (George et al., 2018) builds upon KFAC in a manner analogous to our
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extension of Shampoo, introducing a diagonal preconditioner that is updated between KFAC inver-
sion steps. However, E-KFAC’s algorithm is not identical to running Adam in KFAC’s eigenbasis,
as the diagonal preconditioner is not Adam.

Anil et al. (2020) introduced several algorithmic and numerical improvements to develop a practical
and scalable version of Shampoo (Gupta et al., 2018b). Notably, they empirically found that using an
exponent of 1/2 outperforms the original exponent of 1/4 in Shampoo. Of particular interest to our
work is Appendix B of Anil et al. (2020), where, inspired by E-KFAC, they describe an algorithm
that is essentially equivalent to SOAP for 2D layers. However, no experiments were provided, and
the authors claimed that unpublished experiments showed no empirical improvement over Shampoo.
This discrepancy between our findings may be due to some of the implementation details of SOAP.

GaLore (Zhao et al., 2024a) was recently proposed as a method to reduce Adam’s memory footprint
by maintaining momentum in a low-rank subspace derived from the singular value decomposition
(SVD) of the gradients. Their algorithm’s full-rank version bears similarity to ours, with some
notable distinctions. Firstly, their projection subspace is determined by the SVD of the current
gradient, while we maintain an exponential moving average of GGT and GTG. Secondly, we retain
momentum in the original space and project it onto the preconditioned space, whereas they maintain
it in the preconditioned space and do not rotate it each time the preconditioned space is updated.
In Appendix D, we study GaLore’s performance and find that our modifications are necessary for
improving upon Shampoo. Moreover, their method only projects one side of a layer using the
eigenbasis while using the identity basis on the other side. We examine the impact of one-sided
projection for SOAP in Appendix B.1.

Diagonal Preconditioning based Optimizers: Other than AdamW, there are other optimizers
which involve diagonal preconditoning such as Lion (Chen et al., 2023), Sophia (Liu et al., 2024),
and Adafactor (Shazeer & Stern, 2018). Recent works of Kaddour et al. (2023); Zhao et al. (2024c)
showed that these optimizers perform comparably to AdamW for LLM pretraining but do not sur-
pass it. This suggests the need to explore non-diagonal preconditioners. We discuss prior works on
non-diagonal preconditioners below.

Second-Order Optimization: Research on second-order optimization in deep learning is generally
divided into two categories: Hessian-free methods and methods that estimate the Hessian.

Hessian-Free Methods: Hessian-free approaches (Martens, 2010; Martens & Grosse, 2015) op-
timize without explicitly computing the Hessian matrix, instead employing iterative techniques to
approximate the Newton step. Other recent works (Li, 2018; 2024; Pooladzandi & Li, 2024) have
focused on designing iterative preconditioners to improve the convergence specifically for stochastic
optimization algorithms.

Hessian Estimation Methods: These methods maintain an efficient approximation of the Hessian
for neural networks. KFAC (Martens & Grosse, 2015) and Shampoo (Gupta et al., 2018b) are two
widely recognized methods in this area.

KFAC (Martens & Grosse, 2015) was one of the first approaches to go beyond diagonal precondi-
tioners in neural networks, demonstrating that a layer-wise Kronecker-factored preconditioner ap-
proximates the layer-wise Hessian in multi-layer perceptrons (MLPs). Subsequent works (Martens
et al., 2018; Osawa et al., 2019) extended KFAC to other architectures. Recent research (George
et al., 2018; Gao et al., 2021) has further improved trace and diagonal estimates for KFAC. Efforts
to scale up KFAC (Ba et al., 2017; Puiu, 2022; 2023; Eschenhagen et al., 2023) have focused on
making the inversion step more efficient or enhancing distributed implementations.

Shampoo (Gupta et al., 2018b), another second-order optimization algorithm, is motivated by the
online learning algorithm Adagrad (Duchi et al., 2011a). Shampoo also employs a layer-wise
Kronecker-factored preconditioner. A recent distributed implementation of Shampoo (Shi et al.,
2023) won an optimization efficiency benchmark (Dahl et al., 2023), highlighting the practical util-
ity of second-order methods in deep learning. Few recent works (Duvvuri et al., 2024; Morwani
et al., 2024) have provided theoretical advancements on top of Shampoo. Other works (Anil et al.,
2020; Peirson et al., 2022; Lin et al., 2024; Wang et al., 2024) have proposed various strategies to
improve Shampoo’s scalability. We defer a comparison of SOAP with these methods to future work.
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4 ALGORITHM

4.1 THEORY

We begin by describing an equivalence between Shampoo and running Adafactor in the eigenbasis
of the Shampoo preconditioner. For simplicity we omit momentum but the equivalence also holds
with momentum. For this equivalence we use Shampoo with the following modifications from the
original Shampoo optimizer (Gupta et al., 2018b):

1. We use power 1/2 instead of power 1/4. This was already recommended in practical
implementations (Anil et al., 2020; Shi et al., 2023) and a theoretical connection between
optimal Kronecker approximation of Adagrad (Duchi et al., 2011b) preconditioner and
Shampoo with power 1/2 was established in Morwani et al. (2024).

2. We also use the scalar correction to per layer learning rates described in Ren & Goldfarb
(2021); Morwani et al. (2024).

3. Instead of the running average of L and R across time steps, we use dataset averages.

With these changes in place (first occurrence of these changes is highlighted in red in the algorithm
below) we formally define the two algorithms whose equivalence we show in Algorithms 1 and 2.

Algorithm 1 Single step of idealized Shampoo with power 1/2.
1: Sample batch Bt.
2: Gt ∈ Rm×n ← −∇WϕBt

(Wt)
3: L← EB [GBG

T
B ] {Where the expectation is over a random batch B.}

4: R← EB [G
T
BGB ]

5: Ĥ ← L⊗R/Trace(L)
6: Wt ←Wt−1 − ηĤ−1/2Gt = Wt−1 − ηL−1/2GtR

−1/2/Trace(L)−1/2

Algorithm 2 Single step of idealized Adafactor in Shampoo’s eigenspace.
1: Sample batch Bt.
2: Gt ∈ Rm×n ← −∇WϕBt

(Wt)
3: L← EB [GBG

T
B ]

4: R← EB [G
T
BGB ]

5: QL ← Eigenvectors(L)
6: QR ← Eigenvectors(R)
7: G′

t ← QT
LGtQR

8: {Idealized version of code for Adafactor taking G′
t to be the gradient}

9: G′
Bt
← QT

LGBt
QR

10: A = EB [G
′
B ⊙G′

B ]1m where G′
B = QT

LGBQR

11: C = 1⊤
nEB [G

′
B ⊙G′

B ]

12: V̂t =
ACT

1⊤
n A
{Elementwise division}

13: G′′
t ←

G′
t√

V̂t+ϵ
{Elementwise division and square root}

14: G′′′
t ← QT

LG
′′
tQR {Projecting back to original space}

15: Wt ←Wt−1 − ηG′′′
t

Claim 1. Algorithms 1 and 2 are equivalent.

Proof. Consider Gt in the basis created after rotating by QL, QR i.e. G′
t = QT

LGtQR. Let the
eigenvalues of EBt [GBtG

T
Bt
] and EBt [G

T
Bt
GBt ] be given by λ1, ..., λm and µ1, ..., µn respectively.

Algorithm 1 scales the i, j coordinate by (λiµj/(
∑

i λi))
−1/2, while Algorithm 2 scales them by

(AiCj/(
∑

i Ai))
−1/2. We now show that Ai = λi, an analogous argument shows Cj = µj .
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Algorithm 3 Single step of SOAP for a m × n layer. Per layer, we maintain four matrices:
L ∈ Rm×m, R ∈ Rn×n and V,M ∈ Rm×n. For simplicity we ignore the initialization and other
boundary effects such as bias correction. Hyperparameters: Learning rate η, betas = (β1, β2), ep-
silon ϵ, and preconditioning frequency f .
An implementation of SOAP is available at https://anonymous.4open.science/
status/SOAP-F93B.

1: Sample batch Bt.
2: G ∈ Rm×n ← −∇WϕBt(Wt)
3: G′ ← QT

LGQR

4: M ← β1M + (1− β1)G
5: M ′ ← QT

LMQR

6: {Now we “run” Adam on G′}
7: V ← β2V + (1− β2)(G

′ ⊙G′) {Elementwise multiplication}
8: N ′ ← M ′√

V̂t+ϵ
{Elementwise division and square root}

9: {Now that we have preconditioned by Adam in the rotated space, we go back to the original
space.}

10: N ← QLN
′QT

R
11: W ←W − ηN
12: {End of gradient step, we now update L and R and possibly also QL and QR. }
13: L← β2L+ (1− β2)GGT

14: R← β2R+ (1− β2)G
TG

15: if t % f == 0 then
16: QL ← Eigenvectors(L,QL)
17: QR ← Eigenvectors(R,QR)
18: end if

Ai = eTi EB [G
′
B ⊙G′

B ]1m

= EB [
∑
j

(G′
B)

2
i,j ]

= EB [
∑
j

(uT
i (GB)vj)

2] (Using definition of G′)

= EB [||uT
i (GB)||2] (vj form a basis)

= EB [u
T
i GBG

T
Bui]

= λi (By definition of λi and ui)

While these two algorithms are equivalent in their idealized forms, practical considerations reveal
some differences. Firstly, the algorithms differ when using running averages instead of dataset
averages. Secondly, and more significantly in practice, we do not invert or compute the eigenvector
decomposition of L and R at every step. This means that the “adaptivity” of learning rates in
Shampoo is limited2 to the updates of L and R. In contrast, with Adafactor in Shampoo’s eigenspace,
the second moment estimates (i.e., A and C in Algorithm 2) can be updated at every step as they are
computationally inexpensive. Additionally, instead of using Adafactor, we can opt3 for Adam, which
offers more generality. Combining these insights leads to Algorithm 3 which can be interpreted as
running Adam in Shampoo’s eigenspace.

2We note that practical implementations of Shampoo use grafting which allows for learning rate adaptivity
at every step, but this adaptivity is restricted to a single scalar per layer.

3Though using AdamW over Adafactor only gives very small improvements in performance, see Figure 5
and Appendix B.2. We also note that one can use any other diagonal preconditioner based optimizer in place
of Adam, such as Lion (Chen et al., 2023), Sophia (Liu et al., 2024) or Schedule-Free AdamW (Defazio et al.,
2024).
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Algorithm 4 Eigenvectors function, implemented using power iteration and QR decomposi-
tion. Inputs: PSD matrix P and estimate of eigenvectors Q. If the estimate was exact we would
have P = QDQT where D is the diagonal matrix with eigenvalues.

1: S ← PQ
2: Q← QR(S)

We now describe some additional implementation details:

1. Algorithm 3 describes the behavior of the algorithm for 2D layers. Following Zhao et al.
(2024a), for 1D layers we run standard AdamW. This reduces the overhead as compared to
standard implementations of Shampoo which solve an eigenvector problem for 1D layers
too.

2. Following Wang et al. (2024), we compute eigenvectors of L (and R) using one step of
power method (Algorithm 4). This requires doing one matrix multiplication followed
by QR decomposition. QR decomposition is faster (Documentation, 2024) than standard
eigenvector decomposition in PyTorch. For the first iteration, eigenvectors are initialized
by doing a standard eigenvector decomposition.

3. For layers with huge dimensions such as the first and last layer in language modeling trans-
formers, maintaining the eigenvectors would be space and time prohibitive. For such di-
mensions we fix the rotation matrix (QL or QR) to be identity. Note that if we fix both QL

and QR to be identity for a 2D layer, we would recover Adam.

4. Algorithm 3 omits bias correction and weight decay for simplicity, but these are used in
the actual implementation, identical to their use in AdamW.

The main focus of the next sections will be to explore the empirical performance of this algorithm
and its variations. In Appendices B.2 and B.3 we discuss the the space and time complexity of SOAP
and how it can be improved.

5 EXPERIMENTAL METHODOLOGY

Hyperparameter tuning: We begin with hyperparameter values suggested by prior research for
both AdamW and Distributed Shampoo (e.g., β2 = 0.95). Initially, we conduct a learning rate
sweep to determine the optimal learning rate for each optimizer. Once the optimal learning rate is
identified, we perform two-dimensional sweeps for each of the remaining hyperparameters, where
we vary the selected hyperparameter alongside the learning rate. The purpose of these sweeps
is to demonstrate that our default hyperparameter settings are near-optimal, disregarding potential
interactions between two non-learning-rate hyperparameters. A detailed discussion of the hyperpa-
rameter sweeps is provided in Appendix A.

Throughput Measurement: We evaluate the throughput of each optimizer by measuring the num-
ber of tokens processed per second. At present, we perform these measurements on a single H100
GPU and utilize gradient accumulation to accommodate large batch sizes. While this approach
may seem to disadvantage AdamW— as the overhead of Shampoo/SOAP is compared against mul-
tiple gradient accumulation steps— it is important to note that the overhead of Shampoo/SOAP
can be amortized across layers by distributing the updates across multiple GPUs. This technique
is employed in the distributed implementation of Shampoo (Shi et al., 2023). A comprehensive
comparison of distributed implementations of these algorithms is left to future work.

Efficiency Benefits: Simply running SOAP for the same duration as Shampoo and AdamW cannot
be directly used to calculate the efficiency benefit (in terms of training steps or wall-clock time) of
using SOAP since we use a cosine schedule. Therefore, we run SOAP on .5, .625, .75 and .875
fraction of the training data and fit a scaling law of the form a + bN−β through the final losses
obtained, where N represents the number of training points and a, b, β are the parameters of the fit.
We show these points and the corresponding scaling laws obtained in Figure 2. This scaling law is
then used to calculate the efficiency benefit in terms of training steps and wallclock time as shown
in Figure 2. Here, the horizontal lines represent the final losses of AdamW and Shampoo.
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Figure 2: Precise efficiency benefits of SOAP over AdamW and Shampoo for 360m (at 256k and
2m batch size) and 660m (at 2m batch size) model. For the precise methodology, refer to Section 5.

6 LANGUAGE MODELING EXPERIMENTS

In this section we focus on empirically comparing AdamW, DistributedShampoo, and SOAP on
language modeling tasks.

6.1 MEASURING EFFICIENCY BENEFITS

In Figure 1 (left and middle) and Figure 3 we show train loss curves for AdamW, Shampoo, and
SOAP on 360m and 660m models with 2m token batch size and “chinchilla-optimal” i.e. 20x
model size number of tokens. In these plots we observe that SOAP outperforms the other two
optimizers. To directly calculate the efficiency benefit of SOAP, we also run SOAP with cosine
decay for a shorter lr schedule, as shown in Figures 1 and 3. This allows us to approximate the
following efficiency benefits (when batch size is set to 2m and preconditioning frequency to 10):
≥ 40% reduction in the number of iterations and ≥ 35% reduction in wall clock time compared
to AdamW; ≈ 20% reduction in iterations and wall clock time as compared to Shampoo. Precise
efficiency benefit calculations are presented in Figure 2(left and middle). In Appendix C we show
that efficiency benefits of SOAP over AdamW are maintained for longer duration runs where #tokens
= 100 × model size.
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Figure 3: Comparing performance of tuned runs for AdamW, Shampoo (using DistributedSham-
poo (Shi et al., 2023) implementation) and SOAP. Shampoo and SOAP use preconditioning fre-
quency of 10. We observe a ≥ 40% reduction in the number of iterations and a ≥ 35% reduction in
wall clock time compared to AdamW, and approximately a 20% reduction in both metrics compared
to Shampoo. See Figure 1 for 660m results, Sections 6.2 and 6.3 for ablations of preconditioning
frequency and batch size respectively, and Section 5 for detailed calculation of efficiency improve-
ment and experimental methodology.

6.2 EFFECT OF FREQUENCY OF FINDING EIGENVECTORS/INVERSE

In Figure 1 (right), we compare SOAP and Shampoo with respect to preconditioning frequency. We
observe the following:

• For all frequencies we tried from 1 to 100, both optimizers outperform AdamW.

• At frequency 1, SOAP and Shampoo are quite close in performance.

• At higher frequencies, the performance of both SOAP and Shampoo degrades but SOAP’s
performance degrades significantly slower than Shampoo’s.

6.3 SOAP IMPROVES THE CRITICAL BATCH SIZE

When scaling up batch sizes, the ideal outcome is that doubling the batch size results in halving
the number of training steps needed to achieve the same performance. The batch size at which this
ideal scaling starts to break down is referred to by McCandlish et al. (2018) as the critical batch
size. As models and datasets grow larger, it becomes increasingly important to develop optimizers
that support larger critical batch sizes, thereby reducing the serial runtime of a training run. In this
subsection, we compare the critical batch sizes of AdamW and SOAP. Relative to our baseline setup
of a 2 million batch size, when we decrease the batch size by a factor of k, we increase the precon-
ditioning frequency by the same factor. This ensures that the FLOPS and wall clock multiplicative
overhead for the eigenvector decomposition steps remains consistent with the 2 million batch size
setting.

We start by training a 360 million parameter model with a batch size of 256k for a ”Chinchilla-
optimal” number of tokens (20 times the model size) using AdamW, achieving a loss of 2.842.
This value is set as the target loss for our comparisons. In Figure 4 (left), we show the number
of steps AdamW and SOAP require to reach this target loss as we vary the batch size. SOAP
consistently requires fewer steps across all batch sizes, with the multiplicative benefits becoming
more pronounced at larger batch sizes. Additionally, we compare these results to the ideal scenario
(dashed line) of linear scaling, where doubling the batch size halves the number of steps. SOAP
more closely follows the linear scaling trend compared to AdamW, indicating that it has a higher
critical batch size in this setup.
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Figure 4: (left) Comparing the critical batch size of AdamW vs SOAP. We can see that SOAP im-
proves the critical batch size, by being much closer to the ideal linear scaling with batch size as
compared to AdamW. (right) Comparing performance of tuned runs for AdamW, Shampoo (using
DistributedShampoo (Shi et al., 2023) implementation) and SOAP for token batch size of 256k.
Shampoo and SOAP use preconditioning frequency of 80. We observe a ≥ 25% reduction in the
number of iterations compared to AdamW, and approximately a 10% reduction compared to Sham-
poo. See Figure 2 (right) for wall-clock time improvement and Section 5 for detailed calculation of
efficiency improvement.

In Figure 4 (right), we present the optimal runs for each optimizer (including Shampoo) at the
smallest batch size we consider: 256k. SOAP outperforms both Shampoo and AdamW, reducing
the number of iterations by 25% compared to AdamW, and by approximately 10% compared to
Shampoo. Furthermore, in Figure 2 (right, bottom), we demonstrate that SOAP also achieves a
wall-clock time improvement of ≥ 15% over AdamW and around 10% over Shampoo. We note
that these results are a preliminary analysis for smaller batch size runs. Our approach of keeping
the product of batch size and preconditioning frequency constant may not be optimal, and a better
trade-off could likely be found. Furthermore, SOAP’s overhead could potentially be reduced by
performing L and R updates in lower precision (instead of fp32). Finally, the diminished efficiency
gains of second-order methods at smaller batch sizes are consistent with prior findings (Zhang et al.,
2019; Ishikawa & Yokota, 2024).

7 DISCUSSION AND LIMITATIONS

We study an optimizer called SOAP: ShampoO with Adam in the Preconditioner’s eigenbasis. We
show that SOAP outperforms both AdamW and Shampoo in language modeling tasks and show that
it is more robust to changes in preconditioning frequency than Shampoo. While we have explored
many factors such as batch size (Section 6.3) and training duration (Appendix C) we acknowledge
that our study focuses on a relatively small scale compared to recent LLMs Touvron et al. (2023)
which are two orders of magnitude bigger. We hypothesize that our findings on the performance of
SOAP would generalize to larger scales due to its theoretical foundation. SOAP’s robustness is also
supported by the fact that SOAP is equivalent to running Adam in a rotated space, and Adam has
proven to be effective across scale and tasks. However, this hypothesis remains to be validated.

For future work, we aim to improve the design of SOAP further, particularly by exploring the use
of lower precision for preconditioners and optimizing its distributed implementation. Additionally,
we are interested in testing SOAP’s performance in other domains, such as vision, to evaluate its
performance across different types of tasks.
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A EXPERIMENTAL SETUP

Many aspects of our setup such as models are the same as in Zhao et al. (2024c). We will restate
those details verbatim for completeness.

We train language models on C4 tokenized with the T5 tokenizer (Raffel et al., 2020) and report
results in terms of validation loss.

Models. We start from the OLMo codebase (Groeneveld et al., 2024) and train decoder-only trans-
former models of three sizes: 210m, 360m, and 660m, where the parameter count refers to non-
embedding parameters. The models have widths of 1024, 1024, and 1408 and depths of 12, 24, 24.
We used the 210m model to explore various ablations, most of our reported results are on 360m and
660m. The MLP hidden dimension is 4x of the width. The activation function is GeLU (Hendrycks
& Gimpel, 2016). We use RoPE positional encodings (Su et al., 2024). Attention heads are always
dimension 64. We use PyTorch default LayerNorm. We use QK layer norm (Dehghani et al., 2023).
Following Wortsman et al. (2024) we do not learn biases for the linear layers or LayerNorms. We
train in mixed precision with bfloat16.

Algorithms. We use the standard Pytorch implementation of AdamW (Paszke et al., 2019), the
DistributedShampoo Shi et al. (2023) implementation of Shampoo. We implement ourselves SOAP
and GaLore starting from an older version of Pytorch implementation of AdamW and the official
GaLore implementation Zhao et al. (2024b).

Default hyperparameters. We use β1 = 0.95, as we found it to outperform β1 = 0.9 in our
sweeps for the 360m model. Following Wortsman et al. (2024) we use decoupled weight decay with
coefficient 1e−4 and z-loss with coefficient 1e−4. We use the default value of ϵ = 1e−8 in AdamW
(actual or when used for grafting), SOAP and GaLore. We use warmup followed by cosine decay as
our scheduler. We start the warmup and end the cosine decay at 0.1x the maximum learning rate.

Default hyperparameters for DistributedShampoo Shi et al. (2023) state that they find the op-
timal exponent to be either −1/2 or −1.82/4 ≈ −1/2.2. Our preliminary findings were similar
to this. Hence we set the default values of exponent to be −1/2.5 for both 1D and 2D parameters.
We set ϵshampoo = 1e−12 and βshampoo = 0.95 based on our initial set of experiments on the 210m
model.

Default hyperparameters for GaLore GaLore introduces an additional hyperparameter called
scale (α) since due to low rank updates the overall update magnitude decreases. Since we are
running a full rank version of GaLore we set α = 1.

Token counts. For all of our runs we use a sequence length of 1024. For all models (except in
Section 6.3), we use a token batch size of 2048k ≈ 2m. We default to training models for the
approximately “chinchilla optimal” (Hoffmann et al., 2022) number of tokens that is ≈20 times the
number of parameters. Explicitly, this means for our default batch size of 2m, the 210m models are
trained for 1600 steps or ≈ 3.3b tokens. The 360m models are trained for 3200 steps, the 660m
models are trained for 6400 steps.

A.1 SWEEPING OVER HYPERPARAMETERS

AdamW, 2m batch size: Starting from the default hyperparameters above we do the following
sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. (360m) We sweep over the cross product of best 3 learning rates and β1 ∈ {0.9, 0.95, 0.99}.
3. (360m) We sweep over the cross product of best 3 learning rates and β2 ∈ {0.9, 0.95, 0.99}.

The last two of the sweeps did not yield any benefit for the 360m model with 2m batch size hence
we only sweep over learning rate for the 660m model with 2m batch size.
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DistributedShampoo, 2m batch size: Starting from the default hyperparameters above we do the
following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. (360m) We sweep over over the cross product of best 3 learning rates from above and

ϵshampoo ∈ {1e−11, 1e−12, 1e−13}.
3. (360m) We sweep over over the cross product of best 3 learning rates from above and

βshampoo ∈ {.9, .95, .975}.
4. Let e1, e2 denote the exponents used in DistributedShampoo for 1D and 2D parameters

respectively. We also sweep over the cross product of best 3 learning rates from above and
(e1, e2) in {(2, 2), (2.5, 2.5), (3, 3), (2, 4)}.

These sweeps did not yield any significant improvement in performance (< .004) for the 360m
model. Hence we only sweep over the learning rate for the 660m model.

SOAP, 2m batch size: Starting from the default hyperparameters above we sweep over learning
rate in {.1, .0316, .01, . . . , 3.16e−4}.
AdamW, 256k batch size: For the 360m model with 256 batch size we start from the default
hyperparameters and do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. We sweep over the cross product of best 3 learning rates and β2 ∈ {0.95, 0.99}.

In the second sweep we observe small improvements in performance by using β2 = .99, so our final
numbers use β2 = .99. This (small) improvement in performance by using a larger β2 at smaller
batch sizes was also observed by Porian et al. (2024); Zhao et al. (2024c).

DistributedShampoo, 256k batch size: For the 360m model with 256 batch size we start from the
default hyperparameters and do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. We sweep over the cross product of best 3 learning rates and (β2, βshampoo) ∈
{(.95, .95), (.99, .99)}.

In the second sweep we observe small improvements in performance by using β2 = βshampoo = .99,
so our final numbers use β2 = βshampoo = .99.

SOAP, 256k batch size: For the 360m model with 256 batch size we start from the default hyper-
parameters and do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. We sweep over the cross product of best 3 learning rates and β2 ∈ {.95, .99}.

In the second sweep we observe small improvements in performance by using β2 = .99, so our final
numbers use β2 = .99.

Preconditioning frequency sweeps: For the preconditioning frequency experiments of SOAP and
Shampoo ( Figure 1 (right)), for each frequency we do a learning rate sweep over the best 3 learning
rates found at preconditioning frequency 10. Other hyperparameters are set to their optimal values
obtained using the precondition frequency 10 sweeps.

360m and 660m shorter runs: For each of the shorter runs of 360m and 660m models for the SOAP
optimizer (Figure 2), we did learning rate sweep over the best 3 learning rates found for the standard
length run. Other hyperparameters are set to their optimal values obtained using the standard length
run.

Warmup: The warmup duration for the 360m and 660m models were 600 and 1200 steps respec-
tively. For the shorter runs (Figure 2), for 360m model, the warmup durations were 400, 400, 500
and 525 steps for 0.5, 0.625, 0.75 and 0.875 runs respectively. For the 660m model, the warmup du-
rations were 600, 750, 900 and 1050 steps for 0.5, 0.625, 0.75 and 0.875 runs respectively. For 360m
model with 256k batch size (Section 6.3) we use a warmup for 4000 steps (total steps is 25000).
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B FURTHER EFFICIENCY IMPROVEMENTS

In this section, we discuss space and time complexity of SOAP and provide an overview of potential
avenues for further space and compute efficiency improvements in SOAP.

B.1 ONE SIDED EIGENBASIS

As described in Section 3, Zhao et al. (2024a) have an algorithm similar to ours. One of the differ-
ences is that they only project the smaller side of the layer using the eigenbasis while using identity
as the rotation matrix for the larger side i.e. if m < n we set QR = In in Algorithm 3 and if m > n
we set QL = Im. Doing this leads to a reduction in space usage as well as reduction of optimizer
time overhead, which is discussed in Appendices B.2.1 and B.3.1.

In Figure 5, it is evident that the one-sided projection results in slightly reduced performance com-
pared to the original SOAP optimizer. However, it still performs on par with, or marginally better
than, Shampoo, while maintaining greater computational efficiency. Further investigation into the
potential for these variants to surpass the computational efficiency of original SOAP optimizer is left
for future work.
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Figure 5: Performance of variants of SOAP which improve space usage or time overhead. 1. SOAP
(factorized): Uses Adafactor instead of Adam in Shampoo’s eigenbasis and 2. SOAP (one-sided):
Uses Q = I (i.e. no rotation) on the large side of weight matrix and 3. SOAP (factorized, one-
sided): Combines both of these changes. We observe that while using Adafactor instead of Adam
causes a negligible increase in loss, using the one-sided variant causes a larger increase. However,
the one-sided variant also has much larger reduction in time and space overhead. For computational
benefits of these variants see Appendices B.2 and B.3.

B.2 SPACE USAGE OF SOAP

For a m× n matrix where m > n we require
2m2 (for L,QL) + 2n2 (for R,QR) + 3mn (for gradient, M,V )

space usage4 (beyond weights and activations), specifically for L,QL, R,QR,momentum (M),
AdamW’s second order estimate (V ), and the gradient. This is the same space usage as Distributed-
Shampoo while AdamW uses 3mn.

4One mn is for storing the gradients, this can be avoided (as long as there is no gradient accumulation) by
applying gradients along with backprop (Lv et al., 2024b) but this is not implemented by default in standard
deep learning frameworks such as PyTorch. Hence we will include this term in all of our calculations.
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B.2.1 IMPROVING SPACE USAGE OF SOAP

The most direct way to reduce memory is using low precision to store the L,R,QL, QR, V matri-
ces, which is done by Dettmers et al. (2022); Wang et al. (2024). Orthogonal to the low precision
approaches, there are two algorithmic approaches to improving the space usage of SOAP:

• Using Adafactor instead of Adam as the diagonal preconditioner after rotating by QL and
QR. This reduces the space usage by mn.

• Using one sided version of SOAP (Appendix B.1). This reduces space usage from 2m2 +
2n2 + 3mn to 2min(m,n)2 + 3mn.

• Combining these approaches yields space usage of 2min(m,n)2 + 2mn.

For standard transformer architectures the last variant which combines the two approaches would
yield less space usage overall compared to AdamW (which uses 3mn).

We try these approaches in Figure 5. We observe that using Adafactor instead of AdamW yields
very small reductions in performance while using one-sided preconditioner results in larger reduc-
tions. Nonetheless even after combining these two approaches the resulting optimizer outperforms
AdamW while having a smaller space requirement than AdamW. Regarding space usage we also
note that Adafactor (with momentum added back) itself utilizes only 2mn space usage and has
been shown to perform comparable to AdamW for ViT training (Zhai et al., 2022) and for language
model training (Zhao et al., 2024c). Further space reduction beyond Adafactor has been studied
in the Adalomo (Lv et al., 2024a), GaLore (Zhao et al., 2024a), and AdaMeM (Vyas et al., 2024)
papers.

B.3 TIME OVERHEAD OF SOAP

There are two types of overhead of Shampoo and SOAP over AdamW: the overhead per step and
the overhead when changing the preconditioner (or for SOAP, the preconditioner’s eigenbasis). Let
us first analyze the first one. For SOAP per step for a layer of size m× n we have an overhead of

m3 (updating L)+n3 (updating R)+(2m2n+2mn2) (projecting and projecting back on both sides).

We note that this is more than the overhead of Shampoo which is m3 + n3 + m2n + n2m. This
can be observed in Figure 2 (bottom, right) but not in the other figures since there the second type
of overhead is the dominant term.

The second type of overhead is due to changing the preconditioner for Shampoo (or for SOAP, pre-
conditioner’s eigenbasis i.e. QL and QR). The DistributedShampoo (Shi et al., 2023) implementa-
tion of Shampoo uses a direct call to torch.linalg.eigh for this. Following Wang et al. (2024)
we use Algorithm 4 which uses power iteration based approach which calls torch.linalg.qr.
We note that torch.linalg.qr is faster than torch.linalg.eigh (Documentation, 2024).
In Figure 6 (right) we see that using power iteration based approach (torch.linalg.qr) per-
forms as well as fresh eigenvector decomposition (torch.linalg.eigh).

Effect of frequency on overhead: In Figure 6 (left), we observe that the overhead decreases
as the preconditioning frequency increases, i.e., the frequency of invoking Algorithm 4. If the
only additional computation occurred in Algorithm 4, we would expect the overhead to scale as
1.0/(preconditioning frequency), approaching zero. However, empirical results (Figure 6 left) show
that the overhead approaches an asymptote greater than zero. This is attributable to the additional
matrix multiplications required to update L, update R, project the gradient, and reproject the gradi-
ent (for each layer) in the optimizer. Currently, these operations are performed in float32; reducing
the precision of these operations, as proposed in Wang et al. (2024), could lower this asymptote.

B.3.1 IMPROVING TIME OVERHEAD OF SOAP

The per step overhead of SOAP can be reduced by using low precision to store the L,R,QL, QR, V
matrices (Dettmers et al., 2022; Wang et al., 2024), which in turn will speed up computation done
using these matrices. This approach cannot be used for reducing the overhead for the preconditioner
update in popular deep learning frameworks such as Pytorch since torch.linalg.qr does not
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Figure 6: (Left) Depicting the overhead of SOAP over AdamW as a function of precondition-
ing frequency (Right) Comparing the performance of SOAP with torch.linalg.eigh for
computing the eigenvectors with Algorithm 4, which uses torch.linalg.qr. Note that
torch.linalg.qr is computationally more efficient than torch.linalg.eigh (as men-
tioned in Documentation (2024)); however, both seem to have comparable performance throughout
the preconditioning frequency spectrum.

support precision lower than float32. Orthogonal to the low precision approach we can improve
the per step time overhead of SOAP by the following algorithmic approaches:

• Using Adafactor instead of Adam (Appendix B.2) as the diagonal preconditioner after ro-
tating by QL and QR. In this version of SOAP the overhead can be improved by from
m3+n3+2m2n+2n2m to m3+n3+m2n+n2m+max(m,n)2 min(m,n)+min(m,n)3

by merging the project and project back steps for the smaller dimension.

• Using one sided version of SOAP (Appendix B.1). This reduces overhead from m3+n3+
2m2n+ 2n2m to min(m,n)3 + 2min(m,n)2 max(m,n).

• Combining these approaches yields an overhead of min(m,n)2 max(m,n)+2min(m,n)3

Using one-sided version also reduces the second type of overhead from a calls to
torch.linalg.qr on a m×m and a n×n matrix to only a single call to min(m,n)×min(m,n)
matrix.

C LONGER DURATION RUN

Chinchilla scaling laws (Hoffmann et al., 2022) suggest that it is compute optimal to use tokens
which are approximately 20x the models size, which is what we have been using for our standard
runs. But many recent LLMs such as the LLaMA (Touvron et al., 2023) series of models are trained
on much larger token counts. This can be to take into account the computational cost during infer-
ence (Sardana et al., 2024) or to create models which are usable or finetunable by downstream users.
In Figure 7 we train a language model with AdamW on a 100x model size token count. We then
train the same model with SOAP for 50x, 75x, and 100x token counts to approximate the efficiency
benefits. We find efficiency benefits (> 40%) similar to those observed in Figure 2 for AdamW runs
with 20x token counts.

D GALORE

We tried GaLore for 210m model, and while it outperformed AdamW it performed worse than
Shampoo. Hence we do not try GaLore for higher model sizes.

Hyperparameter sweeps: We did the following sweeps:
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Figure 7: Total training steps (Left) and total wall clock time versus final test loss for long runs
(#tokens = 5x “chinchilla” tokens = 100x model size).

1. We swept the cross product over learning rate (3.16e−4, 1e−3, 3.16e−3, 1e−2), precon-
ditioning frequency (10, 50, 200), both sided and one sided versions. Frequency 200 had
the best results matching the observation of Zhao et al. (2024a).

2. We did a cross product sweep over learning rate (3.16e−4, 1e−3, 3.16e−3, 1e−2), both
sided and one sided versions with β2 = .99 instead of .95 and preconditioning frequency
200.

3. We did a cross product sweep over learning rate (3.16e−4, 1e−3, 3.16e−3, 1e−2), both
sided and one sided versions, preconditioning frequency (50, 200) with β1 = .9 instead of
.95.

The best performing run among all of these achieved a final loss of 3.12 while the best Shampoo run
achieved a final loss of 3.10.
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