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ABSTRACT
The rapid advancement of deepfake technology poses significant
threats to social trust. Although recent deepfake detectors have
exhibited promising results on deepfakes of the same type as those
present in training, their effectiveness degrades significantly on
novel deepfakes crafted by unseen algorithms due to the gap in
forgery patterns. Some studies have enhanced detectors by adapt-
ing to the continuously emerging deepfakes through incremen-
tal learning. Despite the progress, they overlooked the scarcity
of novel samples that can easily lead to insufficient learning of
forgery patterns. To mitigate this issue, we introduce the Dynamic
Mixed-Prototype (DMP) model, which dynamically increases proto-
types to adapt to novel deepfakes efficiently. Specifically, the DMP
model adopts multiple prototypes to represent both real and fake
classes, enabling learning novel patterns by expanding prototypes
and jointly retaining knowledge learned in previous prototypes.
Furthermore, we propose the Prototype-Guided Replay strategy and
Prototype Representation Distillation loss, both of which effectively
prevent forgetting learned knowledge based on the prototypical rep-
resentation of samples. Our method surpasses existing incremental
deepfake detectors across four datasets and exhibits superior gen-
eralizability to novel deepfakes through learning limited deepfake
samples.

CCS CONCEPTS
• Computingmethodologies→ Biometrics; • Security and pri-
vacy → Human and societal aspects of security and privacy.

KEYWORDS
Deepfake Detection, Multimedia Forensics, Incremental Learning

1 INTRODUCTION
Recent advancements in deep generation models have facilitated
the creation of highly convincing and realistic facial media, com-
monly known as deepfakes. The accessibility and convenience of
this technology have inspired a broad range of inventive and in-
triguing applications, including face editing [1, 2], face swapping
[3, 4], face avatar [5, 6], and talking face generation [7, 8]. Unfortu-
nately, it can also be exploited by attackers for malicious purposes,
such as telecom fraud, circumventing face recognition systems, and
disseminating false information [9], thereby posing severe risks
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to public safety and causing widespread concerns. Therefore, the
development of effective deepfake detection methods has become
more urgent. In addition, the continued evolution and proliferation
of deepfake algorithms brings challenges to the generalizability and
adaptability of deepfake detectors, requiring the ability to quickly
detect novel deepfake contents.

Previous works [10–12] have primarily focused on enhancing
the generalizability of deepfake detectors in the absence of access
to novel deepfakes. These methods improve performance on un-
seen deepfakes in the testing phase by guiding detectors to capture
prior forgery patterns that may be shared among the training deep-
fakes and unseen deepfakes. Specifically, these methods incorporate
strategies such as identifying face swap boundaries with synthe-
sizing training data [10, 13, 14], spotting texture anomalies and
inconsistency [11, 15], and perceiving audio-visual mismatch using
pretext tasks [12, 16]. Nevertheless, different deepfake algorithms
exhibit distinct forgery patterns, and learned patterns may not
be universally applicable to expose various novel deepfakes. As a
result, their reliance on prior patterns leads to compromised perfor-
mance when applied to deepfakes that significantly deviate from
these patterns.

Some studies [17, 18] resort to utilizing a limited number of
samples for adaptation to detect novel deepfakes, i.e., incremental
deepfake detection, sidestepping the limitations of relying on prior
patterns to detect unknown deepfakes. Namely, these methods as-
sumed that a few labeled faces are available for adapting deepfake
detectors, a scenario we consider plausible. For instance, multime-
dia retrieval [19] can be employed to retrieve the original image,
thereby enabling verification of the consistency of an image with its
original source to obtain its label. Additionally, proactive deepfake
watermarking [20, 21] can aid in determining whether an image has
been manipulated. With a small set of labeled samples, the detec-
tor can then incrementally learn to detect novel deepfakes during
the inferencing phase, which is more suitable for practical appli-
cation scenarios than enhancing detectors following generalizable
deepfake detection methods.

Incremental deepfake detection involvesmultiple learning stages,
each corresponding to the process of adapting the detector to the
distribution of different deepfake algorithms. This requires the net-
work to efficiently learn a few novel deepfakes while avoiding the
forgetting of previously acquired deepfake patterns. Current incre-
mental deepfake detection methods [17, 18] focus on preventing
catastrophic forgetting of learned deepfakes by utilizing knowledge
distillation and data replay. For instance, CoReD [17] employs the
previously trained model as a teacher network and uses a distil-
lation loss to guide the student network in the subsequent stage,
thereby preventing the forgetting of learned deepfakes. Compared
to CoReD, DFIL [18] further employs hard example replay to pre-
serve the deepfake detector’s knowledge of previously learned
forgery patterns. These methods typically utilized softmax loss
to cluster limited novel deepfakes and previous deepfakes into a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Previous approaches incrementally learn novel
deepfakes by adapting detectors through softmax loss,
whereas the scarcity of novel deepfakes often leads to in-
sufficient learning. In contrast, the proposed DMP model
explicitly learns novel deepfakes through newly added pro-
totypes to reduce overfitting, facilitating more effective clas-
sification in the prototype space.

single group for shared features to adapt to novel deepfake sam-
ples. However, given the variety of potential deepfake patterns,
such methods hinder the learning of novel patterns. Namely, these
methods do not address the insufficient learning of limited novel
deepfake samples.

To adequately learn novel deepfake patterns using limited sam-
ples, we resort to prototypical networks [22, 23]. Prototypical net-
works classify samples in a metric space by computing distances to
prototypes of each class. Compared to existing incremental deep-
fake detection works that cluster novel and previous deepfakes into
a single group, prototypical networks reflect a simpler inductive
bias that is advantageous when learning from limited samples [22].
To this end, we introduce the Dynamic Mixed-Prototype (DMP)
model, which dynamically increases prototypes to learn novel pat-
terns from limited incremental deepfakes efficiently, as illustrated in
Figure 1. Specifically, the DMP model leverages multiple prototypes
for both real and fake classes, which enables the learning of novel
forgery patterns by expanding the set of fake prototypes during
incremental learning. In this manner, novel deepfake patterns are
learned through newly added prototypes and knowledge learned
in previous prototypes is retained jointly, greatly enhancing the
effectiveness of incremental deepfake detection.

During the training process on novel deepfakes, the model’s
ability to discriminate previously learned deepfakes can be compro-
mised, i.e., catastrophic forgetting. This arises because the learned
representations are susceptible to sequential training in incremen-
tal learning, which underscores the stability of the learned repre-
sentations. As the proposed DMP model represents a sample as
its distance to prototypes, the stability of representations neces-
sitates that this distance remains stable after sequential training.
To address this need, we propose the Prototype Representation
Distillation (PRD) loss, which leverages DMP to distill itself in

adapting to novel deepfakes and adopts the distance from sample
to prototypes as the intermediate representations in distillation. In
addition, we incorporate the Prototype-Guided Replay (PGR)
strategy to further enhance the distillation by replaying learned
deepfakes. Specifically, PGR selects several samples closest to each
prototype to store in a replay set, which is replayed during the next
phase of incremental learning. During distillation using PRD, PGR
replays the samples closest to each prototype to maintain the stabil-
ity of the learned prototypes. Adopting PRD and PGR demonstrates
major advancement in maintaining learned representations and
thus enhances the proposed DMP. Consisting of the DMP model,
the PGR strategy, and the PRD loss, our method achieves the dual
goals of mitigating catastrophic forgetting and efficiently learning
from limited novel samples, comprehensively enhancing incremen-
tal deepfake detection. We conduct extensive experiments on four
popular deepfake detection datasets, which shows that our method
surpasses existing incremental deepfake detection methods across
four datasets. The contributions of this paper can be summarized
as follows:

•We present the novel DMP model, which expands prototypes
dynamically during incremental learning to adapt to new forgery
patterns from limited samples for incremental deepfake detection.

• We introduce a Prototype-Guided Replay strategy coupled
with a Prototype Representation Distillation loss to maintain the
learned forgery patterns based on the prototypical representation of
samples, thereby effectively mitigating the catastrophic forgetting
in the proposed DMP model.

•We conduct extensive experiments to demonstrate the effec-
tiveness of our method. The experimental results show that the
proposed method surpasses existing incremental deepfake detec-
tion methods on multiple datasets.

2 RELATEDWORKS
2.1 Deepfake Detection
The potential misuse of deepfakes presents significant risks to so-
ciety, making deepfake detection an urgent yet challenging task.
Early methods usually leveraged biological artifacts, such as lack
of eye blinking [24], abnormal head pose [25], and atypical pupils
[26] for detecting deepfake media. However, advancements in deep
generative models have enabled deepfakes to avoid these obvious
artifacts, rendering these methods ineffective. Subsequent works
have shifted towards using end-to-end learning with handcrafted
modules to detect deepfakes. For example, TALL [27] aggregated
four frames and input them simultaneously into an image classifier
for cross-frame comparison. AltFreezing [28] enhanced the learn-
ing of both temporal and spatial artifacts by alternately freezing
the spatial and temporal modules during training. StyleGRU [29]
represented the dynamic properties of style latent vectors to spot
temporal distinctiveness artifacts in deepfake videos. These meth-
ods merely fit the forgery patterns within the training set, and thus
their effectiveness on unseen deepfakes is limited. Another direc-
tion involves employing pretext tasks to learn audio-lip consistency
representations capable of identifying deepfakes. Notable examples
include lip-reading [12] and audio-visual contrastive learning [16],
which are effective only for discriminating talking face videos. In
general, these deepfake detectors rely on detecting specific forgery
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patterns that may not exist in novel deepfakes, which leads to a
decline in effectiveness. Therefore, incremental deepfake detection
emerges as a more practical approach to discriminate deepfakes by
directly adapting detectors to novel samples.

2.2 Incremental Deepfake Detection
The objective of incremental deepfake detection is to detect emerg-
ing deepfakes, which requires detectors to adapt to novel deepfakes
while retaining learned forgery patterns to discriminate previously
learned deepfakes. Specifically, the training procedure consists of
a base training stage to obtain a base detector and multiple in-
cremental training stages to simulate the detector’s adaptation
to novel deepfakes. Some related studies [30, 31] assumed the in-
cremental stages have ample training samples. Nonetheless, as the
algorithms used to generate online deepfakes are unknown, it is
hard to synthesize a large volume of samples for adaptation. In
practical scenarios, often only a few labeled samples are available,
typically obtained through multimedia retrieval[19] or proactive
deepfake watermarking [20, 21]. Therefore, in this paper, we assume
only limited labeled deepfakes are available in incremental training
stages. Existing few-shot incremental deepfake detection works
[17, 18] emphasized retaining the learned knowledge through dis-
tillation and replay. In contrast, our method enhances the learning
of novel deepfakes by modeling new deepfake patterns explicitly
through prototypes and thus is more effective against emerging
deepfakes.

3 PROBLEM DEFINITION
In incremental deepfake detection, an ideal detector is expected
to continually identify new deepfakes by sequentially learning
from novel samples while preserving the ability to spot previously
learned deepfakes. Especially, considering the scarcity of available
novel deepfakes, the detector is expected to learn novel patterns
from limited samples. The continuous set of training data is for-
mally given as

{
𝑆𝑡
}𝑁
1 , where 𝑆𝑡 denotes the training data at 𝑡-th

stage, and 𝑁 represents the total number of stages. Within the
training data 𝑆𝑡 for each stage, {𝑥,𝑦} ∈ 𝑆𝑡 represents the corre-
sponding training image and label, where 𝑦 ∈ {0, 1} denotes real
or fake category, respectively. The detector is trained across dif-
ferent stages sequentially to learn the forgery patterns associated
with the training deepfakes at each stage. We designate the first
training stage (𝑡=1) as the base stage and subsequent stages as incre-
mental stages (𝑡 >1). In real-world scenarios, a detector is initially
trained with ample data in the base stage, which represents the
pre-deployment training phase. While in preceding incremental
stages corresponding to the adaptation after deployment, available
deepfakes with labels are limited. Thus, the quantity of training
data in the base stage

��𝑆1�� is larger than those in the incremental
stages

��𝑆𝑡 ��
𝑡>1. After training in each stage, the detector is evaluated

using test sets that contain samples from the current and previous
stages. This evaluation setting assesses both a detector’s ability to
adapt to unseen deepfakes and its ability to retain learned patterns.

4 METHOD
We aim to enhance incremental deepfake detection, where we focus
on effectively adapting detectors to limited novel deepfakes while

retaining the knowledge of learned deepfakes. To adapt detectors
to novel deepfakes, we introduce the Dynamic Mixed-Prototype
(DMP) model, which represents a face as a Mixture of Prototypes
(MoP) and adapts to novel deepfakes by expanding prototypes. To
further retain learned knowledge in DMP, we propose Prototype-
Guided Replay (PGR) and Prototype Representation Distillation
(PRD), which are efficient in avoiding forgetting in DMP through
replaying seen samples and adopting the MoP as intermediate rep-
resentations for DMP to distill itself. This section is arranged as
follows. We first formulate the proposed DMP model for incremen-
tal deepfake detection and detail the design motivations. Building
upon the DMP model, we elaborate on the training pipeline for
incrementally training the DMP model on novel deepfakes as il-
lustrated in Figure 2. Within this framework, we describe the PGR
for data replay and PRD for knowledge distillation, which aid in
retaining the model’s memory of previously learned deepfake rep-
resentations.

4.1 Dynamic Mixed-Prototype Model
Learning intrinsic deepfake patterns from limited labeled deepfakes
is inherently challenging, as the model is prone to overfit to bi-
ased forgery patterns when sufficient samples are unavailable. We
note that the prototypical network [22] can effectively facilitate
few-shot learning by projecting samples into a metric space, where
compact features are learned and represented as prototypes. Since
the classification within a prototypical network is conducted by cal-
culating the distances to the prototype representations of each class,
prototypical networks reflect a simpler inductive bias to reduce
overfitting, which is beneficial for incremental learning.

Motivated by the advantages of prototypical networks, we intro-
duce the Dynamic Mixed-Prototype (DMP) model to classify faces
based on the distance from their embeddings to real and fake pro-
totypes. Namely, if a face is close to a prototype in the embedding
space, it contains the corresponding pattern. Previous prototype-
based deepfake detectionworks typically adopted a single prototype
for both classes to enforce a tight cluster for all deepfakes [32, 33].
We argue that each deepfake sample poses various patterns in-
herently, as various manipulation techniques can potentially be
used to produce a single deepfake. In this circumstance, attributing
all deepfakes to one fake prototype hinders the learning of richer
forgery patterns. Therefore, unlike previous works, DMP adopts
multiple prototypes for real or fake classes and apportions a face
to multiple prototypes, i.e., Mixture of Prototypes (MoP). This mix-
ture apportionment helps to mine both shared and unique patterns
in deepfakes, thereby facilitating the learning of richer patterns.
Furthermore, representing faces as MoP enables increasing pro-
totypes to expand the representations for a category. Specifically,
DMP incrementally learns novel deepfakes by incorporating new
prototypes for novel forgery patterns in each stage while retaining
previous prototypes to preserve learned knowledge. As for real
faces, the prototype set remains fixed since the distribution of real
samples is consistent across different learning stages.

Formally, the proposed DMP model is built with an encoder 𝑓
and prototypes 𝑃 . We denote the encoder that has been trained up
to 𝑡-th stage as 𝑓 𝑡 and the prototypes as 𝑃𝑡 . 𝑃𝑡 is a set of vectors, i.e.,
𝑃𝑡 ∈ 𝑅𝑁 𝑡×𝑑 , where 𝑁 𝑡 is the number of prototypes in stage 𝑡 and
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Figure 2: The pipeline of training the proposed Dynamic Mixed-Prototype(DMP) model in stage 𝑡 > 1. The proposed DMP
consists of an encoder 𝑓 and a prototype layer 𝑃 which increases in each stage 𝑡 . In stage 𝑡 , the encoder from the previous stage
𝑓 𝑡−1 serves as the teacher network and 𝑓 𝑡 is distilled to preserve learned knowledge through L𝑃𝑅𝐷 .

𝑑 is the embedding dimension. We denote the first 𝑘 prototypes of
𝑃𝑡 as 𝑃𝑡0 , i.e., prototypes for real patterns, and the rest of prototypes
as 𝑃𝑡1 , i.e., prototypes for forgery patterns. Initially, 𝑃0 contains 𝑘
real prototypes. Before DMP is trained in each stage, 𝑘 incremental
prototypes are added to 𝑃𝑡 to model the novel forgery patterns in
the training data, i.e., 𝑁 𝑡 = (𝑡 + 1) × 𝑘 . In DMP, a face 𝑥 is first fed
to encoder 𝑓 into feature embedding 𝑓 (𝑥). As we aim to represent
𝑥 as MoP based on its similarity to 𝑃 , its embedding is apportioned
to different prototypes by calculating the distances from 𝑓 (𝑥) to
𝑃 . Specifically, we consider the softmax of the negative distances
from 𝑓 (𝑥) to each prototype in 𝑃 as the MoP, denoted as 𝐷 (𝑥, 𝑃).
Its 𝑖-th entry 𝐷 (𝑥, 𝑃𝑖 ) is formalized as:

𝐷 (𝑥, 𝑃𝑖 ) =
exp(−𝑑 (𝑃𝑖 , 𝑓 (𝑥))/𝜏)∑

𝑃 𝑗 ∈𝑃𝑡 exp(−𝑑 (𝑃 𝑗 , 𝑓 (𝑥))/𝜏)
, (1)

where 𝑑 is the cosine distance and 𝜏 = 1 is the softmax temperature.
Herein, the negative distances can be considered as similarities,
and the softmax operation in its entirety transforms similarities
of 𝑓 (𝑥) to 𝑃 into normalized apportionment weights, i.e., MoP.
The DMP further predicts the category of 𝑥 as class 𝑐 based on
the weighted apportionment, i.e., entries in MoP 𝐷 (𝑥, 𝑃𝑖 ), and the
predicted classification probability 𝑝 (𝑦 = 𝑐 | 𝑥) is formalized as:

𝑝 (𝑦 = 𝑐 | 𝑥) =
∑︁

𝑃𝑖 ∈𝑃𝑡
𝑐

𝐷 (𝑥, 𝑃𝑖 ), (2)

where 𝑐 = 0 is for real and 𝑐 = 1 is for fake category. In training,
we use cross-entropy loss L𝐶𝐸 for optimizing the classification:

L𝐶𝐸 = −𝑦 log𝑝 (𝑦 = 1 | 𝑥) − (1 − 𝑦) log 𝑝 (𝑦 = 0 | 𝑥) . (3)

During the optimization process, the feature representation 𝑓 (𝑥) of
a sample is attracted towards the prototypes of its corresponding
category 𝑃𝑖 ∈ 𝑃𝑡𝑐 while being repelled from the prototypes of the
opposite category. After training, DMP can represent 𝑥 as MoP
𝐷 (𝑥, 𝑃) based on its distance to prototypes, where the components
of different prototypes within a sample are expressed as 𝐷 (𝑥, 𝑃𝑖 ).

Prototypical networks that rely on a single prototype per class
typically establish prototypes as the centroid of sample embed-
dings within identical classes, which ensures that the intra-class
distances of embeddings are compact. However, this approach is
not feasible when representing classes using multiple prototypes, as
it causes overlapping among different prototypes within the same
category. To circumvent this limitation, we employ pre-assigned
and fixed prototypes following Yang et al. [34] and further expand
their method to the scenario where one category is represented us-
ing multiple prototypes. Therefore, training DMP involves aligning
the encoder 𝑓 with these fixed prototypes for classification. This
approach prevents the collapse issue that arises when assigning pro-
totypes as the centroid of sample embeddings, where all prototypes
within the same category collapse to a single point. Additionally,
the pre-assigned prototypes are largely separated. This separation
encourages the encoder to learn more diverse forgery patterns,
enhancing the richness of the learned deepfake representations.

4.2 Prototype-Guided Replay
We introduce the Prototype-Guided Replay (PGR) strategy, which
is designed to select replay samples for the proposed DMP model
to mitigate forgetting by stabilizing the learned deepfake repre-
sentations. Specifically, PGR selects a subset of previously learned
deepfake samples to be stored in a replay set, which is then incorpo-
rated into the training data for the subsequent stage. The procedure
is shown in the left part of Figure 2.

Since the DMP model represents a sample as a Mixture of Proto-
types, the key to maintaining the stability of representations lies in
preserving the stability of prototypes. When applying PGR to select
samples for replay, the closest 𝑛 samples to each prototype are se-
lected at the end of each training phase. The reasons for replaying
the closest samples to each prototype are twofold. First, by replay-
ing the closest 𝑛 samples to each prototype, PGR helps to maintain
the representational stability of the prototypes in subsequent incre-
mental training stages. Second, since DMP uses pre-assigned and
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fixed prototypes, the encoder 𝑓 𝑡 is expected to map a replayed sam-
ple 𝑥 close to the prototype where it was initially embedded. The
PGR strategy, along with the subsequent distillation loss, aids in
guiding the encoder 𝑓 𝑡 to project replay samples near their original
prototypes. Consequently, the classification accuracy on previously
learned samples of the DMP model is maintained.

The selection of the replay set is conducted at the end of each
training stage. The selected replay set after stage 𝑡 is denoted as
𝑅𝑡+1. The pool of candidate samples for the replay set is the union
of the current replay set 𝑅𝑡 and the current stage’s training set 𝑆𝑡 .
For each prototype, 𝑛 nearest samples are selected from 𝑅𝑡 ∪ 𝑆𝑡 for
replay, which are denoted as:

𝑅𝑡+1 =
⋃

𝑃𝑡
𝑖
∈𝑃𝑡

𝑘𝑁𝑁
(
𝑃𝑡𝑖 , 𝑓

𝑡 (𝑥𝑡 )
)
, (4)

where 𝑥𝑡 ∈ 𝑅𝑡 ∪𝑆𝑡 . PGR contributes to retaining the representation
associated with a prototype by replaying the samples nearest to it,
thus mitigating catastrophic forgetting.

4.3 Prototype Representation Distillation
To further mitigate catastrophic forgetting, we leverage 𝑓 𝑡−1 to
serve as the teacher model for 𝑓 𝑡 to retain the knowledge learned in
preceding deepfakes for training stage 𝑡 > 2. Since DMP represents
a face 𝑥 as a MoP 𝐷 (𝑥, 𝑃) and conducts classification accordingly,
we directly use 𝐷 (𝑥, 𝑃) to serve as an intermediate representation
from the teacher network 𝑓 𝑡−1 to guide the training of the student
network 𝑓 𝑡 . Specifically, we propose the Prototype Representa-
tion Distillation (RPD) loss L𝑃𝑅𝐷 to align the MoP representation
𝐷 (𝑥, 𝑃𝑡 ) in stage 𝑡 to 𝐷 (𝑥, 𝑃𝑡−1) in stage 𝑡 − 1:

L𝑃𝑅𝐷 = 𝐾𝐿

(
𝐷 (𝑥, 𝑃𝑡 )∥𝐷 (𝑥, 𝑃𝑡−1)

)
, (5)

where 𝐾𝐿 is the KL divergence. As the expansion of 𝑃 makes the
dimensions of𝐷 (𝑥, 𝑃𝑡−1) and𝐷 (𝑥, 𝑃𝑡 ) differs, we truncate𝐷 (𝑥, 𝑃𝑡 )
to match the size of 𝐷 (𝑥, 𝑃𝑡−1). The total loss L𝑡𝑜𝑡𝑎𝑙 for optimizing
DMP in stage 𝑡 > 1 is:

L𝑡𝑜𝑡𝑎𝑙 = L𝐶𝐸 + 𝛼 × L𝑃𝑅𝐷 . (6)

We set 𝛼 as 0.2 to make L𝐶𝐸 and L𝑃𝑅𝐷 converge to the same order
of magnitude.

5 EXPERIMENTS

5.1 Experimental Setup
Dataset. We conduct evaluations on four widely used deepfake
datasets, i.e., FaceForensics++ (FF++) [35], DFDC preview (DFDCp)
[36] , DFD [35], and Celeb-DF v2 (CDF) [37]. FF++ is a deepfake
dataset containing 4,000 forged videos and 1,000 real videos. All
videos are provided in three compression levels: raw, high-quality
(HQ), and low-quality (LQ). DFDCp is the preview dataset for
the Deepfake Detection Challenge and contains over 4,000 face
swap videos. Its fake videos are generated using two face swap
algorithms. DFD is Google’s supplement to the FF++ dataset and
contains over 3,000 face swap videos. CDF contains 590 real and
5,639 fake videos corresponding to 59 celebrities using an improved
face swap algorithm. We follow the splits in [18] for training and
testing.

Evaluation protocol.We follow the evaluation protocol in [18].
Specifically, the training sequence used in evaluation is 𝐷𝐶 = {FF++,
DFDCP, DFD, CDF}. Evaluated models are trained sequentially
across four training sets of these stages. Upon completion of each
training stage, the models are tested on the test sets of the datasets
corresponding to all previously trained stages. In the base stage, the
whole training set of FF++(HQ) is used for training. In incremental
stages, 25 fake videos along with 25 real videos from the current
incremental dataset, i.e., DFDCP, DFD, and CDF, are randomly
sampled for training.
Evaluation metric.We adopt four metrics in evaluating the pro-
posed method following [18], i.e., Accuracy, Average Accuracy,
Average Forgetting, and Area Under Curve.

(1) Accuracy (ACC) refers to the ratios of correctly predicted
samples in all samples. It is calculated as ACC = 𝑇𝑃+𝑇𝑁

𝑛 , where𝑇𝑃
(True Positives) refers to the number of samples that are correctly
identified as deepfake, 𝑇𝑁 (True Negatives) refers to the number
of samples that are correctly identified as real, and 𝑛 represents the
total number of images or samples that are evaluated.

(2) Average Accuracy (AA) refers to the average accuracy of
all previous stages. It is calculated as AA = 1

𝑁

∑𝑁
𝑖=1 ACC𝑖 , where

ACC𝑖 is the accuracy of the 𝑖-th task and 𝑁 is the number of tasks.
(3) Average Forgetting (AF) refers to the average forgetting rate

of previous stages. It is calculated as AF = 1
𝑁

∑𝑁
𝑖=1 (ACCfirst

𝑖
−

𝐴𝐶𝐶 last
𝑖

) where ACCfirst
𝑖

and ACClast
𝑖

denotes the accuracy on the
𝑖-th task after training in stage i and current stage.

(4) Area Under Curve (AUC) refers to the area under the Receiver
Operating Characteristic (ROC) curve. We use AUC to evaluate the
generalization of detectors across different deepfake datasets.
Implementation Details.We use an Xception model pretrained
on ImageNet [38] to initialize the DMP model. Our framework is
trained for 40 epochs in the base stage and incrementally trained
for 40 epochs in each incremental stage. The DMP model is trained
using AdamW [39] optimizer with a learning rate of 2e-4 and a batch
size of 64, and the learning rate is decayed to half every 5 epochs.
Each batch consists of 32 real faces and 32 deepfake faces. The replay
set size K is set to 500, and PGR selects 500//𝑁𝑡 nearest samples for
each prototype after stage 𝑡 for replay. In the PyTorch framework,
training with automatic mixed precision requires approximately
20GB of GPU memory.
Preprocess.We extract 20 frames at equal temporal intervals from
each video in training and 10 frames from each video in testing.
Then, the faces are aligned and cropped using Retinaface [40], main-
taining a 15% margin around each face. Then, all faces are resized
to 299 × 299 as the inputs.

5.2 Evaluation on Incremental Deepfake
Detection

We compare the proposed method with two general incremental
learning methods, i.e., LWF [42] and DGR [41], and two incremental
deepfake detection methods, i.e., DFIL [18] and CoReD [17]. As all
compared methods are model-agnostic, we use Xception as the
backbone in all methods for fair comparison.

The results are shown in Table 1. Clearly, all compared methods
obtained satisfying ACC on FF++ after initially training on am-
ple data from FF++. However, when they were later incrementally
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Table 1: Performance comparison on incremental deepfake
detection. †indicates reproduced using our evaluation proto-
col. Bold indicates top results.

Method Dataset Test Set ACC(%)↑ AA
(%)↑

AF
(%)↓FF++ DFDCP DFD CDF

DRG
[41]

FF++ 88.86 - - - 88.86 -
DFDCP 78.81 83.89 - - 81.35 10.05
DFD 64.31 73.31 89.69 - 75.57 17.56
CDF 67.33 79.65 78.35 76.50 75.45 12.37

LWF
[42]

FF++ 95.52 - - - 95.52 -
DFDCP 87.83 81.57 - - 84.70 7.69
DFD 76.16 41.78 96.36 - 71.43 19.89
CDF 67.34 67.43 84.05 87.90 76.68 14.44

CoReD
[17]†

FF++ 95.50 - - - 95.50 -
DFDCP 92.94 87.61 - - 90.28 2.56
DFD 86.84 81.07 95.22 - 87.71 7.60
CDF 74.08 76.59 93.41 80.78 81.22 11.42

DFIL
[18]

FF++ 95.67 - - - 95.67 -
DFDCP 93.15 88.87 - - 91.01 2.52
DFD 90.30 85.42 94.67 - 90.03 4.41
CDF 86.28 79.53 92.36 83.81 85.49 7.01

DMP
(Ours)

FF++ 95.96 - - - 95.96 -
DFDCP 92.71 89.72 - - 91.22 3.25
DFD 92.64 86.09 94.84 - 91.19 3.48
CDF 91.61 84.86 91.81 91.67 89.99 4.08

trained with limited data from DFDCP, DFD, and CDF, their per-
formance in detecting previously learned deepfakes deteriorated
significantly. For instance, after training on the DFDCP dataset in
the second training stage, the LWF method experienced a 7.69%
decrease in detection accuracy for the FF++ dataset. After the train-
ing across all four stages, its ACC scores on the FF++ and DFDCP
datasets are 67.34% and 67.43%, respectively. Namely, after incre-
mental learning with new deepfake samples, LWF failed to accu-
rately detect previously learned deepfakes. In stark contrast, the
performance of DMP to learned deepfakes consistently maintained
high ACC on all subsequent datasets. For instance, after being
trained up to CDF, DMP achieved an ACC of 91.61% on FF++, out-
performing the top result in compared methods. Moreover, after
the final stage of incremental training on CDF, DMP achieved an
Accuracy Forgetting (AF) rate of 4.08%. Compared to DFIL, the pro-
posed DMP exhibited a lower AF with identical replay set sizes. This
validates the efficiency of the proposed PRD and PGR in preserving
the learned forgery representations.

Besides, we note the proposed DMP is efficient in learning limited
novel deepfakes. After training on the DFDCP and CDF datasets, our
DMP achieved ACC scores of 89.72% and 91.67% on corresponding
test sets, surpassing the highest ACC among all compared methods
88.87% (DFIL) and 87.90% (LWF). Furthermore, upon completing the
training across all four stages, DMP attained an average accuracy
(AA) of 89.99%, significantly outperforming all compared meth-
ods. These results validate the proposed DMP model is efficient in
learning from limited novel deepfakes.

Table 2: Comparison of the generalization ability of different
methods to DFDCP, DFD, and CDF. The metric is the AUC
score. The upper shows the results of cross-dataset gener-
alization, while the lower shows the results of incremental
learning. Compared results are cited from [18]. Bold indi-
cates top results.

Method Test Set AUC(%)↑
DFDCP DFD CDF

Xception[35] 72.20 70.50 65.50
LTW[43] 74.58 88.56 77.17
LRL[44] 76.53 89.24 78.26
DCL[45] - 91.66 82.30
ICT[46] - 84.13 85.71

UIA-ViT[15] 75.80 94.68 82.41
CoReD[17]† 84.85 89.81 89.76
DFIL[18] 91.73 97.56 89.68

DMP (Ours) 92.37 97.41 92.84

Table 3: Ablation study of the proposed model, replay strat-
egy, and distillation method. We use the AA and AF of the
detectors trained up to the last stage (CDF) for comparison.

Model Replay Distillation AA(%)↑ AF(%)↓
Xception [47] [47] 88.86 4.91

MP PGR PRD 88.45 5.14
DMP [47] PRD 88.90 5.21
DMP PGR [47] 89.10 5.18
DMP PGR PRD 89.99 4.08

5.3 Evaluation on Generalized Deepfake
Detection

We compare the proposed DMP with recent deepfake detectors
in terms of generalization using AUC as the metric. All detectors
are trained on FF++ and tested on DFDCP, DFD, and CDF. The
compared methods includes generalizable deepfake detection meth-
ods [15, 35, 43–46] and incremental deepfake detection methods
[17, 18]. We evaluate the cross-dataset generalization performance
of generalizable deepfake detection methods and the performance
of incremental deepfake detection methods. The results are listed
in Table 2. It is evident that generalizable deepfake detectors per-
formed inferiorly to incremental deepfake detectors on all three
datasets, which is attributed to distribution shifts across datasets.
Incremental deepfake detectors exhibited higher AUC scores by
adapting to 25 videos from each dataset. This suggests that when a
limited number of novel deepfake samples are available for adapta-
tion, incremental deepfake detection is a more practical approach.
Notably, our DMP demonstrates the best performance among the
incremental methods on the two challenging datasets, DFDCP and
CDF. Our model’s AUC score surpasses the best among the compar-
ative methods on the CDF dataset by 3.08%(92.84% v.s.89.76%). This
indicates that our DMP model can effectively learn new forgery pat-
terns that differ significantly from learned patterns through newly
added prototypes.
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Table 4: Comparison of Euclidean and Cosine distance met-
rics for classification in DMP.

Distance Dataset Test Set ACC(%)↑ AA
(%)↑

AF
(%)↓FF++ DFDCP DFD CDF

Euclidean

FF++ 95.20 - - - 95.20 -
DFDCP 93.35 87.15 - - 90.25 1.85
DFD 92.55 85.74 89.06 - 89.12 2.03
CDF 91.28 86.50 85.44 86.27 87.37 2.73

Cosine

FF++ 95.96 - - - 95.96 -
DFDCP 92.71 89.72 - - 91.22 3.25
DFD 92.64 86.09 94.84 - 91.19 3.48
CDF 91.61 84.86 91.81 91.67 89.99 4.08

5.4 Ablation Study
Modules.We conduct ablations to verify the effectiveness of the
proposed DMP model, PGR, and PRD. For the DMP model, we use
the following variants for comparison: (1) Vanilla Xception model
with a fully connected layer as the classifier instead of prototypes.
As it lacks prototypes, the proposed PGR and PRD are not appli-
cable. We instead adopt a standard exemplar sample replay and
distillation method following [47]. (2) A Mixed-Prototype model
similar to the DMP model with a set of fake prototypes that is not
incremental, which is denoted as MP. For the PGR strategy, we
adopt the commonly used examplar sample replay proposed in
[47] for comparison. For the PRD loss, we adopt the vanilla distilla-
tion loss in [47] for comparison. The results are presented in Table
3, which indicates each element contributes to improving perfor-
mance. Compared to vanilla Xception, DMP significantly enhances
the AF, proving its advantages in retaining learned knowledge
in prototypes. Compared to MP, DMP demonstrates a higher AA,
which is attributed to the effectiveness of learning novel forgery
patterns through new prototypes. Furthermore, our PRD and PGR
better mitigate forgetting during incremental training compared
to the replay and distillation method in [47] (fourth and fifth rows
in Table 3). This is due to the fact that representing a deepfake
sample as a MoP better aligns with the shared and unique features
presented among different deepfake samples, thereby enhancing
the effectiveness of replay and distillation.
Distance Metric. The DMP model classifies samples based on the
distance from the samples to the prototypes. The used distance met-
ric 𝑑 specifies the modeling assumption about the class-conditional
data distribution in the embedding space, making the selection of
the distance function vital. Common distance metrics used in pro-
totype learning include the Euclidean distance and cosine distance,
and we employ the cosine distance in DMP. We compare it with the
Euclidean distance to investigate their impacts on the performance
of incremental deepfake detection. The results are presented in Ta-
ble 4. Employing the cosine distance as the metric achieves higher
AA across all four stages, proving to be more effective than using
the Euclidean distance. The Euclidean distance corresponds to the
assumption of a mixed density distribution, which indicates that
the distribution of sample embeddings around deepfake patterns
does not align closely with the mixed density distribution. We infer
that the commonly used cosine distance performs effectively due
to the use of fixed prototypes. In this context, the cosine distance

Table 5: Ablation studies for the number of prototypes pa-
rametered by 𝑘 .

𝑘 Dataset Test Set ACC(%)↑ AA
(%)↑

AF
(%)↓FF++ DFDCP DFD CDF

1

FF++ 95.25 - - - 95.25 -
DFDCP 91.46 84.97 - - 88.22 3.79
DFD 91.20 80.29 84.56 - 85.35 4.37
CDF 88.68 81.28 85.51 88.02 85.87 3.10

2

FF++ 95.82 - - - 95.82 -
DFDCP 91.87 87.91 - - 90.39 3.95
DFD 91.26 85.33 92.08 - 89.56 3.57
CDF 90.88 83.49 90.04 89.63 88.51 3.80

4

FF++ 95.96 - - - 95.96 -
DFDCP 92.71 89.72 - - 91.22 3.25
DFD 92.64 86.09 94.84 - 91.19 3.48
CDF 91.61 84.86 91.81 91.67 89.99 4.08

for prototype-level classification is equivalent to a frozen linear
layer, which reflects a simpler inductive bias to reduce overfitting in
learning limited samples. This comparative experiment underscores
the validity of our prototype layer design in the DMP model for
learning limited novel samples.
Numbers of Prototypes. The proposed DMP model adopts mul-
tiple prototypes to represent real and fake classes. The number
of prototypes added before each stage, i.e., 𝑘 , is hand-tuned as 4,
where the number of prototypes 𝑁 𝑡 = (𝑡 + 1) × 𝑘 . The parameter 𝑘
influences the DMP’s ability to learn from new samples and retain
knowledge about previously learned samples. This is because 𝑘
affects how the DMP model represents the samples as MoPs, which
are then used for classification in Equation 2, replay in Equation 4,
and distillation in Equation 5. We conducted ablations to assess the
impact of 𝑘 on the performance of DMP and to verify the effective-
ness of representing classes by multiple prototypes for incremental
deepfake detection. The experimental results are presented in Table
5. It is obvious that when 𝑘 = 1, the ACC in the base phase is
comparable to that of using multiple prototypes 𝑘 > 1. However,
the performance of the model with 𝑘 = 1 deteriorates notably on
stage 𝑡 > 1, whereas increasing 𝑘 improves the AA. Beyond the
results in Table 5, we empirically found that further increasing 𝑘
brings marginal performance gain.

5.5 Sensitivity Analysis
In real-world scenarios, the size of the replay set can vary due
to limitations in storage and computational resources. Moreover,
the volume of accessible labeled novel deepfake samples may also
change. Since the size of the replay set and the number of novel
samples both impact the performance of incremental deepfake
detection, we conducted sensitivity analyses on these factors sep-
arately by decreasing them. The results are shown in Figure 4. It
is apparent that decreasing the size of the replay set results in a
growth in AF and a decrease in AA due to the reduced accuracy
on previously encountered deepfakes. We also observed that di-
minishing the replay set reduces the efficiency of adaptation to
novel deepfakes, which further decreases the AA. This is attributed
to the role of distillation, which not only mitigates forgetting but
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Figure 3: Visualization of saliency areas corresponding to different fake prototypes. The first row contains real and fake faces
from different training stages. The remaining three rows contain visualization results of saliency area of the three closest fake
prototypes to their face embeddings in the feature space.
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Figure 4: Sensitivity analysis of performance AA and AF to
changes in the size of the replay set (Left) and the volume of
incremental deepfake training videos (Right).

also facilitates the learning of novel deepfakes, underscoring the
significance of replay and distillation for the adaptation to novel
deepfakes. Besides, reducing the number of novel samples used for
training also leads to a decrease in AA. The reduction in AF is less
pronounced as the initial performance on novel samples is already
lower due to the scarcity of available training samples and the ACC
on previous test sets in subsequent training stages may improve,
thereby compensating the forgetting ratio.

5.6 Visualization
Saliency Map As stated before, DMP represents each deepfake
sample as a mixture of prototypes. Namely, different prototypes
are expected to exhibit distinct saliency areas in a deepfake when
discriminating it. We employ GradCAM [48] to visualize the com-
ponent prototypes for real and fake samples to investigate their
roles in discriminating deepfakes. For each sample, we visualize the
corresponding saliency area of the three closest fake prototypes
to its embedding in the feature space. The visualization results are
shown in Figure 3. It’s obvious that different prototypes correspond

to different forged areas in a deepfake sample, indicating each pro-
totype represents a unique deepfake pattern. For instance, in the
second column of samples from FF++ fake, the visualized proto-
types’ saliency areas respectively spot the distorted areas between
the eyebrows (second row), the nose (third row), and the mouth
(fourth row). Meanwhile, the combination of salient areas from
different prototypes within a deepfake sample comprehensively
marks major visible artifacts. This further confirms that model-
ing deepfakes as mixtures of prototypes aids in enriching learned
deepfake representations. Besides, the saliency area visualizations
for samples in FF++ real confirm that our fake prototypes avoid
locating forged regions in real faces, demonstrating the efficiency of
the fake prototypes in distinguishing between real and fake faces.

6 CONCLUSION
The proposed framework in this paper enhances the incremental
learning of limited novel deepfakes while avoiding forgetting previ-
ously learned deepfakes. The proposed DMPmodel represents faces
as mixtures of prototypes to learn rich forgery representations and
thus can explicitly model new deepfake patterns with new proto-
types. Moreover, to prevent DMP from forgetting learned deepfake
representations, we propose PGR and PRD tailored for DMP to re-
play representative samples and distill tomaintain the stability of ex-
isting prototypes. Extensive evaluations verify our framework can
learn incremental novel deepfake samples and avoid catastrophic
forgetting efficiently. In scenarios where limited novel deepfake
samples are available for adaptation, our framework demonstrates
satisfactory performance, which is crucial for maintaining the effec-
tiveness of deepfake detectors. Future work includes incorporating
the latest deepfake technology, such as diffusion models, to build a
more comprehensive evaluation protocol for incremental deepfake
detection.
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