
DominoSearch: Find layer-wise fine-grained N:M
sparse schemes from dense neural networks –

Supplementary Material

Organization of Supplementary Material:

• Section 1: Additional ablation experiments on ImageNet dataset for proposed layer-wise
penalty factor.

• Section 2: Experimental study of a different policy with fixed N and flexible M.

• Section 3: Sensitivity of hyper-parameter β1 and β2 in proposed layer-wise penalty factor.

• Section 4: Detailed experimental settings including datasets and hyper-parameters used in
main paper.

1 Additional ablation experiments on ImageNet dataset

In addition to the ablation experiments on the CIFAR100 dataset, we further evaluate the effectiveness
of the layer-wise penalty factor ηi on the large-scale ImageNet dataset using the ResNet18 architecture.
Table 1 shows results when using a model size constraint and 2 presents results when using the FLOPs
constraint. The results confirm that the layer-wise sparse schemes searched with ηi consistently
outperform the schemes without ηi under both the model-size constraint and the FLOPs constraint.

Table 1: ResNet18 - model size constraint

Params Top1 Acc Structure

with ηi 1.46M 68.76 Mix N:16
w/o ηi 1.46M 68.24(-0.52) Mix N:16

Table 2: ResNet18 - FLOPs constraint

FLOPs Top1 Acc Structure

with ηi 227M 67.98 Mix N:16
w/o ηi 227M 67.07(-0.92) Mix N:16

2 Study on the policy of fixed N

In the main paper, we assume a policy with fixed M and flexible N. Furthermore, we also use a design
space with N equal to a power-of-two. In this section, we extend these experiments with an additional
policy with fixed N and flexible M. This is achieved by transforming the schemes of fixed M. For
instance, 8:16, 4:16, 2:16 and 1:16 will be transformed as 1:2, 1:4, 1:8 and 1:16 with fixed N (1)
and flexible M (2,4,8,16). Results are shown in Table 3. As can be seen, the policy with fixed M
consistently outperforms the policy of fixed N. A possible explanation is that larger M results in more
flexibility when selecting important weights, given the same sparsity percentage. Figure 1 and 2
illustrate the differences between 1:2 and 2:4 with the same dense weight matrix and sparsity (i.e.
50%). After pruning, the L1 norm of the 2:4 sparse weight matrix is 0.5542 which is larger than
0.5094 (i.e., the L1 norm of the 1:2 sparse weight matrix). This indicates that a sparsity pattern with
larger M (in this example, 4) can keep more important weights [1] than smaller M (e.g., 2). From the
results in Table 3 we can conclude that for layer-wise schemes searched by DonimoSearch, a policy
with fixed M is better.

Preprint. Under review.



Table 3: Performance for fixed N and fixed M policies using ResNet56 on CIFAR100.

Model Complexity 0.21M#Params 0.11M#Params 32M FLOPs 16M FLOPs

Acc. uniform 72.33±0.37 71.08±0.27 72.33±0.37 71.08±0.27

Fixed M 74.31±0.34 73.26±0.24 74.00±0.18 72.79±0.25

Fixed N 73.86±0.26 72.48±0.28 73.72±0.21 71.98±0.17

Acc. drop -0.45 -0.78 -0.28 -0.81

w

0.0104 0.0114
0.0020 0.0061
0.0212 0.0748
0.0368 0.0898
0.0854 0.1751
0.0406 0.0450
0.0896 0.0169
0. 0.0177


− >

w̃

0. 0.0114
0. 0.0061
0. 0.0748
0. 0.0898
0. 0.1751
0. 0.0450

0.0896 0.
0. 0.0177


− >

L1

[0.5094]

Figure 1: Sparsity 1:2. For every two elements, one will be removed based on the magnitude criterion.
Values in blue represent the values kept in the dense weight matrix w. With 1:2 sparsity, the L1 norm
of the sparse weight w̃ is 0.5094.

3 Sensitivity of hyper-parameter β1 and β2

We further study the sensitivity of β1 and β2 of Equation 1.

ηi = β1 ∗ ci + β2 ∗ ri. (1)

Where ci is the layer-wise computational complexity factor and ri is the layer-wise redundancy factor.
Details can be found in Section 3.4 of the main paper.

Table 4: Effect of different β1 and β2 using ResNet56 on CIFAR100.

Model Complexity 0.21M#Params 0.11M#Params 32M FLOPs 16M FLOPs

Acc. uniform 72.33±0.37 71.08±0.27 72.33±0.37 71.08±0.27

FLOPs/Model size 32M 16M 0.21M 0.11M

β1 = 0.5, β2 =0.5

Acc. Equal model size 74.31±0.34 73.26±0.24 - -

FLOPs 43.3M 25.6M

β1 = 0.0, β2 =1.0

Acc. Equal model size 74.20±0.35 73.17±0.25 - -

FLOPs 53.4M 26.0M

β1 = 0.8, β2 =0.2

Acc. Equal FLOPs - - 74.00±0.18 72.79±0.25

Model size - - 0.19M 0.09M

β1 = 1.0, β2 =0.0

Acc. Equal FLOPs - - 73.97±0.26 72.80±0.18

Model size - - 0.20M 0.11M

Table 4 shows the results with different β1 and β2 under both a model-size constraint and a FLOPs
constraint. The effect of β1 and β2 on accuracy is negligible but they have a noticble effect on the

2



w0.0104 0.0114 0.0020 0.0061
0.0212 0.0748 0.0368 0.0898
0.0854 0.1751 0.0406 0.0450
0.0896 0.0169 0. 0.0177

− >
w̃0.0104 0.0114 0. 0.

0. 0.0748 0. 0.0898
0.0854 0.1751 0. 0.
0.0896 0. 0. 0.0177

− > L1

[0.5542]

Figure 2: Sparsity 2:4. For every four elements, two will be removed based on the magnitude
criterion. Values in blue represent the values kept in the dense weight matrix w. With 2:4 sparsity,
the L1 norm of the sparse weight w̃ is 0.5542.

second complexity metric (i.e. FLOPs when using model size as constraint and vice-versa model
size is affected when using FLOPs as a constraint). For instance, when comparing (β1 = 0.5, β2 = 0.5)
and (β1 = 0.0, β2 = 1.0), the layer-wise sparse models’ top1 accuracy are 74.31 and 74.20 respectively
with the same model size (0.21M). The relative change is only | 74.31−74.20

74.20 | ∗ 100% = 0.14%. On
the other hand, the second complexity metric FLOPs of these two models are 43.4M and 53.4M
respectively, which corresponds to a relative change of | 43.3−53.4

53.4 | ∗ 100% = 18.9%.

4 Detailed Experimental settings

Dataset ImageNet-1K [2] is a large-scale image classification task, known as one of the most
challenging image classification benchmarks. It consists of more than 1.2 million training images and
50K validation images with a size of 224x224 pixels. Each image is labelled as one of 1K classes.
CIFAR100 [3] is a smaller-scale image classification dataset consisting of 100 classes. Each class has
500 training colour images and 100 testing images of 32x32 pixels in size.

We first apply DominoSearch to search the layer-wise schemes from pre-trained dense models.
For ResNet18/50 [4], the pre-trained models have been downloaded from Pytorch Model zoo1.
For RegNetX3.2G [5], the dense pre-trained model has been downloaded from the official Githup
repository2, provided by the authors. For ResNet56 on Cifar100, we train the dense model ourselves
and then apply DominoSearch.

4.1 DominoSearch

Table 5 shows the hyper-parameter settings of DominoSearch. The explanations of these hyper
parameters can be found in Section 3 of the main paper.

Table 5: Hyper Parameter settings for DominoSearch.

Solver SGD
SGD weight decay 0.1
kp 5
Kc 100
vr 0.75
LR policy 0.01(fixed)
Batch size 64

The search phase takes 2-4 hours when searching on ImageNet with a single RTX2080Ti GPU,
depending on network and complexity constraints.

4.2 ImageNet Experiments

With searched layer-wise schemes, we retrain the sparse networks with pre-trained weights as
initialization to recover the accuracy. To train layer-wise fine-grained N:M sparse models, we adapt
the setting of the SR-STE paper [6]. Table 6 shows the applied hyper parameters for reproduction.

1https://pytorch.org/vision/stable/models.html
2https://github.com/facebookresearch/pycls

3

https://pytorch.org/vision/stable/models.html
https://github.com/facebookresearch/pycls


Table 6: Hyper Parameter settings for on ImageNet.

Solver SGD(0.9,5e-4)
λ [6] 0.0005
LR policy cosine,base_lr=0.01
Batch size 256
Epochs 120

For ResNet50, the training phase takes ∼ 40 hours on 8 RTX2080Ti GPUs.

4.3 CIFAR100 Experiments

We train the dense model with hyper parameters as presented in Table 7.

Table 7: Hyper Parameters for training the dense model on CIFAR100.

Solver SGD(0.9,1e-4)
LR policy Multi-step (0:0.1,80:0.01,120:0.001 )
Batch size 64
Epochs 160

Table 8 shows the hyper parameters for training layer-wise N:M sparse model.

Table 8: Hyper Parameter for training the sparse model on CIFAR100.

Solver SGD(0.9,5e-4)
λ [6] 0.0005
LR policy Multi-step (0:1e-2,80:1e-3,120:1e-4 )
Batch size 64
Epochs 160

References
[1] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,

and Paulius Micikevicius. “Accelerating sparse deep neural networks”. In: arXiv preprint arXiv:2104.08378
(2021).

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A large-scale hierarchical
image database”. In: 2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[3] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.
[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image recognition”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.
[5] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. “Designing network

design spaces”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 10428–10436.

[6] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng
Li. “Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch”. In: International
Conference on Learning Representations. 2021.

4


	Additional ablation experiments on ImageNet dataset
	Study on the policy of fixed N
	Sensitivity of hyper-parameter 1 and 2 
	Detailed Experimental settings
	DominoSearch
	ImageNet Experiments
	CIFAR100 Experiments


