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Abstract

Research on recovering the latent factors of variation of high dimensional data has
so far focused on simple synthetic settings. Mostly building on unsupervised and
weakly-supervised objectives, prior work missed out on the positive implications
for representation learning on real world data. In this work, we propose to leverage
knowledge extracted from a diversified set of supervised tasks to learn a common
disentangled representation. Assuming that each supervised task only depends on
an unknown subset of the factors of variation, we disentangle the feature space of
a supervised multi-task model, with features activating sparsely across different
tasks and information being shared as appropriate. Importantly, we never directly
observe the factors of variations, but establish that access to multiple tasks is
sufficient for identifiability under sufficiency and minimality assumptions. We
validate our approach on six real world distribution shift benchmarks, and different
data modalities (images, text), demonstrating how disentangled representations can
be transferred to real settings.

1 Introduction

A fundamental question in deep learning is how to learn meaningful and reusable representation from
high dimensional data observations [8, 75, 78, 77]. A core area of research pursuing is centered on
disentangled representation learning (DRL) [56, 8, 33] where the aim is to learn a representation
which recovers the factors of variations (FOVs) underlying the data distribution. Disentangled
representations are expected to contain all the information present in the data in a compact and
interpretable structure [46, 16] while being independent from a particular task [29]. It has been
argued that separating information into interventionally independent factors [78] can enable robust
downstream predictions, which was partially validated in synthetic settings [19, 58]. Unfortunately,
these benefits did not materialize in real world representations learning problems, largely limited by a
lack of scalability of existing approaches.

In this work we focus on leveraging knowledge from different task objectives to learn better represen-
tations of high dimensional data, and explore the link with disentanglement and out-of-distribution
(OOD) generalization on real data distributions. Representations learned from a large diversity of
tasks are indeed expected to be richer and generalize better to new, possibly out-of-distribution, tasks.
However, this is not always the case, as different tasks can compete with each other and lead to
weaker models. This phenomenon, known as negative transfer [61, 91] in the context of transfer
learning or task competition [83] in multitask learning, happens when a limited capacity model is
used to learn two different tasks that require expressing high feature variability and/or coverage.
Aiming to use the same features for different objectives makes them noisy and often increases the
sensitivity to spurious correlations [35, 27, 7], as features can be both predictive and detrimental for
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different tasks. Instead, we leverage a diverse set of tasks and assume that each task only depends on
an unknown subset of the factors of variation. We show that disentangled representations naturally
emerge without any annotation of the factors of variations under the following two representation
constraints:

• Sparse sufficiency: Features should activate sparsely with respect to tasks. The representation
is sparsely sufficient in the sense that any given task can be solved using few features.

• Minimality: Features are maximally shared across tasks whenever possible. The representa-
tion is minimal in the sense that features are encouraged to be reused, i.e., duplicated or split
features are avoided.

These properties are intuitively desirable to obtain features that (i) are disentangled w.r.t. to the
factors of variations underlying the task data distribution (which we also theoretically argue in
Proposition 2.1), (ii) generalize better in settings where test data undergo distribution shifts with
respect to the training distributions, and (iii) suffer less from problems related to negative transfer
phenomena. To learn such representations in practice, we implement a meta learning approach,
enforcing feature sufficiency and sharing with a sparsity regularizer and an entropy based feature
sharing regularizer, respectively, incorporated in the base learner. Experimentally, we show that our
model learns meaningful disentangled representations that enable strong generalization on real world
data sets. Our contributions can be summarized as follows:

• We demonstrate that is possible to learn disentangled representations leveraging knowledge
from a distribution of tasks. For this, we propose a meta learning approach to learn a feature
space from a collection of tasks while incorporating our sparse sufficiency and minimality
principles favoring task specific features to coexist with general features.

• Following previous literature, we test our approach on synthetic data, validating in an ideal-
ized controlled setting that our sufficiency and minimality principles lead to disentangled
features w.r.t. the ground truth factors of variation, as expected from our identifiability result
in Proposition 2.1.

• We extend our empirical evaluation to non-synthetic data where factors of variations are not
known, and show that our approach generalizes well out-of-distribution on different domain
generalization and distribution shift benchmarks.

2 Method

Given a distribution of tasks t ∼ T and data (xt, yt) ∼ Pt for each task t, we aim to learn a
disentangled representation g(x) = ẑ ∈ Ẑ ⊆ RM , which generalizes well to unseen tasks. We learn
this representation g by imposing the sparse sufficiency and minimality inductive biases.

2.1 Learning sparse and shared features

Our architecture (see Figure 1) is composed of a backbone module gθ that is shared across all tasks
and a separate linear classification head fϕt , which is specific to each task t. The backbone is
responsible to compute and learn a general feature representation for all classification tasks. The
linear head solves a specific classification problem for the task-specific data (xt, yt) ∼ Pt in the
feature space Ẑ while enforcing the feature sufficiency and minimality principles. Adopting the
typical meta-learning setting [34], the backbone module gθ can be viewed as the meta learner while
the task-specific classification heads fϕt

can be viewed as the base learners. In the meta-learning
setting we assume to have access to samples for a new task given by a support set U , with elements
(xU , yU ) ∈ U . These samples are used to fit the linear head fϕ∗ leading to the optimal feature
weights for the given task. For a query xQ ∈ Q, the prediction is obtained by computing the forward
pass ŷ = fϕ∗(gθ(x

Q)).

Enforcing feature minimality and sufficiency. To solve a task in the feature space Ẑ of the
backbone module we impose the following regularizer Reg(ϕ) on the classification heads fϕ with
parameter ϕ ∈ RT×M×C , where T is the number of tasks, M the number of features, and C the
number of classes. The regularizer is responsible for enforcing the feature minimality and sufficiency

2



xU gθ fϕẑUgθ ŷU
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Figure 1: Model scheme: Illustrations of the (Top) the inner loop stage and outer loop following the
steps of the algorithmic procedure described in Section B.1 in the Appendix.

properties. It is composed of the weighted sum of a sparsity penalty RegL1 and an entropy-based
feature sharing penalty: Regsharing

Reg(ϕ) = αRegL1
(ϕ) + βRegsharing(ϕ), (1)

with scalar weights α and β. The penalty terms are defined by:

RegL1
(ϕ) =

1

TC

∑
t,c,m

|ϕt,m,c| (2)

Regsharing(ϕ) = H(ϕ̃m) = −
∑
m

ϕ̃mlog(ϕ̃m) (3)

where ϕ̃m = 1
TC

∑
t,c |ϕt,c,m|∑

t,c,m |ϕt,c,m| are the normalized classifier parameters. Sufficiency is enforced by a
sparsity regularizer given by the L1-norm, which constrains classification head to use only a sparse
subset of the features. Minimality is enforced by the feature sharing term: minimizing the entropy of
the distribution of feature importances (i.e. normalized |ϕt|) averaged across a mini batch of T tasks,
leads to a more peaked distribution of activations across tasks. This forces features to cluster across
tasks and therefore be reused by different tasks, when useful.We remark that different choices for the
regularizers coming from the linear multitask learning literature (e.g. [59, 39, 38]) to enforce sparse
sufficiency and minimality are indeed possibile. We leave their exploration as a future direction.

2.2 Training method

We train the model in meta-learning fashion by minimizing the test error over the expectation of the
task distribution t ∼ T . This can be formalized as a bi-level optimization problem. The optimal
backbone model gθ∗ is given by the outer optimization problem:

min
θ

Et[Louter(fϕ∗(gθ(x
Q
t ), y

Q
t ))], (4)

where fϕ∗ are the optimal classifiers obtained from solving the inner optimization problem, and
(xQ

t , y
Q
t ) ∈ Qt are the test (or query) datum from the query set Qt for task t. Let Ut be the support

set with samples (xU
t , y

U
t ) ∈ U for task t, where typically the support set is distinct from the query

set, i.e., U ∩Q = ∅. The optimal classifiers fϕ∗ are given by the inner optimization problem:

min
ϕ

1

T

∑
t

Linner(ŷ
U
t , y

U
t ) +Reg(ϕ), (5)

where ŷUt = fϕ(gθ(x
U
t ). For both the inner loss Linner and outer loss Louter we use the cross

entropy loss.

Task generation. Our method can be applied in a standard supervised classification setting where
we construct the tasks on the fly as follows. We define a task t as a C-way classification problem.
We first select a random subset of C classes from a training domain Dtrain which contains Ktrain

classes. For each class we consider the corresponding data points and select a random support set Ut

with elements (xU
t , y

U ) ∈ U and a disjoint random query set Qt with elements (xQ
t , y

Q) ∈ Qt.

Algorithm. In practice we solve the bi-level optimization problem (4) and (5) as follows. In each
iteration we sample a batch of T tasks with the associated support and query set as described above.
First, we use the samples from the support set St to fit the linear heads fϕ by solving the inner
optimization problem (5) using stochastic gradient descent for a fixed number of steps. Second, we
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use the samples from the query set Qt to update the backbone gθ by solving the outer optimization
problem (4) using implicit differentiation [11, 31]. Since the optimal solution of the linear heads ϕ∗

depend on the backbone gθ, a straightforward differentiation w.r.t. θ is not possible. We remedy this
issue by using the approximation strategy of [28] to compute the implicit gradients. The algorithm
is summarized in section B.1 of the Appendix.

2.3 Theoretical analysis

We analyze the implications of the proposed minimality and sparse sufficiency principles and show in
a controlled setting that they indeed lead to identifiability. As outlined in Figure 2, we assume that
there exists a set of independent latent factors z ∼

∏d
i=1 p(zi) that generate the observations via an

unknown mixing function x = g∗(z). Additionally, we assume that the labels yt for a task t only
depend on a subset of the factors indexed by St ∼ P (S), where S is an index set on z ∈ Z , via some
unknown mixing function yt = f∗

t (z) (potentially different for different tasks). We formalize the two
principles that are imposed on f∗ by:

1. sufficiency: f∗
t = f∗

t |St
for St ∼ p(S)

2. minimality: ̸ ∃S′ ̸= St ⊂ S s.t. f∗
t |S′ = f∗

t ,

where f |St denotes that the input to a function f is restricted to the index set given by St (all
remaining entries are set to zero). (1) states that f∗

t only uses a subset of features, and (2) states that
there are not be duplicate features.
Proposition 2.1. Assume that g∗ is a diffeomorphism (smooth with smooth inverse), f∗ satisfies
the sufficiency and minimality properties stated above, and p(S) satisfies: p(S ∩ S′ = {i}) > 0 or
p({i} ∈ (S ∪ S′)− (S′ ∩ S)) > 0. Observing unlimited data from p(X,Y ), it is possible to recover
a representation ẑ that is an axis aligned, component wise transformation of z.

Remarks: Overall, we see this proposition as validation that in an idealized setting our inductive
biases are sufficient to recover the factors of variation. Note that the proof is non-constructive and does
not entail a specific method. In practice, we rely on the same constraints as inductive biases that lead
to this theoretical identifiability and experimentally show that disentangled representations emerge in
controlled synthetic settings. On real data, (1) we cannot directly measure disentanglement, (2) a
notion of global ground-truth factors may even be ill-posed, and (3) the assumptions of Proposition 2.1
are likely violated. Still, sparse sufficiency and minimality yield some meaningful factorization of
the representation for the considered tasks.

Relation to [47] and [58]: Our theoretical result can be reconnected with concurrent work [47] and
can be seen as a corollary with a different proof technique and slightly relaxed assumptions. The
main difference is that our feature minimality allows us to also cover the case where the number
of factors of variations is unknown, which we found critical in real world data sets (the main focus
of our paper). Instead, they only assume sparse sufficiency, which is enough for identifiability if
the ground-truth number of factors is known, but is not enough to recover high disentaglement when
this is not the case (see Figure 3) and does not translate well to real data, see Table 16 with the
empirical comparison in Appendix D.8. Interestingly, their analysis also hints at the fact that our
approach also benefits in terms of sample complexity on transfer learning downstream tasks. Our
proof technique follows the general construction developed for multi-view data in [58], adapted to
our different setting. Instead of observing multiple views with shared factors of variation, we observe
a single task that only depend on a subset of the factors.

3 Related work

Learning from multiple tasks and domains. Our method addresses the problem of learning a
general representation across multiple and possibly unseen tasks [15, 103] and environments [105,
32, 44, 97, 63, 94, 64] that may be competing with each other during training [61, 91, 83]. Prior
research tackled task competition by introducing task specific modules that do not interact during
training [67, 101, 80]. While successfully learning specialized modules, these approaches can not
leverage synergistic information between tasks, when present. On the other hand, our approach is
closer to multi-task methods that aim at learning a generalist model, leveraging multi-task interactions
[106, 5]. Other approaches that leverage a meta-learning objective for multi-task learning have been
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Figure 2: Assumed causal generative model: the gray variables are unobserved. Observations x are
generated by some unknown mixing of a set of factors of variations z. Additionally, we observe a
distribution of supervised tasks, only depending on a subset of factors of variations indexed by S.

formulated [18, 81, 50, 9]. In particular, [50] proposes to learn a generalist model in a few-shot
learning setting without explicitly favoring feature sharing, nor sparsity. Instead, we rephrase the
multi-task objective function encoding both feature sharing and sparsity to avoid task competition.

Similar to prior work in domain generalization, we assume the existence of stable features for a given
task [64, 4, 86, 40, 90] and amortize the learning over the multiple environments. Differently than
prior work, we do not aim to learn an invariant representation a priori. Instead, we learn sufficient
and minimal features for each task, which are selected at test time fitting the linear head on them.
In light of [32], one can interpret our approach as learning the final classifier using empirical risk
minimization but over features learned with information from the multiple domains.

Disentangled representations. Disentanglement representation learning [8, 33] aims at recovering
the factors of variations underlying a given data distribution. [56] proved that without any form
of supervision (whether direct or indirect) on the Factors of Variation (FOV) is not possible to
recover them. Much work has then focused on identifiable settings [58, 25] from non-i.i.d. data,
even allowing for latent causal relations between the factors. Different approaches can be largely
grouped in two categories. First, data may be non-independently sampled, for example assuming
sparse interventions or a sparse latent dynamics [30, 55, 13, 100, 2, 79, 48]. Second, data may be
non-identically distributed, for example being clustered in annotated groups [37, 41, 82, 95, 60]. Our
method follows the latter, but we do not make assumptions on the factor distribution across tasks
(only their relevance in terms of sufficiency and minimality). This is also reflected in our method, as
we train for supervised classification as opposed to contrastive or unsupervised learning as common
in the disentanglement literature. The only exception is the work of [47] discussed in Section 2.3.

4 Experiments

We start by highlighting here the experimental setup of this paper along with its motivation.

Synthetic experiments. We first evaluate our method on benchmarks from the disentanglement
literature [62, 14, 71, 49] where we have access to ground-truth annotations and we can assess
quantitatively how well we can learn disentangled representations. We further investigate how
minimality and feature sharing are correlated with disentanglement measures (Section 4.1) and how
well our representations, which are learned from a limited set of tasks, generalize their composition.
The purpose of these experiments is to validate our theoretical statement, showing that if the
assumptions of Proposition 2.1 hold, our methods quantitatively recover the factors of variation.

Domain generalization. On real data sets, we can neither quantitatively measure disentanglement
nor are we guaranteed identifiability (as assumptions may be violated). Ultimately, the goal of
disentangled representations is to learn features that lend themselves to be easily and robustly
transferred to downstream tasks. Therefore, we first evaluate the usefulness of our representations
with respect to downstream tasks subject to distribution shifts, where isolating spurious features was
found to improve generalization in synthetic settings [19, 58] To assess how robust our representations
are to distribution shifts, we evaluate our method on domain generalization and domain shift tasks on
six different benchmarks (Section 4.2). In a domain generalization setting, we do not have access
to samples coming from the testing domain, which is considered to be OOD w.r.t. to the training
domains. However, in order to solve a new task, our method relies on a set labeled data at test time to
fit the linear head on top of the feature space. Our strategy is to sample data points from the training
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distribution, balanced by class, assuming that the label set Y does not change in the testing domain,
although its distribution may undergo subpopulation shifts.

Few-shot transfer learning. Lastly, we test the adaptability of the feature space to new domains
with limited labeled samples. For transfer learning tasks, we fit a linear head using the available
limited supervised data. The sparsity penalty α is set to the value used in training; the feature sharing
parameter β is defaulted to zero unless specified.

Experimental setting. To have a fair comparison with other methods in the literature, we adopt the
standard experimental setting of prior work [32, 44]. Hyperparameters α and β are tuned performing
model selection on validation set, unless specified otherwise. For comparison with baselines, we
substitute our backbone with that of the baseline (e.g. for ERM models, we detach the classification
head) and then fit a new linear head on the same data. The linear head module trained at test time on
top of the features is the same both for our and compared methods. Despite its simplicity, we report
the ERM baseline for comparison in our experiments in the main paper, since it has been shown to
perform best in average on domain generalization benchmarks [32, 44]. We further compare with
other consolidated approaches in the literature such as IRM [4], CORAL [85] and GroupDRO [73]
and include a large and comprehensive comparison with [99, 10, 51, 53, 26, 54, 65, 102, 36, 45] in
AppendixD.4. Experimental details are fully described in Appendix C.

4.1 Synthetic experiments

We start by demonstrating that our approach is able to recover the factors of variation underlying a
synthetic data distribution like [62]. For these experiments, we assume to have partial information
on a subset of factors of variation Z, and we aim to learn a representation ẑ that aligns with them
while ignoring any spurious factors that may be present. We sample random tasks from a distribution
T (see Appendix C.3 for details) 5and focus on binary tasks, with Y = {0, 1}. For the DSprites
dataset an example of valid task is “There is a big object on the left of the image”. In this case, the
partially observed factors (quantized to only two values) are the x position and size. In Table 1, we
show how the feature sufficiency and minimality properties enable disentanglement in the learned
representations. We train two identical models on a random distribution of sparse tasks defined on
FOVs, showing that, for different datasets [62, 14, 49, 71], the same model without regularizers
achieves a similar in-distribution (ID) accuracy, but a much lower disentanglement.

[47]

Figure 3: Role of minimality: We plot the DCI
metric of a set of models (red dots) trained on
fixed tasks from DSprites: Training without
regularizers leads to no disentanglement (green).
Enforcing sparsity alone (yellow, akin to [47])
achieves good disentanglement (DCI = 71.9),
but some features may be split or duplicated.
Enforcing both minimality and sparse sufficiency
(magenta) attains the best DCI (98.8). When β is
too high (> 0.25) activated features collapses into
few clusters with respect to tasks. For complete
results and experiments on additional datasets see
Table 8 and Figures 6, 7 in Appendix.

We then randomly draw and fix 2 groups of tasks
with supports S1, S2 (18 in total), which all have
support on two FOVs, |S1| = |S2| = 2. The
groups share one factor of variation and differ
in the other one, i.e. S1 ∩ S2 = {i} for some
{i} ∈ Z. The data in these tasks are subject to
spurious correlations, i.e. FOVs not in the task
support may be spuriously correlated with the
task label. We start from an overestimate of the
dimension of z̃ of 6, trying to recover z of size
3. We train our network to solve these tasks,
enforcing sufficiency and minimality on the rep-
resentation with different regularization degrees.
In Figure 3, we show how the alignment of the
learned features with the ground truth factors of
variations depend on the choice of α, β, going
from no disentanglement (DCI = 27.8). to
good alignment as we enforce more sufficiency
and minimality. The model that attains the best
alignment (DCI = 98.8) uses both sparsity and
feature sharing. Sufficiency alone (akin to the
method of [47]) is able to select the right support
for each task, but features are split or duplicated,
attaining lower disentanglement (DCI = 71.9).
The feature sharing penalty ensures clustering
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in the feature space w.r.t. tasks, ensuring to reach high disentanglement, although it may result in the
failure cases, when β is too high (β > 0.25).

Table 1: Enforcing disentanglement: DCI [22] disentanglement scores and ID accuracy on test
samples for a model trained without enforcing sufficiency and minimality (top row), and model with
the regularizers activated (bottom row). While attaining similar performance on accuracy, the model
with the activated regularizer always show higher disentanglement. See Table 7 for additional scores.

Dsprites 3Dshapes SmallNorb Cars

No reg
(DCI,Acc) (16.6,94.4) (44.4,96.2 ) (16.5,96.1) (60.5,99.8)

α, β
(DCI,Acc) (69.9,95.8) (87.7, 95.8) (55.8,95.6 ) (92.3,99.8 )

Figure 4: Task compositional generalization:
Mean accuracy over 100 random test tasks reported
for group of tasks of growing support (second,
third, fourth column) for a model trained without
inductive biases (blue, attaining DCI = 29.4) and
enforcing them (orange, DCI = 59.4). The latter
show better compositional generalization resulting
from the properties enforced on the representation.
Exact values are reported in Table 9 in Appendix.

Disentanglement and minimality are corre-
lated. In the synthetic setting, we also show
the role of the feature sharing penalty. Mini-
mizing the entropy of feature activations across
mini-batches of tasks results in clusters in the
feature space. We investigate how the strength
of this penalty correlates well with disentangle-
ment metrics [22] training different models on
Dsprites which differ by the value of β. For
15 models trained increasing β from 0 to 0.2
linearly, we observe a correlation coefficient
with the DCI metric associated to representa-
tions compute by each model of 94.7, showing
that the feature sharing property strongly encour-
ages disentanglement. This confirms again that
sufficiency alone (i.e. enforcing sparsity) is not
enough to attain good disentanglement.

Task compositional generalization. Finally,
we evaluate the generalization capabilities of
the features learned by our method by testing
our model on a set of unseen tasks obtained by
combining tasks seen during training. To do
this, we first train two models on the AbstractDSprites dataset using a random distribution of
tasks, where we limit the support of each task to be within 2 (i.e. |S| = 2). The models differ in
activating/deactivating the regularizers on the linear heads. Then, we test on 100 tasks drawn from a
distribution with increasing support on the factors of variation (|S| = 3, |S| = 4, |S| = 5), which
correspond to composition of tasks in the training distribution; see Figure 4, with the accompaning
Table 9 in Appendix D.

4.2 Domain Generalization

In this section we evaluate our method on benchmarks coming from the domain generalization
field [32, 93, 70] and subpopulation distribution shifts [73, 44], to show that a feature space learned
with our inductive biases performs well out of real world data distribution.

Subpopulation shifts. Subpopulation shifts occur when the distribution of minority groups changes
across domains. Our claim is that a feature space that satisfies sparse sufficiency and minimality
is more robust to spurious correlations which may affect minority groups, and should transfer
better to new distributions. To validate this, we test on two benchmarks Waterbirds [73], and
CivilComments [44] (see Appendix C.1).

For both, we use the train and test split of the original dataset. In Table 4, last row, we report the
results on the test set of Waterbirds for the different groups in the dataset (landbirds on land,
landbirds on water, waterbirds on land, and waterbirds on water, respectively). We fit the linear head

7



Table 2: Quantitative results for few-shot transfer learning, with our method consistently outperform-
ing ERM across all sample sizes and data sets.

N-shot/Algorithm OOD accuracy (averaged by domains)
1-shot PACS VLCS OfficeHome Waterbirds
ERM 80.5 59.7 56.4 79.8
Ours 81.5 68.2 58.4 88.4

5-shot
ERM 87.1 71.7 75.7 79.8
Ours 88.3 74.5 77.0 87.6

10-shot
ERM 87.9 74.0 81.0 84.2
Ours 90.4 77.3 82.0 89.2

Table 3: Quantitative evaluation on Camelyon17: we report accuracy both on ID and OOD splits.
Our approach achieves significantly higher validation and test OOD accuracy.

Validation(ID) Validation (OOD) Test (OOD)

ERM 93.2 84 70.3
CORAL 95.4 86.2 59.5

IRM 91.6 86.2 64.2
Ours 93.2 ±0.3 89.9±0.6 74.1±0.2

on a random subset of the training domain, balanced by class, repeat 10 times and report accuracy
and standard deviation on test. For CivilComments we report the average and worst accuracy in
Figure 5, where we compare with ERM and groupDRO [73]. While performing almost on par w.r.t.
ERM, our method is more robust to spurious correlation in the dataset, showing the higher worst
group accuracy. Importantly, we outperform GroupDRO, which uses information on the subdomain
statistics, while we do not assume any prior knowledge about them. Results per group are reported in
the Appendix (Table 11).

Figure 5: Quantitative results on CivilCom-
ments: we report the accuracy on test av-
eraged across all demographic groups (left
group), and the worst group accuracy, on the
right. Our method (green) performs similarly
in terms of average accuracy and outperforms
in terms of worst group accuracy, without us-
ing any knowledge on the group composition
in the training data. For exact values and error
estimates, see Table 10 in the Appendix.

DomainBed. We evaluate the domain generalization
performance on the PACS, VLCS and OfficeHome
datasets from the DomainBed [32] test suite (see Ap-
pendix C.1 for more details). On these datasets, we
train on N − 1 and leave one out for testing. Reg-
ularization parameters α and β are tuned according
to validation sets of PACS, and used accordingly on
the other dataset. For these experiments we use a
ResNet50 pretrained on Imagenet [17] as a back-
bone, as done in [32] To fit the linear head we sam-
ple 10 times with different samples sizes from the
training domains and we report the mean score and
standard deviation. Results are reported in Table 4,
showing how enforcing sparse sufficiency and mini-
mality leads consistently to better OOD performance.
Comparisons with 13 additional baselines is in Ap-
pendix D.4.

Camelyon17. The model is trained according to the
original splits in the dataset. In Table 3 we report the
accuracy of our model on in-distribution and OOD
splits, compared with different baselines [84, 4]. Our method shows the best performance on the
OOD test domains. The intuition of why this happens is that, due to minimality, we retain more
features which are shared across the three training domains, giving less importance to the ones
that are domain-specific (which contain the spurious correlations with the hospital environmental
informations). This can be further enforced at test time, as we show in the ablation in Appendix D.9,
trading off in distribution performance for OOD accuracy.
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Table 4: Results for domain generalization on DomainBed. Our approach achieves consistently
higher average OOD generalization, outperforming ERM in all cases except one.

Dataset/Algorithm OOD accuracy (by domain)
PACS S A P C Average
ERM 77.9 ± 0.4 88.1 ± 0.1 97.8 ± 0.0 79.1 ± 0.9 85.7
Ours 83.1 ± 0.1 86.7± 0.8 97.8 ± 0.1 83.5 ± 0.1 87.5

VLCS C L V S Average
ERM 97.6± 1.0 63.3 ± 0.9 76.4 ± 1.5 72.2 ± 0.5 77.4
Ours 98.1± 0.2 63.4± 0.5 78.2 ± 0.7 73.9± 0.8 78.4

OfficeHome C A P R Average
ERM 53.4± 0.6 62.7 ± 1.1 76.5 ± 0.4 77.3 ± 0. 67.5
Ours 56.3± 0.1 66.7 ± 0.7 79.2± 0.5 81.3 ± 0.4 70.9

Waterbirds LL LW WL WW Average
ERM 98.6 ± 0.3 52.05 ± 3 68.5 ± 3 93 ± 0.3 81.3
Ours 99.5 ± 0.1 73.0 ± 2.5 85.0 ± 2 95.5 ± 0.4 90.5

4.3 Few-shot transfer learning.

We finally show the ability of features learned with our method to adapt to a new domain with a small
number of samples in a few-shot setting. We compare the results with ERM in Table 2, averaged by
domains in each benchmark dataset. The full scores for each domain are in Appendix D.5 for 1-shot,
5-shot, and 10-shot setting, reporting the mean accuracy and standard deviations over 100 draws. Our
approach achieves consistently higher accuracy than ERM, showing the better adaptation capabilities
of our minimal and sufficently sparse feature space.

4.4 Additional results

In Appendix D we report a large collection of additional results, including comparison with 14
baseline methods on the domain shift benchmarks (D.4), a qualitative and quantitative analysis
on the minimality and sparse sufficiency properties in the real setting (D.2), a favorable additional
comparison on meta learning benchmarks, with 6 other baselines including [47](D.8), an ablation
study on the effect of clustering features at test time (D.9), and a demonstration on the possibility
to obtain a task similarity measure as a consequence of our approach (D.7).

5 Conclusions

In this paper, we demonstrated how to learn disentangled representations from a distribution of tasks
by enforcing feature sparsity and sharing. We have shown this setting is identifiable and have validated
it experimentally in a synthetic and controlled setting. Additionally, we have empirically shown
that these representations are beneficial for generalizing out-of-distribution in real-world settings,
isolating spurious and domain specific factors that should not be used under distribution shift.

Limitations and future work: The main limitation of our work is the global assumption on the
strength of the sparsity and feature sharing regularizers α and β across all tasks. In real settings
these properties of the representations might need to change for different tasks. We have already
observed this in the synthetic setting in Figure 3, where when β > 0.25 features cluster excessively
and are unable to achieve clear disentanglement and do not generalize well. Future work may exploit
some level of knowledge on the task distribution (e.g. some measure of distance on tasks) in order
to tune α, β adaptively during training, or to train conditioning on a distribution of regularization
parameters as in [21], enabling more generalization at test time. Another limitation is in the sampling
procedure to fit the linear head at test time: sampling randomly from the training set (balanced by
class) may not be enough to achieve the best performance under distributions shifts. Alternative
sampling procedures, e.g. ones that incorporate knowledge on the distribution shift if available (as in
[43]), may lead to better performance at test time.
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A Proof of Proposition 1

To prove Proposition 2.1 we rely on the same proof construction of [58], adapting it to our setting.
Intuitively, the proposition states that when minimality and sparse sufficiency properties hold it is
possible to recover the factors of variations z given enough observations from p(x, y), if the following
assumptions on the task distribution hold: (i) the probability of two arbitrary tasks having a singleton
intersection of support on the factor of variations is non zero; (ii) the probability that their difference
of supports is a singleton is non zero.

The proof is sketched in three steps:

• First, we prove identifiability when the support S of a task is arbitrary but fixed, where we
drop the subscript t for convenience.

• Second, we randomize on S, to extend the proof for S drawn at random.
• Third, we extend the proof to the case when the dimensionality of Z is unknown and we

start on overestimate of it to recover it.

Identifiability with fixed task support We assume the existence of the generative model in Figure 2,
which we report here for convenience:

p(z) =
∏
i

p(zi) S ∼ p(S) (6)

x = g∗(z) y = f∗
S(z) (7)

together with the assumptions specified in theorem statement. We fix the support of the task S. We
indicate with g : Z → X the invertible smooth, candidate function we are going to consider, whose
inverse corresponds to q(z|x). We denote with T ∈ S which indexes the coordinate subspace of
image of g−1 corresponding to the unknown coordinate subspace S of factors of variation on which
the fixed task depends on. Fixing T requires knowledge of |S|. The candidate function g−1 must
satisfy:

f |T (g−1(x)) = y (8)

f |T̄ (g−1(x)) ̸= y (9)

where T̄ denotes the indices in the complement of T . f denotes a predictor which satisfies the same
assumptions on f∗ on T . We parametrize g−1 with g∗−1 and set:

g−1 = h−1 ◦ g∗−1 where h : [0, 1]d → Z, mapping from the uniform distribution on Rd to Z. We
can rewrite the two above constraints as:

f |T (h−1(z)) = y (10)

f |T̄ (h−1(z)) ̸= y (11)

We claim that the only admissible functions h−1 maps each entry in z to unique coordinate in T .
We observe that due to its smoothness and invertibility, h−1 maps Z to the submanifolds Ms,Ms̄,
which are disjoint. By contradiction:

• if MS̄ does not lie in T̄ then minimality is violated.
• if MS does not lie in T then sufficiency is violated

h−1 maps each entry in z to unique coordinate in T . Therefore there exist a permutation π s.t.:

h−1
T (z) = h̄T (zπ(S)) (12)

h−1
T̄

(z) = h̄T̄ (zπ(S̄)) (13)

The Jacobian of h−1 is a blockwise matrix with block indexed by T . So we can identify the two
blocks of factors in S, S̄ but not necessarily the factors within, as they may be still entangled.
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Randomization on S

we now consider S to be drawn at random, therefore we observe p(x, y|S) without never observing
S directly. g−1 must now associate each p(x, y) with a unique T , as well as a unique predictor f ,
for each S ∼ p(S) Indeed suppose that p(x, y|S = S1) and p(x, y|S = S2) with S1, S2 ∼ p(S) and
S1 ̸= S2. Then if T would be the same for both tasks (as f ), eq (6) could only be satisfied for a subset
of size |S1 ∩S2| < |S1 ∪S2| , while T is required to be of size |S1 ∪S2| This corresponds to say that
each task has its own sparse support and its own predictor. Conversely all p(x, y) ∈ supp(p(x, y|S))
need to be associated to the T and the same predictor f , since they will all share the same subspace and
cannot be associated to different T . Notice also that |S1 ∩S2| = |T1 ∩T2| and |S1 ∪S2| = |T1 ∪T2|.
We further assume:

∀zi either p(S ∩ S′ = {i}) > 0 or p({i} ∈ (S ∪ S′)− (S′ ∩ S)) > 0

We observe every factor as the intersection of the sets S, S′ which will be reflected in T, T ′ or we
observe single factors in the difference between the intersection and the union of S, S′. Examples of
the two cases are illustrated below:

This together with (8) and (9) implies:

h−1
i (z) = h̄i(zπ(i)) ∀i ∈ [d] (14)

This further implies that the jacobian of h̄ is diagonal. By the change of variable formula we have:

q(ẑ) = p(h̃(zπ([d])))

∣∣∣∣det ∂

∂zπ([d]))
h̃

∣∣∣∣ = d∏
i01

p(h̃i(zπ(i)))

∣∣∣∣ ∂

∂zπ(i)
h̃i

∣∣∣∣ (15)

This holds for the jacobian being diagonal and invertibility of h̃. Therefore q(ẑ) is a coordinate-wise
reparametrization of p(z) up to a permutation of the indices. A change in a coordinate of z implies a
change in the unique corresponding coordinate of ẑ, so g disentangles the factors of variation.

Dimensionality of the support S

Previously we assumed that the dimension of ẑ is the same as z. We demonstrate that even when d is
unknown starting from an overstimate of it, we can still recover the factors of variations. Specifically,
we consider the case when d̂ > d. In this case our assumption about the invertibility of h is
violated. We must instead ensure that h maps Z to a subspace of Ẑ with dimension d. To substitute
our assumption on inveribility on h, we will instead assume that z and ẑ have the same mutual
information with respect to task labels Y , i.e.I(Z, Y ) = I(Ẑ, Y ) Note that mutual information is
invariant to invertible transformation, so this property was also valid in our previous assumption.

Now, consider two arbitrary tasks with |S ∩ S′| ≠ ∅ =k but |T ∩ T ′| < k, i.e. some features are
duplicated/splitted. Hence f, f ′ while have different support , i.e.:

f |T = f ′|T ′ = f∗

We observe that in this situation nor sufficiency, nor minimality are necessarily violated because:
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• f |T = f ′|T ′ = f∗ (sufficiency is not violated)

• T ∩ T ′ = ∅ =⇒ T ̸⊂ T ′, T ′ ̸⊂ T (minimality is not violated)

In other words we must ensure that a single fov zi is not mapped to different entries in ẑ (feature
splitting or duplication). We fix two arbitrary tasks with |S ∩ S′| ̸= ∅ =k but |T ∩ T ′| < k, i.e.
some features are duplicated. We know that |S| = |T | and |S′| = |T ′| otherwise sufficency and
minimaliy would be violated. Then if |T ∩ T ′| < k, then |T ∪ T ′| > |S ∪ S′| = d − k we have
p(|T ∪ T ′|)=p(supp(p(y|ẑ)) + supp(p′(y′|ẑ′))) = p(

∑
i supp(fi(.)) , and since

H[p(
∑
i

supp(fi(.))] > H[p(
∑
i

supp(fi(.))] (16)

but we have assumed:

I(Z, Y ) = I(Ẑ, Y ) (17)

�
��H(Y )−H(Y |Ẑ) =�

��H(Y )−H(Y |Z) (18)

H(Y |Ẑ) = H(Y |Z) (19)

H[p(Y |Ẑ) > 0] = H[p(Y |Z) > 0] (20)

2H[p(Y |Ẑ)>0] = 2H[p(Y |Z)>0] (21)

|supp(p(Y |Ẑ))| = |supp(p(Y |Z)| (22)

this last passage is due to relation between cardinality and entropy: for uniform distributions the
exponential of the entropy is equal to the cardinality of the support of the distribution.

|supp(f)| = |supp(f∗)| (23)

We know that (12) must hold for every task, therefore:
∑

i I(Z, Yi) =
∑

i I(Ẑ, Yi) for each i then:∑
i |supp(f̂i)| =

∑
i |supp(f∗

i )| |
⋃

i Ti| = |
⋃

i Si| therefore (12) contradicts our assumption (13).
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B Implementation details

B.1 Training algorithm

Algorithm 1 Training algorithm

1: Input: A task distribution T
2: while Not converged do
3: Sample a batch BT of T tasks t ∼ T
4: Sample (Ut, Qt) from each task in the batch
5: # Inner loop
6: for each t in BT do
7: Compute zUt = gθ(x

U
t )

8: end for
9: Solve ϕ∗ = argminϕ

1
T

∑
t Linner(fϕ(z

U
t ), y

U
t ) +Reg(ϕ)

10: # Outer loop
11: for each t do
12: Compute zQt = gθ(x

Q
t )

13: end for
14: Compute Louter(fϕ∗(gθ(x

Q
t ), y

Q
t ))

15: Compute ∂Louter(θ)
∂θ as in [28]

16: Update θ
17: end while

B.2 Implicit gradients

In the backward pass, denoting with L∗
outer = Louter(f

∗
ϕ(gθ(x

Q)), Y Q) denoting the loss computed
with respect to the optimal classifier f∗

ϕ on the query samples (xQ, Y Q), we have to compute the
following gradient:

∂L∗
outer(θ)

∂θ
=

∂Louter(θ, ϕ
∗)

∂θ
+

Louter(θ, ϕ
∗)

∂ϕ∗
∂ϕ∗

∂θ
(24)

where is the algorithm procedure to solve Eq1, i.e. SGD. While is just the gradient of the loss
evaluated at the solution of the inner problem and can be computed efficiently with standard automatic
backpropagation, requires further attention. Since the solution to Cϕ∗ is implemented via and iterative
method (SGD), one strategy would be to compute this gradient would be to backpropagate trough the
entire optimization trajectory in the inner loop. This strategy however is computational inefficient for
many steps, and can suffer also from vanishing gradient problems.

C Experimental details

All experiments were performed on a single gpu NVIDIA RTX 3080Ti and implemented with the
Pytorch library [69].

C.1 Datasets

We evaluate our method on a synthetic setting on the following benchmarks: DSprites,
AbstractDSprites[62], 3Dshapes [14],SmallNorb [49], Cars3D[71] and the semi-
synthetic Waterbirds [73].

For domain generalization and domain adaptation tasks, we evaluate our method on the [32]
and [44] benchmarks, using the following datasets: PACS[52], VLCS[3], OfficeHome[87]
Camelyon17[6], CivilComments [12].

Dataset descriptions

The Waterbirds dataset [73] is a synthetic dataset where images are composed of cropping out
birds from photos in the Caltech-UCSD Birds-200-2011 (CUB) dataset [89] and transfer-
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ring them onto backgrounds from the Places dataset [104]. The dataset contains a large percentage of
training samples (≈ %95) which are spuriously correlated with the background information.

The CivilComments is a dataset of textual reviews annotated with demographics information for
the task of detecting toxic comments. Prior work has shown that toxicity classifiers can pick up on
biases in the training data and spuriously associate toxicity with the mention of certain demographics
[68, 20]. These types of spurious correlations can significantly degrade model performance on
particular subpopulations [74].

The PACS dataset [52] is a collection of images coming from four different domains: real images, art
paintings, cartoon and sketch. The VLCS dataset contains examples from 5 overlapping classes from
the VOC2007 [23], LabelMe [72], Caltech-101 [24] , and SUN [98] datasets. The OfficeHome
dataset contains 4 domains (Art, ClipArt, Product, real-world) where each domain consists of 65
categories.

The Camelyon17 dataset, is a collection of medical tissue patches scanned from different hospital
environments. The task is to predict whether a patch contain a benign or tumoral tissue. The different
hospitals represent the different domains in this problem, and the aim is to learn a predictor which is
robust to changes in factors of variation across different hospitals.

C.2 Models

For synthetic datasets we use a CNN module for the backbone gθ following the architecture in Table 5.
For real datasets that use images as modality we use a ResNet50 architecure as backbone pretrained
on the Imagenet dataset. For the experiments on the text modality we use DistilBERT model
[76] with pretrained weights downloaded from HuggingFace [96].

C.3 Synthetic experiments

Table 5: Convolutional architecture used in synthetic experiments.

CNN backbone
Input : 64× 64× number of channels

4× 4conv, 32 stride 2, padding 1, ReLU,BN
4× 4conv, 32 stride 2, padding 1, ReLU,BN
4× 4conv, 64 stride 2, padding 1, ReLU,BN
4× 4conv, 64 stride 2, padding 1, ReLU,BN

FC, 256, Tanh
FC, d

Task generation. For the synthetic experiments we have access to the ground truth factors of
variations Z for each dataset. The task generation procedure relies on two hyperparameters: the first
one is an index set S of possible factors of variations on which the distribution of tasks can depend
on. The latter hyperparameter K, set the maximum number of factors of variations on which a single
task can depend on. Then a task t is sampled drawing a number kt from {1...K}, and then sampling
randomly a subset S of size |S| − kt from S. The resulting set S will be the set indexing the factors
of variation in Z on which the task t is defined. In this setting restrict ourselves to binary task: for
each factors in S, we sample a random value v for it. The resulting set of values V , will determine
uniquely the binary task.

Before selecting v ∈ V we quantize the possible choices corresponding to factors of variations
which may have more than six values to 2. We remark that this quantization affect only the task
label definition. For examples for x axis factor, we consider the object to be on the left if its x
coordinate is less than the medial axis of the image, on the right otherwise. The DSprites dataset
has the following set of factors of variations Zdsprites = {shape, size, angle, xpos, ypos} and
example of task is There is a big object on the right where kt = 2 the affected factors are size, xpos.
Another example is There is a small heart on the top left , where kt = 4 the affected factors are
shape, size, xpos, ypos. Obervations are labelled positively of negatively if their corresponding
factors of variations matching in the values with the one specified by the current task.
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We then samples random query Q and support U set of samples balanced with respect to postive and
negative labels of task task t, using stratified sampling.

C.4 Experiments on domain shifts

For the domain generalization and few-shot transfer learning experiments we put ourselves in the
same settings of [32, 44] to ensure a fair comparison. Namely, for each dataset we use the same
augmentations, and same backbone models.

For solving the inner problem in Equation 5, we used Adam optimizer [42], with a learning rate of
1e− 2, momentum 0.99, with the number of gradient steps varying from 50 to 100, in domain shifts
experiments.

Task generation. The task (or episode) sampling procedure is done as follows: each task is a
multiclass classification problem: we set the number of classes C to C = 5 when the original number
of classes Ktrain in the dataset is higher than five, i.e. Ktrain > 5. Otherwise we set C = Ktrain.
During training, the sizes of the support set U and query sets Q where set to |U | = 25, |Q| = 15
similar to as done in prior meta-learning literature [50, 18]. Changing these parameters has similar
effects from what has been observed in many meta learning approaches(e.g. [50, 18]).

For binary datasets such as Camelyon17 or Waterbirds the possible classes to be predicted are always
the same across tasks: what is changing is the composition of U and Q. Keeping their cardinality low,
we ensure that some tasks will not contain spurious correlation that may be present in the dataset,
while other ones will still retain it, and the regularizers will satisfy solutions which discards the
spurious information. We can observe evidence of this in the experimental results in Tables 3, 4 and
qualitatively in Figure 8.

C.5 Selection of α and β

To find the best regularization parameters α, β weighting the sparsity and feature sharing regularizers
in Equation 1 respectively, we perform model selection according to the highest accuracy on a
validation set. We report in Table 6 the value selected for each experiment.

Table 6: Selected values for α and β for all experiments, applying model selection on validation set.

Experiment α β

Table 1 1e-2 0.15
Table 2 1e-2 5e-2
Table 3 2.5e-3 5e-2
Table 4 1.5e-3 1e-2

Table 5, 6 2.5e-3 1e-2
Table 7 2.5e-3 1e-2

D Additional results

D.1 Synthetic experiments

Enforcing disentanglement: In Table 7 we report diverse disentanglement scores (DCI disentangle-
ment, DCI completeness, DCI informativeness) on the DSprites, 3DShapes, SmallNorb,Cars
datasets, showing that the sparsity and feature sharing regularizers effectively enforce disentangle-
ment.

The role of minimality. In Figure 7 we show the qualitative results accompanying Figure 3. The
qualitative results in the Figure are produced visualizing matrices of feature importance [57] computed
fitting Gradient Boosted Trees (GBT) on the learned representations w.r.t. task labels, and on the
factors of variations w.r.t. task labels and compare the results. In each matrix the x axis represents the
tasks and the y axis the features, and each entries the amount of feature importance (which goes from
0 to 1). In Figure 6 we show the same experiment on the 3DShapes dataset.
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Table 7: Enforcing disentanglement. DCI [22] disentanglement, completeness and informativeness
scores and ID accuracy on test samples for a model trained without enforcing sufficiency and
minimality (top row), and model with the regularizers activated (bottom row). While attaining
similar performance on accuracy, the model with the activated regularizer always show higher
disentanglement. See Table for additional scores.

DSprites 3DShapes SmallNorb Cars

Without regularization
DCI Disentanglement 16.6 44.4 16.5 60.5

DCI Completeness 17.5 39.1 12.9 50.8
DCI Informativeness 88.0 87.6 90.5 95.5

With regularization
DCI Disentanglement 69.9 87.7 60.5 92.3

DCI Completeness 72.3 88.4 63.2 57.1
DCI Informativeness 96.0 95.7 95.4 99.7

[47]

Figure 6: Role of minimality (3DShapes): We plot the DCI disentanglement metric of a set of
models (red dots) trained on fixed tasks from 3Dshapes: Training without regularizers leads
to no disentanglement (green). Enforcing sparsity alone (yellow, akin to [47]) achieves good
disentanglement (DCI = 67.0), but some features may be split or duplicated. Enforcing both
minimality and sparse sufficiency (magenta) attains the best DCI (95.9). When β is too high
(> 0.25) activated features collapses into few clusters with respect to tasks.

Task compositional generalization. In Table 9 we show the quantitative results accompanying
Figure 4.

D.2 Properties of the learned representations

Feature sufficiency. The sufficiency property is crucial for robustness to spurious correlations in the
data. If the model can learn and select the relevant features for a task, while ignoring the spurious
ones, sufficiency is satisfied, resulting in robust performance under subpopulation shifts, as shown
in Tables 10 and 4. To get qualitative evidence of the sufficiency in the representations, in Figure 8
we show the saliency maps computed from the activations of our model and a corresponding model
trained with ERM. Our model can learn features specific to the subject of the image, which are

Table 8: Quantitative results accompanying Figure 7

α = 0, β = 0 α = 1e− 2, β = 0 α = 1e− 2, β = 0.2 α = 1e− 2, β = 0.4

DCI 27.8 71.9 98.8 30.5
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β = 0.4, DCI = 30.5

β = 0, α = 0, DCI = 27.8

β = 0, DCI = 71.9

β = 0.2, DCI = 98.8

Figure 7: Qualitative dependency of disentanglement from the weight of our penalties (α = 0.01
unless otherwise specified). The model that attains the best disentanglement (DCI = 98.8) uses both.
Left column, top: ground-truth importance weights of each latent factor for each task. Right column:
we train models with different β and visualize the weights assigned to each learned feature on each
task. Left column: to determine whether the model recover the ground-truth latents, we select the
3 top features and compare their assigned weights on different tasks with the ground-truth weights.
Bottom row: example of a failure case with high β.

Table 9: Task compositional generalization: Mean accuracy over 100 random tasks reported for group
of tasks of growing support (second, third, fourth column) for a model trained without inductive biases
(top row) and enforcing them (bottom row). The latter show better compositional generalization
resulting from the properties enforced on the representation

Acc ID DCI |S| = 3 |S| = 4 |S| = 5

No reg 88.7 22.8 72.6 63.3 59.9

α, β 93.2 59.4 83.0 78.8 76.8

relevant for classification, while ignoring background information. This can be observed in both
correctly classified (bottom row) and misclassified (top row) samples by ERM. In contrast, ERM
activates features in the background and relies on them for prediction.

Feature sharing. In this section, we study the minimality properties of the representations learned by
our method. To achieve this, we conduct the following experiment. We randomly draw 14 tasks from
the

∑3
i=1

(
4
i

)
possible combinations of the four domains in the PACS dataset. We use the data from

these tasks to fit the linear head and test the model accuracy on the OOD domain (e.g. the sketch
domain). In Figure 9, we show the performance on each task, ordered on the x axis according to
OOD accuracy of a model trained with ERM (in yellow). We also report the fraction of activated
features (in blue) shared between each task and the OOD task, and the same(red) for the ERM model.
The fraction of activated features is computed by looking at the matrix of coefficients of the sparse
linear head ϕ ∈ RM×C , where M is the number of features and C the number of classes, after fitting

on each task. Specifically, is computed as
∑

m[ϕ̃ϵ∩ϕ̃OOD
ϵ ]∑

m[ϕ̃ϵ∪ϕ̃OOD
ϵ ]

where ϕ̃ϵ =
1
C

∑
c |ϕm,c| > ϵ and ϕOOD
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Figure 8: Feature sufficiency: Left, pairs of random samples and saliency maps computed on
activations with our method. All samples are correctly classified. Right, corresponding saliency
maps [1] an ERM based method: the first row is misclassifed by the network, the last is correctly
classified. The ERM model depends on features from the background, resulting in a higher prediction
error on mixed subdomains. Our model is robust to spurious correlations and satisfies the sufficiency
assumptions.

is the matrix of coefficient of the OOD task. We set ϵ = 0.01. From Figures 9 and 10 we draw
the following conclusions: (i) When the accuracy of the ERM decreases (i.e., the current task is
farther from the OOD test task), our method is still able to retain a high and consistent accuracy,
demonstrating that our features are more robust out-of-distribution. This is further supported by the
higher number of shared features compared to ERM, as we move away from the testing domain. (ii)
The correlation between the fraction of shared features and the accuracy OOD demonstrates that the
method is able to learn general features that transfer well to unseen domains, thanks to the minimality
constraint. Additionally, this measure serves as a reliable indicator of task distance, as discussed
in the next section. (iii) Even though the same sparse linear head is used on top of the ERM and
our features, our method is able to achieve better OOD performance with fewer features, further
demonstrating our feature minimality.

D.3 CivilComments

See Table 10 for the quantitative results accompanying to Figure 5 in the paper and 11 for result on
groups on the civil comments dataset.

Table 10: Quantitative results on CivilComments: we report the accuracy on test averaged across all
demographic groups (left), and the worst group accuracy (right). We show that our method performs
similarly in terms of average accuracy and outperforms in terms of worst group accuracy, without
using any knowledge on the group composition in the training data. This Table accompanies Figure 5

avg acc worst group acc

ERM 92.2 56.5
DRO 90.2 69
Ours 91.2 ± 0.2 75.45± 0.1

D.4 Full results Domain generalization

We report here comparison with several methods in the domain generalization literature, namely
[99, 10, 51, 53, 26, 54, 65, 102, 36, 45].
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Figure 9: Fraction of shared features VS accuracy. Barplot of OOD accuracies on the Sketch domain
for our model (green) and ERM (yellow) on the 14 tasks sampled from PACS, along with the fraction
of shared features with the OOD domain for each task (blue for our model, red for ERM). Each task
is sampled from a single domain or from the intersections of domains. Tasks are labelled according
to the sampling domain on the x axis. The fraction of shared features and OOD accuracy have a
correlation coefficient of 97.5.

Figure 10: Barplot of feature usage (number of activated features) for each task for our model (blue)
and ERM model (green) referring to the experiment in Figure 9. Our method uses fewer features than
ERM while also generalizing better.

Table 11: Civilcomments quantitative results pergroup.

Male Female LGBTQ Christian Muslim Other religion Black White
GroupDRO

Toxic 75.1± 2.1 73.7± 1.5 73.7± 4 69.2± 2.0 72.1± 2.6 72.0± 2.5 79.6± 2.2 78.8± 1.7
Non Toxic 88.4± 0.7 90.0± 0.6 76.0± 3.6 92.6± 0.6 80.7± 1.9 87.4± 0.9 72.2± 2.3 73.4± 1.4

Ours
Toxic 87.94± 0.07 89.17± 0.05 77.25± 0.16 92.25± 0.16 80.6± 0.29 87.79± 0.26 75.45± 0.17 78.35± 0.02

Non toxic 91.62± 0.11 91.52± 0.11 91.71± 0.16 91.11± 0.1 91.81± 0.12 91.32± 0.1 90.82± 0.12 92.04± 0.11
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D.4.1 VLCS

Algorithm C L S V Avg
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
Ours 98.1± 0.2 63.4± 0.5 73.9 ± 0.8 78.2 ± 0.7 78.4

D.4.2 PACS

Algorithm A C P S Avg
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
Ours 86.7 ± 0.1 83.5 ± 0.8 97.8 ± 0.1 83.1 ± 0.1 87.5

D.4.3 OfficeHome

Algorithm A C P R Avg
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
Ours 66.7 ± 0.1 56.3 ± 0.7 79.2 ± 0.5 81.3 ± 0.4 70.9
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D.5 Few-shot transfer learning

Results on few-shot transfer learning on datasets PACS,VLCS,OfficeHome,Waterbirds in
Tables 12,13,14 and 15.

Table 12: Results few-shot transfer learning on PACS

Dataset/Algorithm OOD accuracy (by domain)
PACS 1-shot S A P C Average

ERM 72.3 ± 0.3 80.4 ± 0.09 93.3 ± 4.1 75.8± 2.6 80.5
Ours 75.4 ± 3 81.7± 0.8 98.0 ± 0.8 71 ± 5.2 81.5

PACS 5-shot S P A C Average
ERM 84.9± 1.1 85.7 ± 0.08 98.6 ± 0.0 79.1 ± 0.9 87.1
Ours 85.0 ± 0.1 86.7± 0.8 97.8 ± 0.1 83.5 ± 0.1 88.3

PACS 10-shot S P A C Average
ERM 81.0 ± 0.1 88.9 ± 0.1 97.4 ± 0.0 84.2 ± 0.9 87.9
Ours 86.2 ± 0.5 90.0 ± 0.8 98.9 ± 0.1 86.6 ± 0.1 90.4

Table 13: results few-shot transfer learning on VLCS

Dataset/Algorithm OOD accuracy (by domain)
VLCS 1-shot C L V S Average

ERM 98.9 ± 0.4 32.7 ± 16.2 59.8 ± 10.7 47.5 ± 11.2 59.7
Ours 98.6 ± 0.3 51.0 ± 4.9 61.2 ± 9.8 61.9 ± 9.7 68.2

VLCS 5-shot C L V S Average
ERM 99.4 ± 0.2 50.0 ± 6.2 71.9 ± 3.2 65.3 ± 2.8 71.7
Ours 98.9 ± 0.4 56.0 ± 6.2 73.4 ± 1.4 69.8 ± 2.0 74.5

VLCS 10-shot C L V S Average
ERM 99.5 ± 0.2 52.6 ± 5.0 74.8 ± 3.8 69.1 ± 2.4 74.0
Ours 99.1 ± 0.2 65.0 ± 6.2 74.4 ± 1.9 70.8 ± 2.3 77.3

Table 14: results few-shot transfer learning on OfficeHome

Dataset/Algorithm OOD accuracy (by domain)
OfficeHome 1-shot C A P R Average

ERM 40.2 ± 2.4 52.7 ± 2.6 68.1 ± 1.7 64.6 ± 1.8 56.4
Ours 41.4 ± 1.7 54.5 ± 2.0 68.5 ± 2.7 69.0 ± 1.5 58.4

OfficeHome 5-shot C A P R Average
ERM 63.2 ± 0.4 73.3 ± 0.8 84.1 ± 0.4 82.0 ± 0.8 75.7
Ours 66.2 ± 1.2 75.1 ± 1.0 83.6 ± 0.5 83.1 ± 0.8 77.0

OfficeHome 10-shot C A P R Average
ERM 71.1 ± 0.4 80.5 ± 0.5 87.5 ± 0.3 84.9 ± 0.5 81.0
Ours 72.2 ± 1.2 81.8 ± 0.5 87.5 ± 0.2 86.3 ± 0.4 82.0

D.6 Feature sharing on PACS

See Figure 11 for additional results on all domains in PACS.

D.7 Task similarity

We show that our method enables direct extraction of a task representation and a metric for task
similarity from our model and its feature space. We propose to use the coefficients of the fitted linear
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Table 15: results few-shot transfer learning Waterbirds

Dataset/Algorithm OOD accuracy (by domain)
Waterbirds 1-shot LL LW WL WW Average

ERM 99.1 ± 1.1 43.8 ± 16.5 79.5 ± 10.2 86.7 ± 8.2 79.8
Ours 95.2 ± 8.1 81.9 ± 9.5 80.7 ± 5.5 95.9 ± 1.2 88.4

Waterbirds 5-shot LL LW WL WW Average
ERM 96.3 ± 5.0 58.7 ± 17.2 80.1 ± 12.6 84.1 ± 12.7 79.8
Ours 98.8 ± 1.8 75.4 ± 9.0 81.6 ± 14.0 94.8 ± 1.8 87.6

Waterbirds 10-shot LL LW WL WW Average
ERM 94.2 ± 4.2 73.0 ± 11.6 80.4 ± 6.3 89.3 ± 3.3 84.2
Ours 98.2 ± 0.9 82.6 ± 5.9 80.7 ± 6.3 95.5 ± 1.4 89.2

heads fϕ∗
t

on a given task as a representation for that task. Specifically we transform the optimal
coefficients ϕ∗ in a M -dimensional vector space (here M is the number of features) by simply
computing

∑
c |ϕ∗

t,m,c|, and discretize them by a threshold ϵ. The resulting binary vectors, together
with a distance metric (we choose the Hamming distance), form a discrete metric space of tasks. We
preliminary verify how the proposed representation and metric behave on MiniImagenet [88]
below.

We sample 160 tasks from 10 groups from , where each group has the same class support, i.e.
t1, t2 ∈ Gi 7→ Supp(t1) == Supp(t2)∀i. We then fit the linear heads independently on each task
(i.e. not using the feature sharing regularizer). Then we compute the discrete task representation and
project the resulting vector space in a two dimensional vector space using tSNE [92]. The clusters
obtained in this space correspond exactly to the group identities (visualized in color in Figure 12).

D.8 Comparison with metalearning baselines

In Table 16, we further compare our method on meta learning benchmarks, namely Mini
Imagenet [88] and CIFAR-FS [9] with different approaches in the literature based on meta learning
[81, 66, 18, 47].

In Figure 13 we compare the predicting performance of our method and capacity to leverage shared
knowledge between task, comparing with backbone trained with protopical network approach. We
sample a set of task with different overlap, where the overlap between two task t1, t2 is defined as
sim(t1, t2) =

Supp(t1)∩Supp(t2)
Supp(t1)∪Supp(t2

indicating with Supp(ti) the support over classes in task ti. We
show that other than reaching a much higher accuracy the features of our model are able to be clustered
at test time enabling to reach better performance on unseen task. As a matter of fact we can use the
feature sharing regularizer at test time showing that there is a increasing trend in the performance,
while the prototypical networks features just decreases being unable to share information across tasks
at test time.

Table 16: Meta learning baselines, including concurrent work [47] which we significantly outperform.

Architecture Cifar-FS (1 shot) Cifar-FS( 5 shot) MiniImagenet(1 shot) MiniImagenet (5 shot)

MAML Conv32(x4) - - 48.7±1.84 63.11±0.66
Prototypical Net Conv64(x4) - - 49.42±0.78 68.20±0.66

TADAM ResNet12 - - 58.5 ±0.56 76.7 ±0.3
MetaOptNet ResNet12 72.0 ± 0.7 84.2 ± 0.5 62.64±0.61 78.63±0.46
MetaBaseline WRN 28-10 76.58±0.68 85.79±0.5 59.62 ±0.66 78.17 ±0.49

Lachapelle et al[47] ResNet12 - - 54.22 ± 0.6 70.01 ± 0.51
Ours* ResNet12 75.1 ±0.4 86.9 ±0.19 60.1 ± 2 76.6 ± 0.1
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Figure 11: Additional results for all domains in PACS, separated by domain. The overall message of
Figure 9 appear consistent across all domains.
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Figure 12: Task Similarity. We visualize the tSNE of the discrete task representation and observe that
the clusters in this space corresponds to group identities.

D.9 Sharing features at test time

Features can be enforced to be shared also at test time, simply by setting β > 0 to fit the linear head
on top of the learned feature space. We observe the benefits of utilizing the feature sharing penalty at
test time on the Camelyon17 dataset in the fourth row of Table 17.

As highlighted in the main paper, retaining features which are shared across the training domains
and cutting the ones that are domain-specific enable to perform better at test time, at the expenses of
lower performance near the training distribution.

We analyzed in more depth this phenomenon in Figure 13. For this experiment we trained our model
and a Prototypical network [81] one on the MiniImagenet dataset. Then we sampled 5 groups of
tasks according to an average overlap measure between tasks. Between two task t1, t2 the overlap
is defined as sim(t1, t2) = Supp(t1)∩Supp(t2)

Supp(t1)∪Supp(t2
. each group is made of 10 task. We then plot the

performance at test time increasing the regularization parameter β, weighting the feature sharing.
The outcome of the experiment is twofold: (i) we observe an increase in performance at test time,
especially when tasks shows maximal overlap (i.e. they share more features) (ii) this is not the case
with the pretrained backbone of [81] which shows almost monotonical decrease in the performance,
i.e. enforcing the minimality property during training enables to use it as well at test time.

Further analysis on different datasets, and also on tuning strategies on the regularization parameter are
promising directions for future work, to better understand when and how enforcing feature sharing is
beneficial at test time.

Table 17: Camelyon17 quantitative results: we report accuracy both on ID and OOD splits. We show
(last row) that feature sharing at test time, leads to more robust features on OOD test data.

Validation(ID) Validation (OOD) Test (OOD)

ERM 93.2 84 70.3
CORAL 95.4 86.2 59.5

IRM 91.6 86.2 64.2
Ours 93.2±0.3 89.9±0.6 74.1±0.2

Ours(β > 0 test) 90.4±0.2 84.01±0.9 85.5±0.6
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Figure 13: Enforcing feature sharing at test time. Our approach (on the left) is able to benefit from the
feature sharing constraint at test time, while using the prototypical network backbone performance
monotonically decrease (center). On the right we show the maximal performance gain for each group
of tasks for the two approaches.
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