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ABSTRACT

Real-world data distributions are often highly skewed. This has spurred a growing
body of research on long-tailed recognition, aimed at addressing the imbalance in
training classification models. Among the methods studied, multiplicative logit
adjustment (MLA) stands out as a simple and effective method. What theoret-
ical foundation explains the effectiveness of this heuristic method? We provide
a justification for the effectiveness of MLA with the following two-step process.
First, we develop a theory that adjusts optimal decision boundaries by estimat-
ing feature spread on the basis of neural collapse. Second, we demonstrate that
MLA approximates this optimal method. Additionally, through experiments on
long-tailed datasets, we illustrate the practical usefulness of MLA under more re-
alistic conditions. We also offer experimental insights to guide the tuning of MLA
hyperparameters.

1 INTRODUCTION

Publicly available benchmark datasets commonly used to evaluate classification models, such as
MNIST (Lecun et al., 1998) and CIFAR100 (Krizhevsky, 2009), usually have a balanced number of
samples per class. In contrast to benchmark datasets, empirical evidence indicates that real-world
data often follow an exponential distribution (Reed, 2001). This also holds for classification prob-
lems involving real-world data (Spain & Perona, 2007; Li et al., 2017; 2022a). Such distributions
are commonly referred to as long-tailed data. In long-tailed data, a few classes (head classes) have
a large number of samples, while most classes (tail classes) have only a limited number of samples.
This imbalance poses a significant challenge in classification tasks, known as long-tailed recognition
(LTR). LTR focuses on improving the accuracy of models trained on long-tailed data when evalu-
ated on uniformly distributed data. In LTR, there are many classes, and model predictions are often
biased toward head classes. Since tail classes make up the majority, this bias significantly reduces
the overall average accuracy across all classes (Zhang et al., 2021; Yang et al., 2022a).

Various methods have been proposed for LTR. State-of-the-art methods (Ma et al., 2021; Long
et al., 2022; Tian et al., 2022) are generally complex but often consist of combinations of simpler
techniques, such as resampling (Drummond & Holte, 2003) and two-stage training (Kang et al.,
2020). One straightforward method is logit adjustment (LA) (Menon et al., 2020; Kim & Kim,
2020). Among these techniques, post-hoc LA is a technique that adjusts the linear classifier on
top of the feature map without additional training after the standard training process, offering both
effectiveness and simplicity. A prominent example of post-hoc LA is additive LA (ALA) (Menon
et al., 2020), which is based on Fisher-consistent loss. Another type of post-hoc LA is multiplica-
tive LA (MLA) (Kim & Kim, 2020), which aims to adjust the decision boundaries on the basis of
the differences in the feature spread across classes. Since MLA has also demonstrated significant
empirical success (Hasegawa & Sato, 2023), it raises the following question.

Is there a theoretical foundation behind the effectiveness of MLA?

Contribution We provide a theoretical guarantee that MLA achieves near-optimal decision
boundary adjustments. Our contributions are summarized as follows.
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• We derive a theoretical framework for adjusting decision boundaries optimally by using
feature spread estimates from neural collapse (NC) (Papyan et al., 2020) (Section 4.2).

• We demonstrate that MLA is effective for LTR by proving it has similar decision boundaries
to the method based on the aforementioned theory (Section 4.3). This clarifies under what
conditions this approximation holds and how adjustments should be made.

• We experimentally validate that the approximation of MLA holds under realistic, non-ideal
conditions where NC is not fully realized (Section 5).

• We provide empirical guidelines for hyperparameter-tuning of MLA (Section 5.4).

2 RELATED WORK

Long-Tailed Recognition LTR methods fall into three types: “Information Augmentation”,
“Module Improvement”, and “Class Re-balancing” (Zhang et al., 2021). “Information Augmen-
tation” aims to mitigate accuracy degradation by supplementing the limited information available
for tail classes (Liu et al., 2020; Chu et al., 2020; Wang et al., 2021; Li et al., 2022b; Wang et al.,
2023a). “Module Improvement” focuses on enhancing individual components of the network to
boost overall performance. For example, Kang et al. (2020) developed a two-stage training method
that separates the training of feature maps and classifiers. Yang et al. (2022b) and Liu et al. (2023)
proposed methods to promote NC in feature maps. Recent approaches also use contrastive learning
(Hadsell et al., 2006) (Ma et al., 2021; Tian et al., 2022; Li et al., 2022c; Wang et al., 2022; Kang
et al., 2023) and vision-language models such as CLIP (Radford et al., 2021) (Ma et al., 2021; Tian
et al., 2022; Long et al., 2022). Despite these advancements, managing these methods can be chal-
lenging due to slow convergence (Liu et al., 2023) or complex models (Hasegawa & Sato, 2023).
“Class Re-balancing” strategies adjust class imbalance to prevent accuracy degradation. Techniques
in this category include resampling (Drummond & Holte, 2003; Li et al., 2022b) and loss reweight-
ing (Cui et al., 2019; Ma et al., 2022). However, reweighting is known to be ineffective for training
overparameterized models (Byrd & Lipton, 2019; Zhai et al., 2022). LA is a simple yet effective
method that falls under this category.

Logit Adjustment LA modifies logit values by using the number of samples in each class, to
bridge the distribution gap between the training and test data. LA methods fall into two categories:
loss-function adjustments (Cao et al., 2019; Menon et al., 2020; Tang et al., 2020; Kini et al., 2021;
Wang et al., 2023b) and post-hoc LA methods that do not require additional training (Menon et al.,
2020; Kim & Kim, 2020). The latter is particularly advantageous as it eliminates the need for
retraining during hyperparameter tuning, thereby reducing both effort and time. Consequently, this
paper delves deeper into post-hoc LA. Among post-hoc methods, there are two types depending
on how the logits are adjusted: ALA (Menon et al., 2020) and MLA (Kim & Kim, 2020). ALA is
grounded in a Fisher-consistent loss (Menon et al., 2020), providing some theoretical justification for
its method. However, ALA assumes an infinite number of training samples, raising questions about
its effectiveness with finite sample sizes. In contrast, MLA intuitively adjusts decision boundaries
by using the size of each class cluster (Kim & Kim, 2020). MLA has empirically outperformed
ALA in certain cases (Hasegawa & Sato, 2023).

Neural Collapse NC is a term introduced by Papyan et al. (2020) to describe four phenomena
observed in the terminal phase of training classification models. These phenomena are as follows.

NC1: Training feature vectors within each class converge to their respective class means.

NC2: The class means of training feature vectors converge to form a simplex Equiangular Tight
Frame (ETF) (Strohmer & Heath, 2003).

NC3: The class means of the training feature vectors align with the corresponding weight vectors
of the linear classifier.

NC4: In prediction, the model outputs the class whose mean training feature vector is closest to
the input feature vector in Euclidean distance.

NC is known to improve generalization accuracy and robustness (Papyan et al., 2020). Addition-
ally, Galanti et al. (2021) theoretically demonstrated that NC can occur even with test samples or
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samples from unseen classes. Various studies have explored the conditions under which NC arises
(Rangamani & Banburski-Fahey, 2022; Han et al., 2022), and it is known that models trained using
cross-entropy loss can also exhibit NC (Lu & Steinerberger, 2021; Ji et al., 2022). However, it has
been observed that training with imbalanced data may hinder NC (Fang et al., 2021; Thrampoulidis
et al., 2022; Dang et al., 2024). To address this problem, some methods have been proposed to
promote NC even with imbalanced data (Yang et al., 2022b; Liu et al., 2023). Yang et al. (2022b)
introduced the ETF classifier, which fixes the linear classifier weights to form an ETF, thereby en-
couraging NC.

3 PRELIMINARIES

We outline the notations used throughout this paper. For a comprehensive list, refer to the table
in Appendix A. For any integer i, [i] represents the set {1, . . . , i}. We use X ⊂ Rp to denote the
instance space and Y ≡ [K] to denote the label space. In a K-class classification problem, each
sample (x, y) ∈ X × Y is drawn from a distribution P . The training dataset, S ≡ {(xi, yi) | xi ∈
X , yi ∈ Y}Ni=1, consists of independent and identically distributed (i.i.d.) samples drawn from P .
Partitioning by class, we define Sk ≡ {xi | (xi, yi) ∈ S, yi = k} as the set of samples drawn from
the class-conditional distribution Pk. Let N ≡ |S| be the total number of samples, and nk = |Sk|
be the number of samples in class k. Without loss of generality, we assume the classes are sorted
in descending order of sample size, i.e., nk ≥ nk+1 for all k ∈ [K − 1]. The imbalance factor is
defined by ρ ≡ n1

nK
= maxk nk

mink nk
, which measures the degree of imbalance in the training dataset,

where ρ� 1 holds in LTR scenarios. In contrast to the imbalanced training dataset, the test dataset
used for evaluation has a uniform label distribution. Specifically, we denote S̃k ∼ P ñk

k by the test
dataset for class k, with ñk samples. Then, it holds that ñk = ñk′ for all k, k′ ∈ Y .

Let f : Rp → Rd be a feature map from the set F ⊂ {f ′ : Rp → Rd}. We focus on the input
to the final layer of this feature map. Suppose the features are given by f(x) = W 1h(x), where
W 1 ∈ Rd×d1 is a linear layer, and h ∈ H : Rp → Rd1 represents the output of the second-to-
last layer of the feature map. For simplicity, we assume that h is bounded, meaning there exists a
constant B ≥ 1 such that supx∈X ,h∈H ‖h(x)‖ ≤ B, where ‖ · ‖ denotes the Euclidean norm for
vectors.

Let the expected value and mean of the features be denoted as µf (Pk) ≡ Ex∼Pk
[f(x)] and

µf (Sk) ≡ 1
nk

∑
x∈Sk

f(x), respectively. When f is clear from the context, we abbreviate these to
µ(Pk) and µ(Sk).
These features are fed into a linear classifier W ∈ Rd×K and we obtain the logits g(x) ≡
W⊤f(x), where ·⊤ denotes the transpose of a matrix. The linear classifier weights can be ex-
pressed using column vectors wk ∈ Rd, where W = [w1, . . . ,wK ]. Thus, the logit for class k can
be written as gk(x) ≡ w⊤

k f(x). We assume that the weights of the linear classifier form an ETF.
This assumption holds under NC and when we use an ETF classifier (Yang et al., 2022b). This leads
to the following equation:

w⊤
k wk′ =

{
1 if k = k′,
− 1
K−1 otherwise.

(1)

Logit Adjustment MLA is a method that adjusts logits by scaling the norm of the linear classifier
weights for each class (Kim & Kim, 2020). This is equivalent1 in classification outcome to adjusting
the logit for class k, gk(x), by scaling it as n−γ×k gk(x). Here, γ× > 0 is a hyperparameter. Kim
& Kim (2020) used projected gradient descent to normalize the norm of the linear layer, ‖wk‖, to
1. This normalization step is unnecessary in our setting because we use an ETF classifier and the
weights remain fixed. In contrast, ALA adjusts logits additively. This is equivalent1 to modifying
the logit for class k, gk(x), by subtracting γ+ log nk, where γ+ > 0 is a hyperparameter.

1Kim & Kim (2020) adjusted logits to
(

n1
nk

)γ×
gk(x), while Menon et al. (2020) adjusted them to

gk(x) − γ+ log nk∑
k′ nk′

. Note that both methods differ from the adjustment used in this paper only by a
constant multiple or constant term. However, since this does not affect the ranking of logits across classes or
the classification outcomes, we adopt the adjustments described in the main text of this paper.
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4 MAIN ANALYSIS

MLA is a post-hoc adjustment method that increases the probability of classifying samples into
tail classes by changing the angles of the decision boundaries (Kim & Kim, 2020). To derive the
appropriate angles, it is necessary to estimate the sizes of the feature spread for each class. Galanti
et al. (2021) demonstrated that NC also occurs in test samples and provided a quantitative measure of
feature spread. Following their approach, we verify the effectiveness of MLA theoretically through
the lens of NC. In the following sections, we employ the ETF classifier (Yang et al., 2022b) to
encourage NC. This assumption can also be derived from the assumption that NC2 and NC3 hold.
Using an ETF classifier also ensures that the weight vectors are normalized, as shown to be effective
by Kim & Kim (2020).

First, in Section 4.1 we outline the assumptions and additional notations necessary to present our
theory. Next, in Section 4.2, we demonstrate how to optimally adjust the decision boundaries from
the perspective of NC. In Section 4.3, we indicate that MLA approximates this adjustment. Finally,
Section 4.4 compares ALA and MLA in view of our theory.

4.1 PRELIMINARIES: SVD AND RADEMACHER COMPLEXITY

We consider the singular value decomposition of W 1. When W 1 has rank r, we can express it
as W 1 =

∑r
l=1 slulv

⊤
l , where for each l ∈ [r], ul ∈ Rd, vl ∈ Rd1 , and sl ∈ R>0. Moreover,

for all l ∈ [r], we have ‖vl‖ = ‖ul‖ = 1, and for l 6= l′ ∈ [r], v⊤
l vl′ = u⊤

l ul′ = 0. Without
loss of generality, we assume that ∀l ∈ [r − 1], sl ≥ sl+1. In many deep neural networks, weight
matrices can be replaced with low-rank representations while maintaining performance (Frankle &
Carbin, 2018; Idelbayev & Carreira-Perpiñán, 2020; Kajitsuka & Sato, 2023). Thus, it is reasonable
to consider r � min(d, d1) in practical situations.

We define the setHl as:

Hl ≡ {(vl,h) | f ∈ F ,f = W 1h, vl is the l-th right singular vector of W 1}. (2)

To evaluate the generalization performance of Hl, we use the Rademacher complexity. The
Rademacher complexity and empirical Rademacher complexity ofHl are defined by:

Rnk
(Hl) ≡ ES′

k∼P
nk
k ,σ

 sup
(vl,h)∈Hl

1

nk

∑
xj∈S′

k

σjv
⊤
l h(xj)

 , (3)

R̂Sk
(Hl) ≡ Eσ

 sup
(vl,h)∈Hl

1

nk

∑
xj∈Sk

σjv
⊤
l h(xj)

 , (4)

where σ = [σ1, . . . , σnk
]⊤ represents the i.i.d. Rademacher random variables. In many cases,

the Rademacher complexity scales as Rnk
(Hl) ≤ C(Hl,X )√

nk
, where C(Hl,X ) is some complexity

measure independent of nk (Cao et al., 2019; Galanti et al., 2021). For instance, this holds for
rectified linear unit (ReLU) neural networks; see Appendix C.2 for further details. We make this
assumption in our settings. We define the mean of the complexity C̄(F ,X ) ≡ 1

r

∑r
l=1 C(Hl,X )

4.2 OPTIMAL DECISION BOUNDARY ADJUSTMENT FROM THE PERSPECTIVE OF NC

We indicate that the following result holds for general neural networks. For the proofs of the propo-
sitions presented in this section and for the case of ReLU neural networks, see Appendix C.

In NC, the training features converge to their respective class means (Papyan et al., 2020). It has
also been demonstrated that test features are within a certain range from the class mean of training
features, with this range depending on the sample size (Galanti et al., 2021). Following a sim-
ilar approach, we can quantitatively measure the angular deviation between test features and the
corresponding training class mean, as a function of the sample size. In LTR, sample sizes vary sig-
nificantly across classes, resulting in a considerable imbalance in the angular deviation. Thus, we
aim to adjust the decision boundary accordingly.

To achieve this, we first define the angular bound probability Π(θ; k) as follows.
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Figure 1: Overview of Propositions 1 and 2. The angular bound probability Π(θ; k) represents the
lower bound of the probability that the feature vector of x sampled from Pk lies within the shaded
region. Proposition 1 indicates that Π(θ; k) = 1 − Õ

(
1/
√
nk
)
. Proposition 2 offers the optimal

decision boundary by maximizing Π(θk,k′ ; k) + Π(θk′,k; k
′) with respect to θk,k′ and θk′,k.

Definition 1 (Angular bound probability). The angular bound probability Π(θ; k) for class k is the
lower bound of the probability that the angle between f(x) and µ(Sk), for x ∼ Pk, is less than θ.

That is, we have that Π(θ; k) ≤ Prx∼Pk
[∠(f(x),µ(Sk)) < θ], where ∠(·, ·) is the angle between

the two vectors. The angular bound probability can also be seen as concentration of the class k
features. The following proposition provides a quantitative measure of Π(θ; k):
Proposition 1. Suppose nk > 2. For f ∈ F , assume that for all x ∈ Sk, f(x) = µ(Sk) holds.
Consider any θ that satisfies the following condition:

π

2

r‖W 1‖2√
nk‖µ(Sk)‖

(
4C̄(F ,X ) + 4B +B

√
2 log

√
nk‖µ(Sk)‖
‖W 1‖2

)
< θ <

π

2
, (5)

where ‖ · ‖2 denotes the spectral norm. For such θ, the following holds:

Π(θ; k) = 1− π

2θ

r‖W 1‖2√
nk‖µ(Sk)‖

(
4C̄(F ,X ) + 4B + 1 +B

√
2 log

2θ
√
nk‖µ(Sk)‖
π‖W 1‖2

)
. (6)

The overview of this proposition is illustrated in the left side of Figure 1. When NC occurs, note that
f(x) = µ(Sk) holds for all x ∈ Sk by NC1 and wk = µ(Sk)

∥µ(Sk)∥ holds by NC3. Additionally, observe

that the left-hand side of Eq. (5) and 1 − Π(θ; k) are Õ
(
1/
√
nk
)
, where Õ denotes asymptotic

notation ignoring logarithmic terms. From this proposition, we can quantitatively infer that as the
sample size of a class increases, the features become more concentrated within a narrower region,
with higher probability. This allows us to consider the optimal angle for the decision boundary.

Consider the optimal angle for the decision boundary between two classes, k and k′. Since we use
an ETF classifier, the linear classifier weights forms an ETF structure, meaning the angle between
wk and wk′ is ψ ≡ arccos

(
− 1
K−1

)
. Now, consider a decision boundary that forms an angle θk,k′

with wk. The angle between this boundary and wk′ is θk′,k ≡ ψ−θk,k′ . Here, 0 < θk,k′ , θk′,k < ψ.

In this setup, the probability that a sample x ∼ Pk lies on the wk side of the boundary is at
least Π(θk,k′ ; k). Similarly, the probability that a sample x ∼ Pk′ lies on the wk′ side is at
least Π(θk′,k; k

′). Therefore, the accuracy of classification between the two classes is at least
1
2 (Π(θk,k′ ; k) + Π(θk′,k; k

′)), which depends on the angle θk,k′ of the decision boundary. Thus,
we seek the value of θk,k′ that maximizes this lower bound. The following proposition provides the
solution to this problem.

Proposition 2. Suppose nk, nk′ > 2. For f ∈ F , assume that for both k̂ ∈ {k, k′}, f(x) = µ(Sk̂)
holds for all x ∈ Sk̂. Consider the following maximization problem:

max
θk,k′ ,θk′,k

Π(θk,k′ ; k) + Π(θk′,k; k
′) s.t. θk,k′ , θk′,k > 0, θk,k′ + θk′,k = ψ. (7)
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The unique solution θ∗k,k′ , θ
∗
k′,k within the range where θk,k′ and θk′,k satisfy Eq. (5) is given by:

θ∗k,k′ = ψ
‖µ(Sk′)‖

√
nk′

‖µ(Sk)‖
√
nk + ‖µ(Sk′)‖

√
nk′

, θ∗k′,k = ψ
‖µ(Sk)‖

√
nk

‖µ(Sk)‖
√
nk + ‖µ(Sk′)‖

√
nk′

. (8)

The overview of this proposition is illustrated in the right side of Figure 1. When nk and nk′
are sufficiently large, Eq. (5) holds over a wide range of 0 < θ < π

2 . Moreover, as K → ∞,

ψ = arccos
(
− 1
K−1

)
→ π

2 and θ∗k,k′ , θ
∗
k′,k <

π
2 holds, making Eq. (8) meet the condition of Eq. (5)

when K is sufficiently large. This is a reasonable assumption in LTR (Yang et al., 2022a). In
practice, for CIFAR100-LT, ψ − π

2 ∼ 0.01, meaning that θ∗k,k′ , θ
∗
k′,k <

π
2 is sufficiently valid.

This result can easily be extended to multi-class cases (refer to Proposition 3). In multi-class cases,
it becomes an optimization problem of the angles θk,k′ for every pair of classes k, k′ 6= k in Y ,
defined as Θ ≡ {θk,k′ | k 6= k′ ∈ Y}.
Proposition 3. Suppose nk > 2 for all k ∈ Y . For f ∈ F , assume that for all k ∈ Y , f(x) =
µ(Sk) holds for all x ∈ Sk. Consider the following maximization problem:

max
Θ

∑
k∈Y

∑
k′ ̸=k

Π(θk,k′ ; k) + Π(θk′,k; k
′) s.t. ∀k, k′ ∈ Y , θk,k′ , θk′,k > 0 and θk,k′ + θk′,k = ψ.

(9)
The unique solution θ∗k,k′ ∈ Θ∗ within the range where all θ∗k,k′ ∈ Θ∗ satisfies Eq. (5) is given by:

θ∗k,k′ = ψ
‖µ(Sk′)‖

√
nk′

‖µ(Sk)‖
√
nk + ‖µ(Sk′)‖

√
nk′

. (10)

These theories suggest replacing the linear layer with a 1-vs-1 multi-class classifier with decision
boundaries of Θ∗. To generalize, we introduce a hyperparameter γ1v1, and define θ∗k,k′(γ1v1) =

ψ ∥µ(Sk′ )∥nk′γ1v1

∥µ(Sk)∥nk
γ1v1+∥µ(Sk′ )∥nk′γ1v1

, with Θ∗
γ1v1 ≡ {θ

∗
k,k′(γ1v1) | k 6= k′ ∈ Y}. Note that Θ∗

γ1v1 = Θ∗

holds when γ1v1 = 1
2 . We refer to the 1-vs-1 multi-class classifier that classifies based on this Θ∗

γ1v1
as 1vs1adjuster. See Appendix D for the specific algorithm of 1vs1adjuster.

4.3 MLA SOLVES LTR PROBLEMS WITH DECISION BOUNDARIES AKIN TO 1VS1ADJUSTER

We demonstrate that MLA addresses the LTR problem. Since Section 4.2 proves 1vs1adjuster has
the optimal decision boundaries for LTR, we verify MLA operates similarly to 1vs1adjuster. MLA
can be viewed as a technique that multiplicatively adjusts the cosine similarity between features and
the linear layer weight vectors. This increases the probability of classifying samples into tail classes.
Although our theory in Section 4.2 aims to find the optimal decision boundaries between classes, it
can be connected to MLA by considering the magnitude of logits under simple assumptions.

For the following discussion, we assume that K is sufficiently large. Under this condition, it holds
that ψ = arccos

(
− 1
K−1

)
→ π

2 , allowing us to assume that cos(θ∗k,k′(γ1v1)), cos(θ
∗
k′,k(γ1v1)) > 0.

Let the MLA factor, multiplicatively applied to the logits of class k, be denoted by κk. In other
words, we consider the case in which the logit gk(x) for class k is adjusted to κkgk(x). We present
that when adjusting the decision boundaries on the basis of 1vs1adjuster, κk ∝ n−γ1v1k holds. Note
that the ETF classifier ensures equal norms of the linear layer weight vectors across all classes. To
adjust the decision boundaries to be equivalent to 1vs1adjuster by using MLA, we should adjust κk
such that the following holds for all k 6= k′ ∈ Y :

κk cos(θ
∗
k,k′(γ1v1)) = κk′ cos(θ

∗
k′,k(γ1v1)). (11)

A problem arises here because there are only K MLA factors, while they must satisfy K(K − 1)/2
equations. Consequently, when K > 2, there is typically no solution. However, by considering
the following approximation, it is possible to obtain an approximate solution. First, note that as
K → ∞, it holds that ψ → π

2 . Letting ϵ = π
2 − ψ, and considering the continuity of cos, we can

approximate and solve Eq. (11) as follows:
κk
κk′

= tan(θ∗k,k′(γ1v1)) cos(ϵ)− sin(ϵ) (12)

∼ tan(θ∗k,k′(γ1v1)). (13)
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Now, let τk,k′(γ1v1) ≡
∥µ(Sk)∥n

γ1v1
k

∥µ(Sk′ )∥nγ1v1
k′

, then we have:

θ∗k,k′(γ1v1) = ψ
‖µ(Sk′)‖nk′γ1v1

‖µ(Sk)‖nkγ1v1 + ‖µ(Sk′)‖nk′γ1v1
= ψ

1

τk,k′(γ1v1) + 1
∼ π

2

1

τk,k′(γ1v1) + 1
.

(14)

Next, for 0 ≤ θ < 1, we approximate tan
(
π
2 θ
)

using the rational function ϕ(θ) = θ
1−θ . This

approximation satisfies the following properties:

Lemma 1.

ϕ(0) = tan(0) = 0, (15)

ϕ

(
1

2

)
= tan

(π
4

)
= 1, (16)

lim
θ→1−0

ϕ(θ) = lim
θ→1−0

tan
(π
2
θ
)
= +∞. (17)

Lemma 2. Let θ ∈ [0, 1). Then, the following holds:

ϕ(θ) ≤ tan
(π
2
θ
)
<
π

2
ϕ(θ)

(
0 ≤ θ ≤ 1

2

)
, (18)

2

π
ϕ(θ) < tan

(π
2
θ
)
< ϕ(θ)

(
1

2
< θ < 1

)
. (19)

The proof of Lemma 1 is trivial and thus omitted. The proof of Lemma 2 can be found in Appendix
C.3. These lemmas suggest that the approximation ϕ(θ) = θ

1−θ for tan
(
π
2 θ
)

is particularly close
when θ = 1

2 or τk,k′(γ1v1) = 1, but it provides a global approximation. This is especially suitable
for LTR settings, where τk,k′(γ1v1) tends to deviate significantly from 1.

Using these results, we further approximate Eq. (13) as:

κk
κk′
∼ tan(θ∗k,k′(γ1v1)) ∼

2
π θ

∗
k,k′(γ1v1)

1− 2
π θ

∗
k,k′(γ1v1)

∼ 1

τk,k′(γ1v1)
. (20)

Therefore, if we set κk = α
∥µ(Sk)∥n

γ1v1
k

for any α ∈ R>0, we can approximately satisfy Propo-
sition 3. This corresponds to performing MLA with γ× = γ1v1, under the assumption of feature
normalization.

4.4 DISCUSSION: COMPARISON OF MLA WITH ALA

In Section 4.3, we demonstrate that MLA is grounded in the theoretical framework of decision
boundary adjustment developed in Section 4.2. We now turn our attention to ALA, presenting the
issues that arise when applying the theory from Section 4.2 to ALA. This highlights the differences
between MLA and ALA, and indicates the relative advantages of MLA.

ALA is inconsistent with the concept of optimal decision boundary adjustment as described in
Proposition 3. This is because the decision boundaries adjusted by ALA changes depending on
the norm of each feature, ‖f(x)‖. For instance, let’s consider an instance x whose logit of class
k is represented as gk(x) = ‖f(x)‖ cos(∠(f(x),wk)). The output of the classification label for
x depends on the magnitude of ‖f(x)‖ cos(∠(f(x),wk)) − γ+ log nk for each k. In other words,
the classification result depends on both the angle ∠(f(x),wk) and the norm ‖f(x)‖. This implies
that the optimal decision boundaries during inference are affected by the norm of individual fea-
tures. This dependency conflicts with Proposition 3, in which the optimal decision boundaries are
independent of the norm of each feature.

On the other hand, suppose we assume that ‖f(x)‖ is equal for all x ∈ X , ensuring that the
angles of the decision boundaries remain constant for each sample. Following the same reasoning
as in Section 4.3, we can also approximate 1vs1adjuster by ALA. However, compared to MLA,
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this approximation cannot hold globally when τk,k′(γ1v1) varies significantly. This inconsistency
with LTR settings, in which τk,k′(γ1v1) can deviate considerably, makes ALA incompatible. See
Appendix E for details.

These points are corroborated by the subsequent experimental results, which demonstrate the sub-
stantial differences between the properties of MLA and ALA.

5 EXPERIMENTS

We experimentally demonstrate that MLA is an appropriate approximation of 1vs1adjuster from
two perspectives. First, we outline the experimental setup in Section 5.1. Then, we demonstrate that
MLA and 1vs1adjuster share similar decision boundaries in Section 5.2 and yield equivalent classi-
fication accuracy in Section 5.3. Finally, we present insights into MLA hyperparameters in Section
5.4. Code is available at https://github.com/HN410/MLA-Approximates-NCDBA.

5.1 SETTINGS

Our experimental setup primarily follows Hasegawa & Sato (2023). We used CIFAR10, CIFAR100
(Krizhevsky, 2009), and ImageNet (Deng et al., 2009) as datasets. Following Cui et al. (2019) and
Liu et al. (2019), we created long-tailed versions of these datasets, namely CIFAR10-LT, CIFAR100-
LT, and ImageNet-LT, with an imbalance ratio of ρ = 100. To demonstrate that this method applies
to general modal data, not just images, we also used the tabular dataset Helena (Guyon et al., 2019).
We can also show the effectiveness of the method on real data using Helena because this is an
inherently imbalanced dataset with ρ ' 40.

For the network architecture, we used ResNeXt50 (Xie et al., 2017) for ImageNet-LT and ResNet34
(He et al., 2016) for the other image datasets unless otherwise specified. For Helena, we used a
multi-layer perceptron (MLP), following Kadra et al. (2021). We adopted the ETF classifier as the
linear classifier to promote NC and fix the linear classifier weights. Thus, only the parameters of the
feature map were trained. We used cross-entropy loss as the loss function and applied weight decay
(Hanson & Pratt, 1989) and feature regularization as regularization techniques. Feature regulariza-
tion was employed to promote NC (Hasegawa & Sato, 2023) and to prevent significant differences
in the norms of the training features across classes, fulfilling the condition for MLA to approximate
1vs1adjuster. We tuned the hyperparameters γ1v1, γ+, and γ× using validation datasets. For further
detailed experimental settings, refer to Appendix F.1.

We examined the behavior of MLA, ALA, and 1vs1adjuster when applied post-hoc to models trained
on the training datasets. Specifically, we aimed to assess whether MLA provides an effective ap-
proximation of 1vs1adjuster in terms of decision boundary adjustment and classification accuracy.
ALA, another post-hoc LA method, was included as a benchmark for comparison.

5.2 DECISION BOUNDARY ANGLES

We investigate how the decision boundary angles between classes are adjusted. Similar to the anal-
ysis in Sections 4.3 and 4.4, MLA and ALA can be interpreted as methods for adjusting the angles
of the decision boundaries between classes. Let θ×k,k′ and θ+k,k′ represent the angles of the decision
boundaries between classes k and k′ derived from MLA and ALA, respectively.

For MLA, the following holds from Eq. (12):

θ×k,k′ = arctan


(
nk′

γ×

nk
γ× + sin

(
π
2 − ψ

))
cos
(
π
2 − ψ

)
. (21)

For ALA, we assume that ‖f(x)‖ is equal across all instances x and sufficiently large, denoted as
‖f‖. Then, from Eqs. (65) and (66), the following holds:

θ+k,k′ =
ψ

2
− arcsin

 γ+ log nk

nk′

2‖f‖ sin
(
ψ
2

)
. (22)
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Figure 2: Heatmaps showing difference in angles of decision boundaries between each method and
1vs1adjuster. On the left is the result for CIFAR100-LT, and on the right is the result for CIFAR10-
LT. The left side of each figure displays θ+k,k′ − θ∗k,k′ , while the right side displays θ×k,k′ − θ∗k,k′ .
Values that became NaN are shown in gray. In the case of CIFAR100-LT, the angle differences
between MLA and 1vs1adjuster are generally small.

Figure 3: Average accuracy of each model trained on each dataset and adjusted by different methods.
The error bars represent the mean and standard deviation across five trials with different seed values.
1v1 is short for 1vs1adjuster. MLA and 1vs1adjuster consistently achieve comparable accuracy.

We investigate the differences between these angles and θ∗k,k′ used in 1vs1adjuster and demonstrate
that MLA serves as a sufficient approximation of 1vs1adjuster. Figure 2 displays heatmaps com-
paring θ+k,k′ − θ∗k,k′ and θ×k,k′ − θ∗k,k′ for CIFAR100-LT and CIFAR10-LT. Detailed experimental
settings and results for other datasets are provided in Appendices F.1 and F.2, respectively. The
heatmaps representing the difference between MLA and 1vs1adjuster are generally faint on datasets
with a sufficient number of classes, such as CIFAR100-LT. This means that θ×k,k′ − θ∗k,k′ is glob-
ally small across all k, k′ ∈ Y . This is consistent with our theoretical predictions from Section
4.3, indicating that MLA is a sufficient approximation of 1vs1adjuster in large-class settings. The
same phenomenon is observed for ImageNet-LT and Helena. Note that in these latter two datasets,
this phenomenon occurs even though training accuracy is not sufficiently high and NC is not fully
realized (see Table 1). This suggests that our theory holds under more relaxed conditions.

On CIFAR10-LT, which has fewer classes, the decision boundaries of both MLA and ALA differ
significantly from those of 1vs1adjuster. This may be because the number of classes is so small that
approximations such as ψ ∼ π

2 are not valid. However, even in this case, MLA can still be regarded
as an approximate method in that it achieves comparable test accuracy to 1vs1adjuster. See Section
5.3.

5.3 TEST ACCURACY

We compare the test accuracy when each method is applied post-hoc to trained models. Figure 3 dis-
plays the average test accuracy with error bars for each model trained on each dataset and adjusted
by different methods. The results on Helena and the detailed accuracy table can be found in Ap-
pendix F.3. In all experiments, MLA can achieve high average accuracy comparable to 1vs1adjuster.
Remarkably, this approximation holds even in cases where the assumptions mentioned in Section 4
do not hold, such as when the number of classes is small (CIFAR10-LT) or when training accuracy
is low and NC has not sufficiently occurred (ImageNet-LT and Helena). In contrast, ALA achieves
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Table 1: Optimal hyperparameters and training accuracy for each model and dataset. For models
that achieve 100% training accuracy, γ∗× and γ∗1v1 are slightly higher than 0.5.

Dataset Model γ∗× γ∗1v1 Training Accuracy (%)

CIFAR100-LT ResNet34 0.710± 0.037 0.770± 0.060 100.0
CIFAR100-LT ResNeXt50 0.770± 0.087 1.010± 0.058 100.0
CIFAR10-LT ResNet34 0.780± 0.518 0.410± 0.120 100.0
ImageNet-LT ResNeXt50 0.200± 0.000 0.250± 0.000 86.6
Helena MLP 0.480± 0.093 0.580± 0.060 42.1

lower accuracy than 1vs1adjuster in some cases. ALA is based on Fisher consistency (Menon et al.,
2020), assuming that the number of training samples is sufficiently large. While our theory also
assumes a certain level of training sample size, it has been shown to work well even with more prac-
tical sample sizes. In addition, MLA and 1vs1adjuster achieve comparable accuracy to ALA even
under unfavorable conditions, such as experiments on CIFAR10-LT and ImageNet-LT, where the
assumptions of our theory do not strictly hold. These results demonstrate that MLA is a robust and
practical method for improving test accuracy, even in real-world scenarios where ideal theoretical
conditions are not met.

5.4 HYPERPARAMETERS

Table 1 summarizes the optimal values of MLA and 1vs1adjuster hyperparameters, γ∗× and γ∗1v1,
and the training accuracy for models trained on each training dataset.

On CIFAR10-LT, which has a small number of classes, the values of γ∗× and γ∗1v1 are significantly
different. This is probably because the approximation of 1vs1adjuster to MLA does not hold well
when the number of classes is small.

From here on, we focus on cases in which the number of classes is sufficiently large. On CIFAR100-
LT, where training accuracy has reached 100%, the optimal value is slightly higher than the theoret-
ically derived value of 0.5. This suggests that when training reaches terminal phase and NC occurs,
the feature spread can be bounded to a smaller order than Õ

(
1/
√
nk
)
. For instance, recent research

has aimed to bound generalization error to a smaller order than Õ
(
1/
√
nk
)

(Wei & Ma, 2019), and
this may be related.

On Helena and ImageNet-LT, where training accuracy has not reached 100%, the optimal values
can be smaller than 0.5. This is likely because the feature spread between classes does not differ
as much compared to when NC sufficiently occurs. Even in such cases, MLA and 1vs1adjuster can
achieve high test accuracy by adjusting hyperparameters (see Section 5.3 and Appendix F.3). These
results are expected to be key insights when searching for the optimal hyperparameters for MLA.

6 CONCLUSION

We provide a solid theoretical foundation for MLA, a simple heuristic method in LTR, and demon-
strate its utility. First, on the basis of NC, we estimate the feature spread for each class and present
a theory that derives the optimal method for adjusting the decision boundaries. Furthermore, we
indicate that MLA is an approximation of this method and theoretically guarantees improvements in
test accuracy. This provides clear insights into the conditions under which MLA is effective and how
logits should be adjusted quantitatively. Additionally, through experiments, we demonstrate that the
approximation holds under more relaxed conditions and that MLA exhibits practical usefulness by
achieving accuracy comparable to or better than ALA. This research forms a crucial foundation for
future advancements in LTR and imbalanced learning methods.

One limitation of this study is the lack of a more in-depth theoretical analysis of ALA. While the
current theory does not align with ALA, there may be approaches or assumptions that could guaran-
tee its performance with a practical number of samples. Future research could explore this direction.
Another potential avenue is the combination of MLA with other methods to develop more sophisti-
cated methods and achieve state-of-the-art improvements in accuracy.
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A ACRONYM AND NOTATION TABLE

Table 2 lists the acronyms referenced throughout this paper, and Tables 3, 4, and 5 provide a sum-
mary of the notations used in this paper.

Table 2: Acronym table

Abbreviation Definition

1v1 1vs1adjuster
ALA Additive logit adjustment (Menon et al., 2020)
ETF Equiangular tight frame
i.i.d Independent and identically distributed
LA Logit adjustment
LTR Long-tailed recognition
MLA Multiplicative logit adjustment (Kim & Kim, 2020)
MLP Multi-layer perceptron
NC Neural collapse (Papyan et al., 2020)
ReLU Rectified linear unit

Table 3: Notation table for operators and set
∠ The angle between the two vectors
‖ · ‖ The Euclidean norm for vectors
‖ · ‖2, ‖ · ‖F The spectral norm and Frobenius norm for matrices
Õ The Landau notation, ignoring logarithmic terms
ϕ The approximation function for tan, i.e., ϕ(θ) = θ

1−θ
Avgx,x′∈Sk

h(x,x′) The average over pairs of different elements
[i] The set from 1 to i, i.e., {1, . . . , i}

Table 4: Notation table for data
X , Y An instance space and a label space
x, y An instance and a label
K The number of classes, i.e., |Y|
p The instance dimension
P , Pk A sample distribution and a class-conditional distribution
S , Sk A training dataset and a class-specific training dataset
S̃k A class-specific test dataset
N , nk The size of S and Sk
ñk The size of S̃k
ρ An imbalance factor, ρ ≡ n1

nK
= maxk nk

mink nk

σ, σj Rademacher random variables
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Table 5: Notation table for models
f , f A feature map and a ReLU neural feature map
‖f‖ The value of ‖f(x)‖, assuming that ‖f(x)‖ is equal for all x ∈ X
F , F , FM The set of feature maps, ReLU neural feature maps, and ReLU neu-

ral feature maps with constraints on M
h, h The output of the second-to-last layer of the feature map, and that

of the ReLU neural feature map
g, gk A logit and the logit for class k
W , wk The weights of a linear classifier and its vector for class k
W s The s-th linear layer from the end of the feature map
r The rank of W 1

sl,ul,vl The l-th singular value, left singular vector, and right singular vector
of W 1, from its singular value decomposition

H The set of h
Hl,H

M

l The set of (vl,h) for f ∈ F and set of (vl,h) for f ∈ FM

Rnk
(Hl), R̂Sk

(Hl) The Rademacher complexity and the empirical Rademacher com-
plexity forHl (see Section 4.1)

C(Hl,X ) The complexity ofHl and X
C̄(F ,X ) The mean of C(Hl,X ) for l ∈ [r]
q The depth of the feature map
d, d1 The dimension of f(x) and the dimension of h(x)
B The upper bound of h, i.e., supx∈X ,h∈H ‖h(x)‖ ≤ B
M The upper bound of

∏q
s=2 ‖W s‖F

µf (P ),µ(P ) The expectation of f(x) for x ∼ P
µf (S),µ(S) The mean of f(x) for x ∈ S
µ(P ),µ(S) Same as µf (P ) and µf (S)
Π(θ; k), Π(θ; k) The angular bound probability for f and for f (see Section 4.2).
γ1v1, γ×, γ+ Hyperparameters for 1vs1adjuster, MLA, and ALA
θk,k′ , θ

∗
k,k′ , θ

∗
k,k′(γ1v1) The angle of the decision boundary, the optimal angle, and the opti-

mal angle adjusted by γ1v1
θ×k,k′ , θ

+
k,k′ The angles of the decision boundaries derived from MLA and ALA

Θ,Θ∗, Θ∗
γ1v1 The set of θk,k′ , θ∗k,k′ , and θ∗k,k′(γ1v1)

ψ The angle between the weight vectors of an ETF classifier, i.e., ψ =

arccos
(
− 1
K−1

)
τk,k′ The ratio ∥µ(Sk)∥n

γ1v1
k

∥µ(Sk′ )∥nγ1v1
k′

mk,k′ The normal vector of the decision boundary between k and k′

B RELATED WORK

B.1 MULTIPLICATIVE LOGIT ADJUSTMENT

MLA has been validated for its effectiveness across various studies. Hasegawa & Sato (2023)
demonstrated that MLA performs on par with or better than ALA under realistic conditions. Addi-
tionally, Ye et al. (2022) highlighted significant differences in the feature space occupied by each
class in LTR, confirming the effectiveness of class-dependent temperatures, which is equivalent to
MLA. Beyond image classification, various studies suggest the utility of MLA-like adjustments in
other fields. For instance, in object detection, Alexandridis et al. (2023) proposed an MLA variant
based on object occurrence frequency, called inverse image frequency. Similarly, in text retrieval
tasks, the inverse document frequency (Salton & Buckley, 1988), which adjusts the score function
by multiplying the inverse frequency of words in a document, is widely used. Thus, MLA is not
only applicable to LTR in classification problems but also serves as a fundamental technique with
potential applications across a broad range of domains.
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C PROOF

Here, we present the detailed proofs and supplementary explanations for the theories proposed in this
paper. Appendix C.1 contains the proofs for the propositions discussed in Section 4.2. Appendix
C.2 provides specific examples of applying our theory to ReLU neural networks. Appendix C.3
includes the proof of the lemma presented in Section 4.3.

C.1 MAIN ANALYSIS

For all k where nk > 1, the operation of averaging a pair of elements x,x′ ∈ Sk is defined as
follows:

Avgx,x′∈Sk
l(x,x′) ≡ 1

nk(nk − 1)

∑
xj1

∈Sk

xj2
∈Sk\{xj1

}

l(xj1 ,xj2). (23)

First, we propose two lemmas required for the proof of the propositions in Section 4.2. Then, we
prove the propositions using the lemmas.

Lemma 3. Suppose nk > 2. For any f ∈ F , δ > 0, the following holds with a probability of at
least 1− δ:

Ex,x′∼Pk
[‖f(x)− f(x′)‖]− ‖W 1‖2

r∑
l=1

Avgx,x′∈Sk

∣∣v⊤
l (h(x)− h(x′))

∣∣
<
r‖W 1‖2√

nk

(
4C̄(F ,X ) + 4B +B

√
2 log

r

δ

)
. (24)

Proof. We derive this lemma following the proof of Theorem 3.3 in Mohri et al. (2012). By the
triangle inequality, the following holds:

‖f(x)− f(x′)‖ =

∥∥∥∥∥
r∑
l=1

slulv
⊤
l (h(x)− h(x′))

∥∥∥∥∥
≤

r∑
l=1

sl‖ul‖|v⊤
l (h(x)− h(x′))|

≤
∥∥W 1

∥∥
2

r∑
l=1

|v⊤
l (h(x)− h(x′))|. (25)

We use this inequality to bound Ex,x′∼Pk
[‖f(x)− f(x′)‖]. Then, for each l ∈ [r], we calculate the

probabilistic upper bound of Ex,x′∼Pk

[
|v⊤
l (h(x)− h(x′))|

]
− Avgx,x′∈Sk

∣∣v⊤
l (h(x)− h(x′))

∣∣
and apply the union bound to complete the proof.

Note that Ex,x′∼Pk

[
|v⊤
l (h(x)− h(x′))|

]
= ESk∼P

nk
k

[
Avgx,x′∈Sk

∣∣v⊤
l (h(x)− h(x′))

∣∣]. For
S1k ,S2k ∼ P

nk

k , define Φl(S1k) as follows:

Φl(S1k) = sup
(vl,h)∈Hl

(
Ex,x′∼Pk

[
|v⊤
l (h(x)− h(x′))|

]
−Avgx,x′∈S1

k

∣∣v⊤
l (h(x)− h(x′))

∣∣). (26)
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Let S1k ,S2k ∼ P
nk

k be datasets that differ only in the j-th sample x1
j ,x

2
j , and define Φl(S2k) similarly

as Φl(S1k). The difference between Φl(S1k) and Φl(S2k) can be upper-bounded as follows:

Φl(S1k)− Φl(S2k) ≤ sup
(vl,h)∈Hl

(
Avgx,x′∈S1

k

∣∣v⊤
l (h(x)− h(x′))

∣∣
−Avgx,x′∈S2

k

∣∣v⊤
l (h(x)− h(x′))

∣∣)
=

1

nk(nk − 1)

∑
i ̸=j

sup
(vl,h)∈Hl

(
|v⊤
l (h(x

1
j )− h(xi))| − |v⊤

l (h(x
2
j )− h(xi))|

)
≤ 1

nk(nk − 1)

∑
i ̸=j

sup
(vl,h)∈Hl

(
|v⊤
l (h(x

1
j )− h(x2

j ))|
)

≤ 2

nk
sup

x∈X ,(vl,h)∈Hl

‖h(x)‖ (27)

≤ 2B

nk
. (28)

Therefore, using McDiarmid’s inequality, we can prove that for any δ > 0 the following holds with
probability at least 1− δ:

Φl(Sk) ≤ ESk
[Φl(Sk)] +B

√
2 log 1

δ

nk
. (29)

Note that for any f ∈ F , the following inequality holds:

Ex,x′∼Pk

[
|v⊤
l (h(x)− h(x′))|

]
−Avgx,x′∈S1

k

∣∣v⊤
l (h(x)− h(x′))

∣∣ ≤ Φl(Sk).

Using Eq. (25), we can derive the following:

Left hand side of Eq. (24) ≤ ‖W 1‖2
r∑
l=1

Φl(Sk). (30)

Thus, we aim to take a union bound of Eq. (29) over all l to derive an upper bound.

Next, we bound ESk
[Φl(Sk)]:

ESk
[Φl(Sk)] = ESk

[
sup

(vl,h)∈Hl

(
Ex,x′∼Pk

[
|v⊤
l (h(x)− h(x′))|

]
−Avgx,x′∈Sk

∣∣v⊤
l (h(x)− h(x′))

∣∣)]

≤ ESk,Ŝk

[
sup

(vl,h)∈Hl

(
Avgx,x′∈Ŝk

∣∣v⊤
l (h(x)− h(x′))

∣∣
−Avgx,x′∈Sk

∣∣v⊤
l (h(x)− h(x′))

∣∣)]

= ESk,Ŝk

 sup
(vl,h)∈Hl

1

nk(nk − 1)




∑
x̂j∈Ŝk

x̂j′∈Ŝk\{x̂j}

|v⊤
l (h(x̂j)− h(x̂j′))|



−

 ∑
xj∈Sk

xj′∈Sk\{xj}

|v⊤
l (h(xj)− h(xj′))|




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= Eσ,Sk,Ŝk

 sup
(vl,h)∈Hl

1

nk(nk − 1)




∑
x̂j∈Ŝk

x̂j′∈Ŝk\{x̂j}

σj |v⊤
l (h(x̂j)− h(x̂j′))|



−

 ∑
xj∈Sk

xj′∈Sk\{xj}

σj |v⊤
l (h(xj)− h(xj′))|





≤ 2Eσ,Sk

 sup
(vl,h)∈Hl

1

nk(nk − 1)

∑
xj∈Sk

xj′∈Sk\{x̂j}

σj |v⊤
l (h(xj)− h(xj′))|



= 2Eσ,Sk

 sup
(vl,h)∈Hl

1

nk(nk − 1)

∑
xj∈Sk

xj′∈Sk

σj |v⊤
l (h(xj)− h(xj′))|


≤ 2

nk − 1
ESk

 ∑
xj′∈Sk

Eσ

 sup
(vl,h)∈Hl

1

nk

∑
xj∈Sk

σj |v⊤
l (h(xj)− h(xj′))|


≤ 2

nk − 1
ESk

 ∑
xj′∈Sk

Eσ

 sup
(vl,h)∈Hl

1

nk

∑
xj∈Sk

σjv
⊤
l (h(xj)− h(xj′))

 (31)

≤ 2nk
nk − 1

Eσ,Sk

 sup
(vl,h)∈Hl

1

nk

∑
xj∈Sk

σjv
⊤
l h(xj)


+

2

nk(nk − 1)
ESk

 ∑
xj′∈Sk

sup
(vl,h)∈Hl

|v⊤
l h(xj′)|

Eσ

∣∣∣∣∣∣
nk∑
j=1

−σj

∣∣∣∣∣∣


≤ 2

nk − 1

nkRnk
(Hl) +BEσ

∣∣∣∣∣∣
nk∑
j=1

σj

∣∣∣∣∣∣
. (32)

The transformation in Eq. (31) is similar to that of Talagrand’s contraction lemma (Ledoux & Tala-
grand, 1991).

In addition, the following inequality holds:

Eσ

∣∣∣∣∣∣
nk∑
j=1

σj

∣∣∣∣∣∣
 =

√√√√√Eσ

∣∣∣∣∣∣
nk∑
j=1

σj

∣∣∣∣∣∣
2

≤

√√√√√√Eσ


∣∣∣∣∣∣
nk∑
j=1

σj

∣∣∣∣∣∣
2


=

√√√√√Eσ

 nk∑
j=1

σ2
j + 2

∑
j ̸=j′

σjσj′


=
√
nk. (33)
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From Eqs. (29), (32), and (33), it is proven that following holds with probability at least 1− δ,

Φl(Sk) ≤
2nk
nk − 1

(
Rnk

(Hl) +
B
√
nk

)
+

B
√
nk

√
2 log

1

δ

≤ 2nk
(nk − 1)

√
nk

(C(Hl,X ) +B) +
B
√
nk

√
2 log

1

δ

<
1
√
nk

(
4C(Hl,X ) + 4B +B

√
2 log

1

δ

)
. (34)

Substituting Eq. (34) into Eq. (30) and taking the union bound for all l proves this lemma.

Lemma 4. Suppose nk > 2. For f ∈ F , assume that for all x ∈ Sk, f(x) = µ(Sk) holds. For
any 0 < δ, δ′ < 1, define θ as follows:

θ ≡ π

2δ′
r‖W 1‖2√
nk‖µ(Sk)‖

(
4C̄(F ,X ) + 4B +B

√
2 log

r

δ

)
. (35)

Assume that δ, δ′ satisfy θ ≤ π
2 . For x ∼ Pk, the probability that the angle between f(x) and µ(Sk)

is less than θ is at least 1− (δ + δ′).

Proof. We bound Ex∼Pk,Sk∼P
nk
k

[‖f(x)− µ(Sk)‖] and apply Markov’s inequality. Expanding
this,

Ex∼Pk,Sk∼P
nk
k

[‖f(x)− µ(Sk)‖] =
1

nk
Ex∼Pk,Sk∼P

nk
k

[∥∥∥∥∥nkf(x)− ∑
x′∈Sk

f(x′)

∥∥∥∥∥
]

≤ 1

nk
Ex∼Pk,Sk∼P

nk
k

[ ∑
x′∈Sk

‖f(x)− f(x′)‖

]
= Ex,x′∼Pk

[‖f(x)− f(x′)‖]. (36)

Using Markov’s inequality, for any δ′ > 0, with probability at least 1− δ′,

‖f(x)− µ(Sk)‖ ≤
1

δ′
Ex∼Pk,Sk∼P

nk
k

[‖f(x)− µ(Sk)‖]

=
1

δ′
Ex,x′∼Pk

[‖f(x)− f(x′)‖]. (37)

Before applying Lemma 3 to this case, we demonstrate that the second term on the left-hand side of
Eq. (24) is zero in this situation. When f(x) = µ(Sk) satisfies for all x ∈ Sk, f(x) = f(x′) holds
for all x,x′ ∈ Sk. Then, we have

∑r
l=1 slulv

⊤
l (h(x)− h(x′)) = 0. Since ul are the left singular

vectors of W 1, they are linearly independent for different l. Therefore, for all l ∈ [r] and for all
x,x′ ∈ Sk,

v⊤
l (h(x)− h(x′)) = 0. (38)

Then, we combine the equation Eqs. (37) and (38) with the result of Lemma 3 by union bound. For
any δ, δ′ > 0, with probability at least 1− (δ + δ′), the following holds:

‖f(x)− µ(Sk)‖ <
1

δ′
r‖W 1‖2√

nk

(
4C̄(F ,X ) + 4B +B

√
2 log

r

δ

)
≡ 2

π
‖µ(Sk)‖θ. (39)

Since 1−(δ+δ′) is a lower bound for the probability, even restricting δ, δ′ < 1 does not compromise
the usefulness of the theorem.
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The angle between f(x) and µ(Sk) can be expressed as arcsin
(

∥f(x)−µ(Sk)∥
∥µ(Sk)∥

)
when

∥f(x)−µ(Sk)∥
∥µ(Sk)∥ ≤ 1. Since arcsin(t) is strictly monotonically increasing for 0 ≤ t ≤ 1, when

we have θ ≤ π
2 , the upper bound of the angle between f(x) and µ(Sk) can be written as

arcsin
(

∥f(x)−µ(Sk)∥
∥µ(Sk)∥

)
< arcsin

(
2
π θ
)
≤ θ. This means that the upper bound of the angle be-

tween the features and the average training features of the class is less than θ with probability at
least 1− (δ + δ′).

Proposition 1. Suppose nk > 2. For f ∈ F , assume that for all x ∈ Sk, f(x) = µ(Sk) holds.
Consider any θ that satisfies the following condition:

π

2

r‖W 1‖2√
nk‖µ(Sk)‖

(
4C̄(F ,X ) + 4B +B

√
2 log

√
nk‖µ(Sk)‖
‖W 1‖2

)
< θ <

π

2
, (5)

where ‖ · ‖2 denotes the spectral norm. For such θ, the following holds:

Π(θ; k) = 1− π

2θ

r‖W 1‖2√
nk‖µ(Sk)‖

(
4C̄(F ,X ) + 4B + 1 +B

√
2 log

2θ
√
nk‖µ(Sk)‖
π‖W 1‖2

)
. (6)

Proof. Consider the following δ, δ′ > 0:

δ =
π

2θ

r‖W 1‖2√
nk‖µ(Sk)‖

, (40)

δ′ =
π

2θ

r‖W 1‖2√
nk‖µ(Sk)‖

(
4C̄(F ,X ) + 4B +B

√
2 log

2θ
√
nk‖µ(Sk)‖
π‖W 1‖2

)
. (41)

Given B ≥ 1 and the condition on θ,

δ < δ′ <
π

2θ

r‖W 1‖2√
nk‖µ(Sk)‖

(
4C̄(F ,X ) + 4B +B

√
2 log

√
nk‖µ(Sk)‖
‖W 1‖2

)
< 1. (42)

Defining θ as above, we get θ = π
2δ′

r∥W 1∥2√
nk∥µ(Sk)∥

(
4C̄(F ,X ) + 4B +B

√
2 log r

δ

)
. Therefore, by

Lemma 4, the probability that the angle between f(x) and µ(Sk) is less than θ is at least

1− (δ + δ′) = 1− π

2θ

r‖W 1‖2√
nk‖µ(Sk)‖

(
4C̄(F ,X ) + 4B + 1 +B

√
2 log

2θ
√
nk‖µ(Sk)‖
π‖W 1‖2

)
. (43)

Proposition 2. Suppose nk, nk′ > 2. For f ∈ F , assume that for both k̂ ∈ {k, k′}, f(x) = µ(Sk̂)
holds for all x ∈ Sk̂. Consider the following maximization problem:

max
θk,k′ ,θk′,k

Π(θk,k′ ; k) + Π(θk′,k; k
′) s.t. θk,k′ , θk′,k > 0, θk,k′ + θk′,k = ψ. (7)

The unique solution θ∗k,k′ , θ
∗
k′,k within the range where θk,k′ and θk′,k satisfy Eq. (5) is given by:

θ∗k,k′ = ψ
‖µ(Sk′)‖

√
nk′

‖µ(Sk)‖
√
nk + ‖µ(Sk′)‖

√
nk′

, θ∗k′,k = ψ
‖µ(Sk)‖

√
nk

‖µ(Sk)‖
√
nk + ‖µ(Sk′)‖

√
nk′

. (8)

Proof. Noting that θk′,k = ψ − θk,k′ , we have:

∂

∂θk,k′
(Π(θk,k′ ; k) + Π(θk′,k; k

′)) =
∂Π(θ; k)

∂θ

∣∣∣∣
θ=θk,k′

− ∂Π(θ; k′)

∂θ

∣∣∣∣
θ=ψ−θk′,k

. (44)
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Since θ∗k,k′ , θ
∗
k′,k > 0 and θ∗k,k′ + θ∗k′,k = ψ, with θ∗k,k′‖µ(Sk)‖

√
nk = θ∗k′,k‖µ(Sk′)‖

√
nk′ , the

following holds:
∂Π(θ; k)

∂θ

∣∣∣∣
θ=θ∗

k,k′

=
∂Π(θ; k′)

∂θ

∣∣∣∣
θ=ψ−θ∗

k′,k

. (45)

Thus, we have ∂
∂θk,k′

(Π(θk,k′ ; k) + Π(θk′,k; k
′)) = 0 when θk,k′ = θ∗k,k′ and θk′,k = θ∗k′,k.

Next, we prove that this is the only solution that gives the maximum value within the aforementioned
range. We have:

∂2

∂θ2k,k′
(Π(θk,k′ ; y) + Π(θy′ ; y

′)) =
∂2Π(θk,k′ ; y)

∂θ2k,k′
+
∂2Π(θ; y′)

∂θ2

∣∣∣∣
θ=ψ−θk,k′

. (46)

Here, we define αk ≡ π
2

r∥W 1∥2√
nk∥µ(Sk)∥ , β ≡ 4C̄(F ,X )+4B+1, and ζk(θk,k′) = 2 log

(
rθk,k′

αk

)
. Note

that ∂ζk(θk,k′ )

∂θk,k′
= 2

θk,k′
. Then, the following holds:

∂2Π(θk,k′ ; k)

∂θ2k,k′
=

∂2

∂θ2k,k′

(
1− αk

θk,k′

(
β +B

√
ζk(θk,k′)

))

=
∂

∂θk,k′

(
αk
θ2k,k′

(
β +Bζk(θk,k′)

1
2

)
− Bαk
θ2k,k′

ζk(θk,k′)
− 1

2

)

=
∂

∂θk,k′

(
αk
θ2k,k′

(
β +Bζk(θk,k′)

1
2 −Bζk(θk,k′)−

1
2

))

= − 2αk
θ3k,k′

(
β +Bζk(θk,k′)

1
2 −Bζk(θk,k′)−

1
2

)
+

αk
θ2k,k′

(
B

θk,k′
ζk(θk,k′)

− 1
2 +

B

θk,k′
ζk(θk,k′)

− 3
2

)
= − αk

θ3k,k′

(
2β + 2Bζk(θk,k′)

1
2 − 3Bζk(θk,k′)

− 1
2 −Bζk(θk,k′)−

3
2

)
. (47)

From the condition, there exists δ < 1 such that θk,k′ = αk

δ , implying θk,k′

αk
> 1. Since ζk(θk,k′) >

2 log 2 > 2, we have

∂2Π(θk,k′ ; k)

∂θ2k,k′
≤ − αk

θ3k,k′

(
2β + 2Bζk(θk,k′)

1
2 − 4Bζk(θk,k′)

− 1
2

)
= − 2αk

θ3k,k′

(
β +Bζk(θk,k′)

− 1
2 (ζk(θk,k′)− 2)

)
< 0. (48)

Similarly, we can prove that ∂2Π(θ;k′)
∂θ2

∣∣∣
θ=ψ−θk,k′

< 0.

Therefore, Eq. (8) is the only solution that gives the maximum value within the range where θk,k′
and θk′,k satisfy Eq. (5).

Proposition 3. Suppose nk > 2 for all k ∈ Y . For f ∈ F , assume that for all k ∈ Y , f(x) =
µ(Sk) holds for all x ∈ Sk. Consider the following maximization problem:

max
Θ

∑
k∈Y

∑
k′ ̸=k

Π(θk,k′ ; k) + Π(θk′,k; k
′) s.t. ∀k, k′ ∈ Y , θk,k′ , θk′,k > 0 and θk,k′ + θk′,k = ψ.

(9)

The unique solution θ∗k,k′ ∈ Θ∗ within the range where all θ∗k,k′ ∈ Θ∗ satisfies Eq. (5) is given by:

θ∗k,k′ = ψ
‖µ(Sk′)‖

√
nk′

‖µ(Sk)‖
√
nk + ‖µ(Sk′)‖

√
nk′

. (10)
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Proof. The following holds, and the result follows trivially from Proposition 2.

max
Θ

∑
k∈Y

∑
k′ ̸=k

Π(θk,k′ ; k) + Π(θk′,k; k
′) ≤

∑
k∈Y

∑
k′ ̸=k

max
θk,k′ ,θk′,k

Π(θk,k′ ; k) + Π(θk′,k; k
′). (49)

C.2 CASE OF RELU NEURAL NETWORKS

In this section, we specifically demonstrate the values of C(Hl,X ) and B when the feature map
is restricted to ReLU neural feature maps. This allows us to validate the assumption Rnk

(Hl) ≤
C(Hl,X )√

nk
posed in this paper and to illustrate the practicality of the proposed theory.

Let F represent the set of ReLU neural feature map, and define a ReLU neural feature map as
f(x) = W 1 max(0,W 2 . . .max(0,W qx) . . .) ∈ F . Here, q denotes the depth of the network,
and the max operation is applied element-wise. We define the set FM as the set of ReLU neural
feature map where the product of the Frobenius norms from the first layer to the second-to-last layer
is bounded by M . That is,

FM =

{
f
′
: x 7→W 1 max(0,W 2 . . .max(0,W qx) . . .) ∈ F |

q∏
s=2

‖W s‖F ≤M

}
. (50)

We focus on functions that belong to FM . When discussing ReLU neural networks, we add an
overline to distinguish them from the general case. For instance, h refers to a function that returns
the output of the second-to-last layer of a ReLU neural feature map. Similarly, µ(Sk) represents the
average of the features f(x) for the dataset Sk.

For such networks, we similarly define HMl , their Rademacher complexity, and empirical
Rademacher complexity as follows:

HMl ≡ {(vl,h) | f ∈ F
M
,f = W 1h, vl is the l-th right singular vector of W 1}, (51)

Rnk

(
HMl

)
≡ ES′

k∼P
nk
k ,σ

 sup
(vl,h)∈HM

l

1

nk

∑
xj∈S′

k

σjv
⊤
l h(xj)

 , (52)

R̂Sk

(
HMl

)
≡ Eσ

 sup
(vl,h)∈HM

l

1

nk

∑
xj∈Sk

σjv
⊤
l h(xj)

 . (53)

According to Golowich et al. (2018), the empirical Rademacher complexity for this family of func-
tions is bounded by:

R̂Sk

(
HMl

)
= Eσ

 sup
(vl,h)∈HM

l

1

nk

∑
xj∈Sk

σjv
⊤
l h(xj)


≤ 1
√
nk

(√
2q log 2 + 1

)
M sup

x∈X
‖x‖

≤ 1
√
nk

(1.5
√
q + 1)M sup

x∈X
‖x‖. (54)

Taking the expectation over Sk, we can replace C̄(F ,X ) = (1.5
√
q + 1)M supx∈X ‖x‖. Since

C̄(F ,X ) does not depend on nk, this confirms the assumption. We can also replace B =
M supx∈X ‖x‖ because supx∈X ,h∈H ‖h(x)‖ ≤M supx∈X ‖x‖.
In this case, Lemmas 3 and 4 can be rewritten as follows. Since these are simple substitutions, we
omit the proofs.
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Lemma 5. Suppose nk > 2. For any f ∈ FM and any δ > 0, the following holds with a probability
at least 1− δ:

Ex,x′∼Pk

[∥∥f(x)− f(x′)
∥∥]− ‖W 1‖2

r∑
l=1

Avgx,x′∈Sk

∣∣v⊤
l

(
h(x)− h(x′)

)∣∣
<
r‖W 1‖2M supx∈X ‖x‖√

nk

(
6
√
q + 8 +

√
2 log

r

δ

)
. (55)

Lemma 6. Suppose nk > 2. For f ∈ FM , assume that for all x ∈ Sk, f(x) = µ(Sk) holds. For
any 0 < δ, δ′ < 1, define θ as follows:

θ ≡ π

2δ′
r‖W 1‖2M supx∈X ‖x‖√

nk‖µ(Sk)‖

(
6
√
q + 8 +

√
2 log

r

δ

)
. (56)

Assume that δ, δ′ satisfy θ ≤ π
2 . For x ∼ Pk, the probability that the angle between f(x) and µ(Sk)

is less than θ is at least 1− (δ + δ′).

We define the angular bound probability Π(θ; k) for a ReLU neural network as in Section 4.2. Then,
Proposition 1 can be rewritten as follows. The proof is omitted here as well.

Lemma 7. Suppose nk > 2. For f ∈ FM , assume that for all x ∈ Sk, f(x) = µ(Sk) holds.
Consider any θ satisfying the following conditions:

πr‖W 1‖2M supx∈X ‖x‖
2
√
nk‖µ(Sk)‖

(
6
√
q + 8 +

√
2 log

(√
nk‖µ(Sk)‖
‖W 1‖2

))
< θ <

π

2
. (57)

For such θ, the following holds:

Π(θ; k) = 1− πr‖W 1‖2
2θ
√
nk‖µ(Sk)‖

(
1 +M sup

x∈X
‖x‖

(
6
√
q + 8 +

√
2 log

(
2θ
√
nk‖µ(Sk)‖
π‖W 1‖2

)))
.

(58)

Propositions 2 and 3 also hold similarly, ensuring the validity of 1vs1adjuster.

C.3 MLA APPROXIMATES 1VS1ADJUSTER

In this section, we provide the proof of Lemma 2.
Lemma 2. Let θ ∈ [0, 1). Then, the following holds:

ϕ(θ) ≤ tan
(π
2
θ
)
<
π

2
ϕ(θ)

(
0 ≤ θ ≤ 1

2

)
, (18)

2

π
ϕ(θ) < tan

(π
2
θ
)
< ϕ(θ)

(
1

2
< θ < 1

)
. (19)

Proof. When θ = 0, the result is trivial since ϕ(0) = tan(0) = 0. For the remainder, we assume

θ ∈ (0, 1) unless otherwise stated. Define h(θ) ≡ tan(π
2 θ)

ϕ(θ) =
tan(π

2 θ)(1−θ)
θ . Since h(θ) = 1

h(1−θ) ,
proving the following will conclude the proof:

1 ≤ h(θ) < π

2

(
0 < θ ≤ 1

2

)
. (59)

First, we demonstrate that h(θ) is monotonically non-increasing.

h′(θ) =

θ

(
π
2

1

cos2(π
2 θ)

(1− θ)− tan
(
π
2 θ
))
− tan

(
π
2 θ
)
(1− θ)

θ2

=

π
2

θ(1−θ)
cos2(π

2 θ)
− tan

(
π
2 θ
)

θ2
. (60)
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Now, define l(θ) ≡ π
2

θ(1−θ)
cos2(π

2 θ)
− tan

(
π
2 θ
)

for θ ∈ [0, 1):

l′(θ) =
π

2

(
(−2θ + 1) cos2

(
π
2 θ
)
− πθ(1− θ) sin(π2 θ) cos(

π
2 θ)

cos4
(
π
2 θ
) − 1

cos2
(
π
2 θ
))

= −π
2

2θ cos2
(
π
2 θ
)
+ πθ(1− θ) sin(π2 θ) cos(

π
2 θ)

cos4
(
π
2 θ
)

≤ 0. (61)

Since l(0) = 0, we have l(θ) ≤ 0 for θ ∈ [0, 1). Therefore, from Eq. (60), h′(θ) ≤ 0 for θ ∈ (0, 1),
indicating that h(θ) is monotonically non-increasing.

Since h(θ) = 1, to prove Eq. (59), we must indicate that limθ→+0 h(θ) =
π
2 . By applying l’Hôpital’s

rule, this can be verified.

lim
θ→+0

h(θ) = lim
θ→+0

tan
(
π
2 θ
)
(1− θ)
θ

= lim
θ→+0

− tan
(π
2
θ
)
+
π

2

(1− θ)
cos2

(
π
2 θ
)

=
π

2
. (62)

Thus, Eq. (59) holds, completing the proof.

D ALGORITHM OF 1VS1ADJUSTER

Algorithm 1 outlines the detailed steps of 1vs1adjuster, a 1-vs-1 multi-class classifier that performs
classification based on the decision boundaries proposed in Proposition 3. The derivation of the
normal vector mk,k′ ∈ Rd for the decision boundary between k and k′ is as follows. Since mk,k′

lies in the same plane as wk and wk′ , and the angles with each are specified, it can be expressed
using α, β ∈ R as follows. Note that we assume ‖mk,k′‖ = 1 here.

mk,k′ = αwk + βwk′

m⊤
k,k′wk = cos

(π
2
− θ∗k,k′(γ1v1)

)
m⊤
k,k′wk′ = cos

(π
2
+ θ∗k′,k(γ1v1)

) (63)

Solving this system of equations for α and β, we obtain the following:
α =

sin θ∗k,k′(γ1v1) + sin θ∗k′,k(γ1v1) cosψ

1− cos2 ψ

β = −
sin θ∗k′,k(γ1v1) + sin θ∗k,k′(γ1v1) cosψ

1− cos2 ψ

(64)

Thus, the decision boundary can be defined as a plane passing through the origin with mk,k′ as
the normal vector. Note that Algorithm 1 simplifies this by using the normal vector multiplied by
1 − cos2 ψ. Additionally, when K is sufficiently large, mk,k′ can be approximated as mk,k′ ∼
sin θ∗k,k′(γ1v1)wk − sin θ∗k′,k(γ1v1)wk′ .

E DISCUSSION: APPROXIMATION OF ALA

Similar to the approximation of MLA in Section 4.3, we explore approximating ALA to
1vs1adjuster. ALA modifies the logits by adding a correction term, −γ+ log nk, where γ+ > 0.

First, we assume that for any x ∈ X , the feature norm is constant, i.e., f(x) = |f |. Similar to
the MLA case, we denote the coefficient of the ALA by ηk. To adjust the decision boundaries in
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Algorithm 1 1vs1adjuster
1: function ONE VS ONE(f(x),W ,Θ∗

γ1v1 )
2: let counter[1..K] be a zero-initialized array
3: for all k ← Y do
4: for all k′ ← Y do
5: if k = k′ then
6: continue
7: end if
8: let α = sin θ∗k,k′(γ1v1) + sin θ∗k′,k(γ1v1) cosψ

9: let β = sin θ∗k′,k(γ1v1) + sin θ∗k,k′(γ1v1) cosψ
10: let mk,k′ = αwk + βwk′

11: if m⊤
k,k′f(x) > 0 then

12: counter[k]← counter[k] + 1
13: end if
14: end for
15: end for
16: return argmax(counter)
17: end function

ALA such that it satisfies Proposition 3, ηk must be set so that the following condition holds for all
k 6= k′ ∈ Y :

‖f‖ cos(θ∗k,k′(γ1v1))− ηk = ‖f‖ cos(θ∗k′,k(γ1v1))− ηk′
⇔ ‖f‖

(
cos(θ∗k,k′(γ1v1))− cos(θ∗k′,k(γ1v1))

)
= ηk − ηk′ . (65)

For the left-hand side:
cos(θ∗k,k′(γ1v1))− cos(θ∗k′,k(γ1v1))

= −2 sin
(
θ∗k,k′(γ1v1) + θ∗k′,k(γ1v1)

2

)
sin

(
θ∗k,k′(γ1v1)− θ∗k′,k(γ1v1)

2

)
= −2 sin

(
ψ

2

)
sin

(
ψ

2
− θ∗k′,k(γ1v1)

)
= −2 sin

(
ψ

2

)
sin

(
θ∗k,k′(γ1v1)−

ψ

2

)
= 2 sin

(
ψ

2

)
sin

(
ψ

2
− θ∗k,k′(γ1v1)

)
(66)

= 2 sin

(
ψ

2

)
sin

(
ψ

2

(
1− 2

τk,k′(γ1v1) + 1

))
.

Let us denote the right-hand side as g(τk,k′(γ1v1)). We set γ∗+ > 0 so that it can be approximated
near τk,k′(γ1v1) = 1 by 2γ∗+ log(τk,k′(γ1v1)). Specifically, we set γ∗+ to satisfy:

g(1) = 0 = −2γ∗+ log(1), (67)

g′(1) =
ψ

2
sin

(
ψ

2

)
= 2γ∗+. (68)

The solution is γ∗+ = ψ
4 sin(ψ2 ). Thus, when τk,k′(γ1v1) ∼ 1:

ηk − ηk′ ∼ 2γ∗+ log τk,k′(γ1v1)

= γ∗+
(
log(‖µ(Sk)‖2nγ1v1k )− log(‖µ(Sk′)‖2nγ1v1k′ )

)
= γ∗+(γ1v1 log nk − γ1v1 log nk′ + 2(log ‖µ(Sk)‖ − log ‖µ(Sk′)‖))
= γ∗+γ1v1(log nk − log nk′). (69)

From this, we conclude that when τk,k′(γ1v1) ∼ 1 and ‖µ(Sk)‖ = ‖µ(Sk′)‖ for all k, k′ ∈ Y , the
ALA results in the decision boundaries as 1vs1adjuster. However, under LTR settings, τk,k′(γ1v1)
can vary significantly depending on k and k′, making this approximation less realistic in practice.
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F EXPERIMENTS

In this section, we summarize the details of the experimental settings and results that are not fully
covered in the main text. Appendix F.1 outlines the detailed experimental settings. Appendix F.2
provides supplementary results for the experiments in Section 5.2, while Appendix F.3 presents
additional results for the experiments in Section 5.3 under different conditions.

F.1 SETTINGS

We describe the detailed training settings in this section. We mainly followed the hyperparameters
used in Hasegawa & Sato (2023). First, we provide the details for experiments on image datasets,
and then describe the experiments on tabular data, highlighting the differences.

F.1.1 DATASETS

Following Cui et al. (2019) and Liu et al. (2019), we created long-tailed versions of image datasets.
For tuning the hyperparameters γ1v1, γ+, γ×, we used validation datasets. Since CIFAR10 and
CIFAR100 do not have validation datasets, we created validation datasets using a portion of the
training datasets. Following Liu et al. (2019), we constructed the validation datasets by extracting
only 20 samples per class from the training datasets and using the remaining samples as the training
datasets. For CIFAR100, we set n1 to 480, and for CIFAR10, we set it to 4980. The imbalance factor
ρ was set to 100. The classes within each dataset were divided into three groups̶Many, Medium,
and Few̶on the basis of the number of training samples nk. For CIFAR100-LT and ImageNet-LT,
we categorized classes k as Many if they had more than 1000 training samples (nk > 1000), Medium
if they had between 200 and 1000 training samples (200 ≤ nk ≤ 1000), and Few otherwise. For
CIFAR10-LT, we classified classes as Many if they had more than 100 samples, Medium if they had
between 20 and 100 samples, and Few otherwise.

F.1.2 EVALUATION METRICS

Unless otherwise specified, we used the following hyperparameters with ResNet. We chose stochas-
tic gradient descent with momentum = 0.9 as the optimizer and applied a cosine learning rate
scheduler (Loshchilov & Hutter, 2017) to gradually decrease the learning rate from 0.01 to 0. The
batch size was set to 64, and the number of training epochs was 320. The loss function used was
cross-entropy loss, and regularization included a weight decay of 0.005 (Hanson & Pratt, 1989)
and feature regularization of 0.01 (Hasegawa & Sato, 2023). Although we used an ETF classifier
for the linear layer, we did not use Dot-Regression Loss (Yang et al., 2022b), following Hasegawa
& Sato (2023). The optimal γ ∈ {γ1v1, γ+, γ×} for LA and 1vs1adjuster were determined using
cross-validation on validation datasets, exploring values from {0.00, 0.05, . . . , 2.00}.
Next, we describe the experimental setup for ImageNet-LT. The learning rate was gradually de-
creased from 0.05 to 0, with the number of training epochs set to 200. Regularization involved a
weight decay of 0.00024 and a feature regularization of 0.00003. All other settings were the same
as those used for CIFAR100-LT.

For the experiments in Section 5.2, we used the optimal values of γ1v1, γ+, γ× determined by the
validation data. For ALA, the value of ‖f‖ was calculated by averaging the norm of the class mean
features for each class.

The accuracy reported in Section 5.3 represents the mean and standard deviation across five inde-
pendent experiments, each using different random seeds. The values of γ1v1, γ×, and the training
accuracy mentioned in Section 5.4 correspond to these experiments. All experiments were con-
ducted on a single NVIDIA A100.

F.1.3 TABULAR DATA

Next, we describe the experiments conducted on tabular data. Since tabular data have characteristics
that differ significantly from image data, we conducted these experiments to demonstrate that our
results can generalize to other modalities beyond images. Apart from the settings described below,
the procedure was identical to that used for image data. Following Hasegawa & Sato (2023), we used
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Figure 4: Heatmaps showing the difference in angles between the decision boundaries adjusted by
each method and those adjusted by 1vs1adjuster of ResNeXt50 trained on CIFAR100-LT. The angle
differences between MLA and 1vs1adjuster are generally small compared to the difference between
ALA and 1vs1adjuster.

the Helena dataset with 100 classes. Since this dataset is not pre-split into validation and test sets,
we randomly sampled 20 non-overlapping samples per class for validation and test sets respectively.
The distribution of this dataset resembles a long-tailed distribution with ρ ' 40. For each class,
those with more than 500 training samples were categorized as Many, those with 200 ≤ nk ≤ 500
as Medium, and the rest as Few.

In line with Kadra et al. (2021), we trained a MLP with sufficient regularization. We used a 9-layer
MLP with 512-dimensional hidden layers as the feature map. The model was trained for 400 epochs
using AdamW (Loshchilov & Hutter, 2018). Regularization methods included a 0.15 dropout rate
(Srivastava et al., 2014), 0.15 weight decay, and 0.001 feature regularization.

F.2 DECISION BOUNDARY ANGLES

We present the results of the experiments from Section 5.2 conducted with different models and
datasets. Figure 4 illustrates the differences in the angles of the decision boundaries of ResNeXt50
trained on CIFAR100-LT, while Figures 5 and 6 display the results for ImageNet-LT and Helena,
respectively. In all cases, the decision boundaries adjusted by MLA and 1vs1adjuster tend to be
more similar to each other than to those adjusted by ALA.

F.3 TEST ACCURACY

In this subsection, we first present the error bar plot for the average test accuracy on Helena, which
is not shown in Section 5.3, followed by a detailed table of test accuracy of models adjusted by each
method.

Error Bar Figure 7 shows the average accuracy of models trained on Helena, adjusted by different
methods. Notably, models trained on Helena, similar to those on ImageNet-LT, did not achieve a
training accuracy of 100%, indicating that NC has not fully occurred (see Table 1). Despite this, the
results show that MLA and 1vs1adjuster achieve comparable accuracy, consistent with the experi-
ments on other image datasets.

Table We compare the test accuracy when each method is applied post-hoc to trained models.
We refer to the models only trained on the training data, without the application of any post-hoc
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Figure 5: Heatmaps showing the difference in angles between the decision boundaries adjusted by
each method and those adjusted by 1vs1adjuster of ResNeXt50 trained on ImageNet-LT. The angle
differences between MLA and 1vs1adjuster are generally small compared to the difference between
ALA and 1vs1adjuster.

Figure 6: Heatmaps showing the difference in angles between the decision boundaries adjusted by
each method and those adjusted by 1vs1adjuster of MLP trained on Helena. The angle differences
between MLA and 1vs1adjuster are generally small compared to the difference between ALA and
1vs1adjuster.
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Figure 7: Average accuracy of MLP trained on Helena and adjusted by different methods. MLA and
1vs1adjuster achieve comparable accuracy as with the experiments on other datasets in Figure 3.

Table 6: Accuracy of ResNet34 adjusted with each method on CIFAR100-LT. MLA and
1vs1adjuster achieve comparable average accuracy. MLA outperforms ALA in average accuracy
on CIFAR100-LT.

Method Many Medium Few Average

Baseline 77.9±0.3 46.8±1.0 15.3±0.3 47.6±0.5

ALA (γ+ = 1.0) 72.3±0.2 47.9±1.1 28.3±0.9 50.1±0.4

ALA (best) 75.6±0.9 49.2±1.0 25.2±2.2 50.7±0.4

1v1 (γ1v1 = 0.5) 76.4±0.3 51.7±0.9 24.7±0.7 51.7±0.2

1v1 (best) 74.2±1.0 53.0±0.9 29.6±1.1 52.9±0.3

MLA (γ× = 0.5) 75.6±0.3 52.3±0.8 27.1±0.7 52.4±0.2

MLA (best) 73.2±0.8 52.8±0.9 30.9±1.1 53.0±0.3

adjustment methods, as Baseline. We present two cases for each adjustment method: when the hy-
perparameter values are set according to the values derived from each theory (0.5 or 1.0), and when
the parameters are tuned using validation data (best). In addition to the overall average accuracy
(Average), we also report the average accuracy for the Many, Medium, and Few categories. Refer
to Appendix F.1 for details on these categorizations. The results for CIFAR100-LT and CIFAR10-
LT are presented in Tables 6 and 7, respectively. Table 8 reports the accuracy of ResNeXt50 on
CIFAR100-LT, while Tables 9 and 10 display the results of ImageNet-LT and Helena, respectively.

In all results, the Baseline shows higher accuracy for the Many category, as naive training on long-
tailed data results in outputs biased toward head classes. The 1vs1adjuster and post-hoc LA methods
successfully adjust for this bias by increasing the accuracy of Few classes, thereby improving the
overall average accuracy. As shown in Section 5.3, MLA achieves nearly the same average accuracy
as the 1vs1adjuster across all datasets. Additionally, MLA outperforms ALA in terms of average
accuracy for CIFAR100-LT.

F.4 COMBINATION WITH OTHER METHODS

Since MLA only adjusts the logits during inference, it can be seamlessly integrated with other LTR
techniques. Notably, methods classified under “Information Augmentation” and “Module Improve-
ment” in the taxonomy by Zhang et al. (2021) are particularly compatible. Here, we present ex-
perimental results combining MLA with the approach proposed by Wang et al. (2023a), which falls
under “Information Augmentation.” We compare the average accuracies of a model trained with
cross entropy loss against one with MLA. The dataset used is CIFAR100-LT of our implementation,
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Table 7: Accuracy of ResNet34 adjusted with each method on CIFAR10-LT. Although the num-
ber of classes is insufficient and the assumptions of our theory do not hold completely, MLA and
1vs1adjuster achieve comparable average accuracy.

Method Many Medium Few Average

Baseline 89.2±1.5 76.3±2.5 60.8±4.6 76.8±0.8

ALA (γ+ = 1.0) 87.2±2.5 78.5±2.9 71.7±3.9 79.9±1.0

ALA (best) 87.7±1.2 78.2±3.0 70.5±2.7 79.7±1.1

1v1 (γ1v1 = 0.5) 88.0±2.2 78.6±2.7 68.9±4.2 79.5±0.8

1v1 (best) 87.9±1.8 79.3±4.0 69.0±2.7 79.6±1.1

MLA (γ× = 0.5) 88.1±2.2 78.7±2.7 68.4±4.3 79.4±0.8

MLA (best) 88.0±1.6 79.2±3.7 68.8±2.9 79.6±1.1

Table 8: Accuracy of ResNeXt50 adjusted with each method on Cifar100-LT. MLA and 1vs1adjuster
achieve comparable average accuracy. MLA outperforms ALA in average accuracy on CIFAR100-
LT.

Method Many Medium Few Average

Baseline 77.4±0.3 49.8±0.5 18.2±0.4 49.4±0.3

ALA (γ+ = 1.0) 73.3±0.6 50.9±0.5 31.0±0.4 52.4±0.3

ALA (best) 76.3±0.3 51.9±0.4 26.2±0.4 52.2±0.2

1v1 (γ1v1 = 0.5) 75.6±0.3 53.5±0.5 27.6±0.7 53.0±0.2

1v1 (best) 70.5±0.7 54.0±1.2 36.6±0.9 54.2±0.3

MLA (γ× = 0.5) 74.5±0.3 53.7±0.8 30.3±0.7 53.5±0.2

MLA (best) 72.9±0.5 53.8±1.1 33.4±0.6 54.0±0.3

Table 9: Accuracy of ResNeXt50 adjusted with each method on ImageNet-LT. Although insufficient
NC has occurred (see Table 1) and the assumptions of our theory do not hold completely, MLA and
1vs1adjuster achieve comparable average accuracy.

Method Many Medium Few Average

Baseline 68.1±0.2 43.0±0.2 17.0±0.5 49.1±0.2

ALA (γ+ = 1.0) 65.3±0.2 48.1±0.1 31.2±0.7 52.4±0.1

ALA (best) 63.1±0.4 48.7±0.2 36.7±0.9 52.6±0.2

1v1 (γ1v1 = 0.5) 48.7±0.5 48.0±0.4 48.4±0.6 48.3±0.2

1v1 (best) 62.8±0.4 49.3±0.3 34.7±0.7 52.5±0.2

MLA (γ× = 0.5) 38.9±0.7 44.0±0.3 52.3±0.6 43.2±0.3

MLA (best) 62.4±0.4 49.3±0.2 36.0±0.5 52.6±0.2

Table 10: Accuracy of MLP adjusted with each method on Helena. Although insufficient NC
has occurred (see Table 1) and the assumptions of our theory do not hold completely, MLA and
1vs1adjuster achieve comparable average accuracy.

Method Many Medium Few Average

Baseline 36.1±1.3 21.6±0.6 17.4±1.0 25.2±0.3

ALA (γ+ = 1.0) 34.7±1.4 26.5±0.8 23.8±0.3 28.4±0.3

ALA (best) 31.2±1.2 28.8±0.6 27.4±0.3 29.2±0.4

1v1 (γ1v1 = 0.5) 32.9±1.0 29.0±1.0 24.7±0.8 28.9±0.4

1v1 (best) 31.5±1.2 29.8±1.6 25.6±0.5 29.0±0.4

MLA (γ× = 0.5) 31.1±0.9 30.2±1.0 26.0±0.6 29.1±0.5

MLA (best) 31.3±1.7 29.8±1.8 25.8±1.0 29.0±0.3
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Table 11: Accuracy of ResNet32 trained with Wang et al. (2023a) and adjusted with MLA on
CIFAR100-LT. MLA can be used effectively in combination with other LTR methods to improve
accuracy.

Method Many Medium Few Average

Wang et al. (2023a) 73.5 45.1 13.5 44.9
Wang et al. (2023a) + MLA 63.8 51.7 30.2 49.1

Table 12: Accuracy of ResNet34 adjusted with each method on CIFAR100-LT with ρ = 200. MLA
and 1vs1adjuster achieve comparable average accuracy. MLA outperforms ALA in average accuracy
on CIFAR100-LT.

Method Many Medium Few Average

Baseline 78.4±0.3 48.4±0.5 12.5±0.5 43.1±0.3

ALA (γ+ = 1.0) 69.9±0.8 46.3±0.7 21.4±1.0 43.4±0.7

ALA (best) 76.3±0.3 50.3±0.4 19.3±1.0 45.7±0.4

1v1 (γ1v1 = 0.5) 76.5±0.4 53.3±0.4 20.2±0.6 47.0±0.2

1v1 (best) 74.6±0.8 53.6±0.5 23.4±1.2 47.8±0.4

MLA (γ× = 0.5) 75.4±0.5 53.1±0.6 22.5±0.6 47.6±0.3

MLA (best) 73.5±0.9 52.9±1.0 24.4±0.4 47.7±0.5

while other code and experimental settings adhere to the official implementation by Wang et al.
(2023a). Note that these results are not directly comparable with our other experiments due to dif-
ferences in setup. The results are summarized in Table 11. As shown, combining MLA with other
LTR methods can further improve accuracy.

F.5 HIGHER IMBALANCE FACTOR

To evaluate the effectiveness of MLA on more imbalanced datasets, we conducted experiments
on the CIFAR-LT dataset with ρ = 200. All other experimental settings were identical to those
described in Section 5.1. The results are shown in Tables 12 and 13. As in the case with ρ = 100,
the results demonstrate that MLA closely approximates 1vs1adjuster in all scenarios. MLA achieves
higher mean accuracy than ALA on CIFAR100-LT in this case as well.

Table 13: Accuracy of ResNet34 adjusted with each method on CIFAR10-LT with ρ = 200. MLA
and 1vs1adjuster achieve comparable average accuracy.

Method Many Medium Few Average

Baseline 91.6±1.6 69.7±2.2 54.0±3.3 70.0±0.6

ALA (γ+ = 1.0) 81.7±8.1 69.3±2.4 69.3±4.6 73.0±1.8

ALA (best) 89.2±1.9 70.5±2.0 64.5±3.0 73.7±0.6

1v1 (γ1v1 = 0.5) 88.4±3.2 71.4±2.0 64.9±4.6 73.9±0.6

1v1 (best) 87.5±3.9 71.7±1.9 66.1±5.4 74.2±0.7

MLA (γ× = 0.5) 88.8±3.0 71.4±2.0 64.1±4.5 73.7±0.7

MLA (best) 88.0±3.4 71.7±1.9 65.4±5.2 74.1±0.8
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