
A Additional Related Work

Lin and Bilmes [37] described an algorithm that takes advantages of a continuous partial monotonicity
property, but unlike the monotonicity ratio, their property was defined in terms of the particular
submodular objective they were interested in. More recently, Cui et al. [14] considered a weaker, but
still binary, version of monotonicity called weak-monotonicity.

B Proof of Lemma 2.1

In this section we prove Lemma 2.1.

Lemma 2.1. Let f : 2N → R≥0 be a non-negative m-monotone submodular function. For every
deterministic set O ⊆ N and random set D ⊆ N , E[f(O ∪D)] ≥ (1− (1−m) ·maxu∈N Pr[u ∈
D]) · f(O).

To prove this lemma we first have to define the Lovász extension of set functions. The Lovász
extension of a set function f : 2N → R is a function f̂ : [0, 1]N → R defined as follows. For every
vector x ∈ [0, 1]N ,

f̂(x) =

∫ 1

0

f(Tλ(x))dλ ,

where Tλ(x) ≜ {u ∈ N | xu ≥ λ}. The Lovász extension of a submodular function is known to
be convex. More important for us is the following known lemma regarding this extension. This
lemma stems from an equality, proved by Lovász [38], between the Lovász extension of a submodular
function and another extension known as the convex closure.

Lemma B.1. Let f : 2N → R be a submodular function, and let f̂ be its Lovász extension. For
every x ∈ [0, 1]N and random set Dx ⊆ N obeying Pr[u ∈ Dx] = xu for every u ∈ N (i.e., the
marginals of Dx agree with x), f̂(x) ≤ E[f(Dx)].

Using the last lemma, we can now prove Lemma 2.1.

Proof of Lemma 2.1. Let x be the vector of marginals of O ∪D, i.e., xu = Pr[u ∈ O ∪D] for every
u ∈ N . Then, by Lemma B.1,

E[f(O ∪D)] ≥ f̂(x) =

∫ 1

0

f(Tλ(x))dλ

=

∫ maxu∈N Pr[u∈D]

0

f(Tλ(x))dλ+

∫ 1

maxu∈N Pr[u∈D]

f(Tλ(x))dλ

=

∫ maxu∈N Pr[u∈D]

0

f(O ∪ Tλ(x))dλ+ (1−max
u∈N

Pr[u ∈ D]) · f(O) ,

where the last equality holds since the elements of O appear in Tλ(x) for every λ ∈ [0, 1], and no
other element appears in Tλ(x) when λ > Pr[u ∈ D]. Using the definition of the monotonicity ratio,
the expression f(O ∪ Tλ(x)) on the rightmost side of the previous equation can be lower bounded by
m · f(O), which yields

E[f(O ∪D)] ≥
∫ maxu∈N Pr[u∈D]

0

m · f(O)dλ+ (1−max
u∈N

Pr[u ∈ D]) · f(O)

= m ·max
u∈N

Pr[u ∈ D] · f(O) + (1−max
u∈N

Pr[u ∈ D]) · f(O)

= (1− (1−m) ·max
u∈N

Pr[u ∈ D]) · f(O) .

C Proofs of Section 3

In this section we give the proofs of Section 3.

15

C.1 Proof of the first part of Theorem 3.1

In this section we prove the first part of Theorem 3.1, which is restated by the following theorem.
Theorem C.1. The double greedy algorithm of Buchinder et al. [7] guarantees [1/(2 − m)]-
approximation for unconstrained submodular maximization.

Let f : 2N → R≥0 be an arbitrary non-negative m-monotone submodular function over the ground
set N . To prove Theorem C.1, we need to show that given f , the double greedy algorithm of
Buchinder et al. [7] outputs a (random) set S obeying E[f(S)] ≥ f(OPT)/(2−m), where OPT is
some subset ofN maximizing f . Therefore, we start by looking at the approximation guarantees that
are known for double greedy when ignoring the monotonicity ratio.

Buchinder et al. [7] proved that the output S of double greedy always obeys

E[f(S)] ≥ 2f(OPT) + f(∅) + f(N)

4
.

However, it turns out that this guarantee is only a special case of a more general guarantee that can be
proved. Specifically, we prove below the following guarantee.
Proposition C.2. The (random) output set S of double greedy obeys

E[f(S)] ≥ 2r

(r + 1)2
· f(OPT) +

1

(r + 1)2
· f(∅) +

r2

(r + 1)2
· f(N)

for every value r > 0, simultaneously (i.e., the algorithm need not know r).

Proposition C.2 is based on ideas first used by Buchbinder et al. [6] in the context of an algorithm
that is related to double greedy. Recently, Qi [47] observed that these ideas are useful also in the
context of the double greedy algorithm, and used them to derive an improved result for a related
problem termed “Regularized Unconstrained Submodular Maximization”. Proposition C.2 is another
consequence of the application of these ideas to double greedy.

Before getting to the proof of Proposition C.2, let us show that it implies Theorem C.1.

Proof of Theorem C.1. Since f is m monotone and OPT ⊆ N , f(N) ≥ m ·f(OPT). Additionally,
the non-negativity of f guarantees f(∅) ≥ 0. Plugging both these observations into the guarantee of
Proposition C.2, we get

E[f(S)] ≥ 2r

(r + 1)2
· f(OPT) +

1

(r + 1)2
· f(∅) +

r2

(r + 1)2
· f(N)

≥ 2r

(r + 1)2
· f(OPT) +

r2

(r + 1)2
· [m · f(OPT)] =

2r + r2m

(r + 1)2
· f(OPT) .

Since the above inequality holds for every r > 0, we can choose r = 1/(1−m), and get

E[f(S)] ≥ 2r + r2m

(r + 1)2
· f(OPT) =

2/r +m

(1 + 1/r)2
· f(OPT)

=
2(1−m) +m

(1 + (1−m))2
· f(OPT) =

2−m

(2−m)2
· f(OPT) =

1

2−m
· f(OPT) .

The rest of this section is devoted to proving Proposition C.2. To prove this proposition, we first need
to describe the double greedy algorithm that it analyzes, which appears as Algorithm 1. In a nutshell,
this algorithm maintains two solutions X and Y that are originally the empty set and entire ground
set, respectively. In every iteration, the algorithm considers a different element of the ground set, and
either adds it to X , or removes it from Y . Once all the elements have been considered, the sets X
and Y become identical, and they are the output of the algorithm. Note also that Algorithm 1 uses n
to denote the size of the ground set N .

The heart of the analysis of Algorithm 1 is Lemma C.3, which was proved by Qi [47], and we prove
here in more detail for completeness. To state Lemma C.3, we need to define for every integer
0 ≤ i ≤ n the set OPTi = (OPT ∪ Xi) ∩ Yi. Notice that OPTi agrees with Xi and Yi on all
the elements on which these two sets agree (i.e., elements that Algorithm 1 considered in its first i
iterations). On the remaining elements, OPTi agrees with OPT . Thus, as i increases, OPTi evolves
from being equal to OPT to being equal to the output set Xn = Yn of Algorithm 1.

16

Algorithm 1: Double-Greedy
1 Denote the elements of N by u1, u2, . . . , un in an arbitrary order.
2 Let X0 ← ∅ and Y0 ← ∅.
3 for i = 1 to n do
4 Let ai ← f(ui | Xi−1) and bi ← −f(ui | Yi−1 − ui).
5 if bi ≤ 0 then Let Xi ← Xi−1 + ui and Yi ← Yi−1.
6 else if ai ≤ 0 then Let Xi ← Xi−1 and Yi ← Yi−1 − ui.
7 else
8 with probability ai

ai+bi
do Let Xi ← Xi−1 + ui and Yi ← Yi−1.

9 otherwise Let Xi ← Xi−1 and Yi ← Yi−1 − ui. // Occurs with prob. bi
ai+bi

.

10 return Xn(= Yn).

Lemma C.3. For every integer 1 ≤ i ≤ n and r > 0,

E[f(OPTi−1)− f(OPTi)] ≤
1

2
E[r−1(f(Xi)− f(Xi−1)) + r(f(Yi)− f(Yi−1))] .

Proof. By the law of total expectation, it suffices to prove the lemma conditioned on any particular
choice for the random bits tossed in the first i− 1 iterations of Algorithm 1. Notice that once these
random bits are fixed, OPTi−1, Xi−1 and Yi−1 become deterministic sets, and so do the numbers ai
and bi calculated by Algorithm 1. We now need to consider three cases based on the values of these
numbers.

The first case is the case of bi ≤ 0. In this case Algorithm 1 deterministically set Xi ← Xi−1 + ui

and Yi ← Yi−1, which reduces the inequality that we need to prove to

f(OPTi−1)− f(OPTi−1 + ui) ≤ 1
2r [f(Xi−1 + ui)− f(Xi−1)] . (2)

Observe that the description of Algorithm 1 implies Xi−1 ⊆ Yi−1, ui ̸∈ Xi−1 and ui ∈ Yi−1 (see
Buchinder et al. [7] for a formal proof of these properties). Given these properties, the submodularity
of f shows that the right hand side of Inequality (2) is non-negative because

f(Xi−1 + ui)− f(Xi−1) ≥ [f((Xi−1 + ui) ∪ (Yi−1 − ui))

+ f((Xi−1 + ui) ∩ (Yi−1 − ui))− f(Yi−1 − ui)]− f(Xi−1)

= f(Yi−1) + f(Xi−1)− f(Yi−1 − ui)− f(Xi−1) = −bi ≥ 0 .

To complete the proof of the first case, it remains to show that the left hand side of Inequality (2) is non-
positive. If ui ∈ OPTi−1, then this left hand side is trivially 0. Otherwise, since OPTi−1 ⊆ Yi−1 by
definition, the submodularity of f shows that this left hand side is non-positive because

f(OPTi−1)− f(OPTi−1 + ui) ≤ f(Yi−1 − ui)− f(Yi−1) = bi ≤ 0 .

The second case that we need to consider is the case of bi > 0 and ai ≤ 0. However, since the
analysis of this case is analogous to the analysis of the previous case, we omit it. Thus, we are left
with the case in which both ai and bi are positive. The analysis of this case consists of two sub-cases
depending on whether ui ∈ OPT or not. Since the proofs of these sub-cases are analogous to each
other, we assume from this point on that ui ̸∈ OPT .

In the case we consider, Algorithm 1 sets Xi ← Xi−1 + ui and Yi ← Yi−1 with probability
ai/(ai + bi), and otherwise it sets Xi ← Xi−1 and Yi ← Yi−1 − ui. Thus, the law of total
expectation implies

E[f(OPTi−1)− f(OPTi)] =
ai

ai + bi
· [f(OPTi−1)− f(OPTi−1 + ui)]

+
bi

ai + bi
· [f(OPTi−1)− f(OPTi−1)]

=
ai

ai + bi
· [f(OPTi−1)− f(OPTi−1 + ui)] ,

17

and

E[r−1(f(Xi)− f(Xi−1)) + r(f(Yi)− f(Yi−1))]

=
ai

ai + bi
· [r−1(f(Xi−1 + ui)− f(Xi−1)) + r(f(Yi−1)− f(Yi−1))]

+
bi

ai + bi
· [r−1(f(Xi−1)− f(Xi−1)) + r(f(Yi−1 − ui)− f(Yi−1))]

=
r−1a2i
ai + bi

+
rb2i

ai + bi
.

Plugging both these equalities into the inequality that we need to prove, we get that this inequality is
equivalent to

ai
ai + bi

· [f(OPTi−1)− f(OPTi−1 + ui)] ≤
1

2

[
r−1a2i
ai + bi

+
rb2i

ai + bi

]
.

Furthermore, like in the first case, we have f(OPTi−1)− f(OPTi−1 + ui) ≤ bi, and therefore, it
suffices to prove the inequality

aibi
ai + bi

≤ 1

2

[
r−1a2i
ai + bi

+
rb2i

ai + bi

]
,

which holds since

r−1a2i + rb2i = (ai/
√
r − bi

√
r)2 + 2(ai/

√
r)(bi

√
r) ≥ 2aibi .

Using Lemma C.3, we can now prove Proposition C.2.

Proof of Proposition C.2. Throughout this proof, r is an arbitrary positive number. Summing up the
guarantees of Lemma C.3 for all integers 1 ≤ i ≤ n yields

n∑
i=1

E[f(OPTi−1)−f(OPTi)] ≤
1

2
E

[
r−1 ·

n∑
i=1

(f(Xi)− f(Xi−1)) + r ·
n∑

i=1

(f(Yi)− f(Yi−1))

]
.

Using the linearity of expectation, we can collapse the telescopic sums in the last inequality, and get

E[f(OPT0)− f(OPTn)] ≤
1

2
E[r−1(f(Xn)− f(X0)) + r(f(Yn)− f(Y0))] .

As explained above, OPT0 = OPT and OPTn = Xn = Yn. Additionally, X0 and Y0 are set by
Algorithm 1 to ∅ and N , respectively. Plugging all these equalities into the previous inequality
reduces it to

E[f(OPT)− f(Xn)] ≤
1

2
E[r−1(f(Xn)− f(∅)) + r(f(Xn)− f(N))] .

The proposition now follows by rearranging the above inequality, and observing that Xn is the output
set S mentioned in the statement of the proposition.

C.2 Proof of Theorem 3.2

In this section, we show how the proof of the symmetry gap technique due to Vondrák [52] can be
adapted to prove Theorem 3.2. Let us begin the section by stating some definitions that are required
in order to formally state Theorem 3.2.

Definition C.4. [Strong symmetry] Consider a non-negative submodular function f and a collection
F ⊆ 2N of feasible sets. The problem max{f(S) | S ∈ F} is strongly symmetric with respect
to a group of permutations G on N , if (1) f(S) = f(σ(S)) for all S ⊆ N and σ ∈ G, and
(2) S ∈ F ⇐⇒ S′ ∈ F whenever Eσ∈G [1σ(S)] = Eσ∈G [1σ(S′)], where Eσ∈G represents the
expectation over picking σ uniformly at random out of G.

18

Definition C.5. [Symmetry gap] Consider a non-negative submodular function f and a collection
F ⊆ 2N of feasible sets. Let F (x) be the multilinear extension of f and P (F) ⊆ [0, 1]N be the
convex hull of F . Then, if the problem max{f(S) | S ∈ F} is strongly symmetric with respect to a
group G of permutation, then its symmetry is defined as

max{F (x̄) | x ∈ P (F)}
max{F (x) | x ∈ P (F)} ,

where x̄ ≜ Eσ∈G [σ(x)].

Definition C.6. [Refinement] Consider a setF ⊆ 2N , and let X be some set. We say that F̃ ⊆ 2N×X

is a refinement of F if

F̃ =
{
S ⊆ N ×X

∣∣∣ x ∈ P (F), where xu = |S∩({u}×X)|
|X| for every u ∈ N

}
.

Using the above definitions, we can now formally state the theorem that we want to prove.
Theorem 3.2. Consider a non-negative m-monotone submodular function f and a collectionF ⊆ 2N

of feasible sets such that the problem max{f(S) | S ∈ F} is strongly symmetric with respect to
some group G of permutations over N and has a symmetry gap γ. Let C be the class of problems
max{f̃(S) | S ∈ F̃} in which f̃ is a non-negative m-monotone submodular function, and F̃ is a
refinement of F . Then, for every ε > 0, any (even randomized) (1 + ε)γ-approximation algorithm
for the class C would require exponentially many value queries to f̃ .

The crux of the symmetry gap technique is two lemmata due to [52] that we restate below. Lemma C.7
shows that given a non-negative set function f , one can obtain from it two continuous versions: a
continuous version F̂ that resembles f itself, and a continuous version Ĝ that resembles a symmetrized
version of f . Distinguishing between F̂ and Ĝ is difficult, however, this does not translate into an
hardness for discrete problems since F̂ and Ĝ are continuous. Therefore, Vondrák [52] proved also
Lemma C.8, which shows how these continuous functions can be translated back into set functions
with appropriate properties.
Lemma C.7 (Lemma 3.2 of [52]). Consider a function f : 2N → R≥0 invariant under a group
of permutations G on the ground set N . Let F (x) be the multilinear extension of F , define x̄ =

Eσ∈G [1σ(x)] and fix any ε > 0. Then, there is δ > 0 and functions F̂ , Ĝ : [0, 1]N → R≥0 (which are
also symmetric with respect to G), satisfying the following:

1. For all x ∈ [0, 1]N , Ĝ(x) = F̂ (x̄).

2. For all x ∈ [0, 1]N , |F̂ (x)− F (x)| ≤ ε.

3. Whenever ∥x− x̄∥2 ≤ δ, F̂ (x) = Ĝ(x) and the value depends only on x̄.

4. The first partial derivatives of F̂ and Ĝ are absolutely continuous.

5. If f is monotone, then, for every element u ∈ N , ∂F̂
∂xu
≥ 0 and ∂Ĝ

∂xu
≥ 0 everywhere.

6. If f is submodular then, for every two elements u, v ∈ N , ∂2F̂
∂xu∂xv

≤ 0 and ∂2Ĝ
∂xu∂xv

≤ 0
almost everywhere.

Lemma C.8 (Lemma 3.1 of [52]). Let n be a positive integer, and let F : [0, 1]N → R and X = [n].
If we define f : 2N×X → R≥0 so that f(S) = F (x), where xu = 1

n |S ∩ ({u} ×X)|. Then,

1. if ∂F
∂xu
≥ 0 everywhere for each element u ∈ N , then f is monotone,

2. and if the first partial derivatives of F are absolutely continuous and ∂2F
∂xu∂xv

≤ 0 almost
everywhere for all elements u, v ∈ N , then f is submodular.

One can note that the above lemmata have the property that if the function f plugged into Lemma C.7
is monotone, then the discrete functions obtained by applying Lemma C.8 to the functions F̂ and
Ĝ are also monotone. This is the reason that the framework of [52] applies to monotone functions

19

(as well as general, not necessarily monotone, functions). Therefore, to get the proof of [52] to
yield Theorem 3.2, it suffices to prove the following two modified versions of Lemmata C.7 and C.8.
These modified versions preserve m-monotonicity for any m ∈ [0, 1], rather than just standard
monotonicity.
Lemma C.9 (modified version of Lemma C.7). Consider a function f : 2N → R≥0 that is m-
monotone and invariant under a group of permutations G on the ground set N . Let F (x) be the
multilinear extension of F , define x̄ = Eσ∈G [1σ(x)] and fix any ε > 0. Then, there is δ > 0

and functions F̂ , Ĝ : [0, 1]N → R≥0 (which are also symmetric with respect to G), satisfying the
following:

1. For all x ∈ [0, 1]N , Ĝ(x) = F̂ (x̄).

2. For all x ∈ [0, 1]N , |F̂ (x)− F (x)| ≤ ε.

3. Whenever ∥x− x̄∥2 ≤ δ, F̂ (x) = Ĝ(x) and the value depends only on x̄.

4. For every two vectors x,y ∈ [0, 1]N obeying x ≤ y, m · F (x) ≤ F (y).

5. If f is submodular then, for every two elements u, v ∈ N , ∂2F̂
∂xu∂xv

≤ 0 and ∂2Ĝ
∂xu∂xv

≤ 0
almost everywhere.

Lemma C.10 (modified version of Lemma C.8). Let n be a positive integer, and let F : [0, 1]N → R
and X = [n]. If we define f : 2N×X → R≥0 so that f(S) = F (x), where xu = 1

n |S ∩ ({u} ×X)|.
Then,

1. if for some value m ∈ [0, 1] the inequality m · F (x) ≤ F (y) holds for any two vectors
x,y ∈ [0, 1]N that obey x ≤ y, then f is m-monotone,

2. and if the first partial derivatives of F are absolutely continuous and ∂2F
∂xu∂xv

≤ 0 almost
everywhere for all elements u, v ∈ N , then f is submodular.

The proof of Lemma C.9 is quite long and appears below. However, before getting to this proof, let
first give the much simpler proof of Lemma C.10.

Proof of Lemma C.10. The second point in Lemma C.10 follows immediately from Lemma C.8, so
we concentrate on proving the first point. In other words, we assume that m · F (x) ≤ F (y) for every
two vectors x,y ∈ [0, 1]N obeying x ≤ y, and we need to show that m · f(S) ≤ f(T) for every two
sets S ⊆ T ⊆ N .

Let us define two vectors x(S),x(T) ⊆ [0, 1]N as follows. For every u ∈ N ,

x(S)
u =

1

n
|S ∩ ({u} ×X)| and x(T)

u =
1

n
|T ∩ ({u} ×X)| .

Since S ⊆ T , we get x(S) ≤ x(T), which implies m · F (x(S)) ≤ F (x(T)); and the last inequality
proves the lemma since f(S) = F (x(S)) and f(T) = F (x(T)) by the definition of f .

We now get to the proof of Lemma C.9. We use in this proof functions F̂ and Ĝ that are similar to the
ones constructed by Vondrák [52] in the proof of Lemma C.7. Specifically, like in the proof of [52],
we define

Ĝ(x) = G(x) + 256M |N |αJ(x) ,

where M is the maximum value that the function f takes on any set, G is a symmetrized version
of the multilinear extension F of f defined as G(x) = F (x̄), J(x) ≜ |N |2 + 3|N | ·∑u∈N xu −(∑

u∈N xu

)2
, and α is a positive value that is independent of x. Similarly, the function F̂ was

defined by Vondrák [52] as

F̂ (x) = F̃ (x) + 256M |N |αJ(x) ,

where the function F̃ interpolates between the multilinear extension F of f and its symmetrized
version G, and is given by

F̃ (x) = (1− ϕ(D(x))) · F (x) + ϕ(D(x)) ·G(x) .

20

Here, D(x) ≜ ∥x − x̄∥22, and ϕ : R≥0 → [0, 1] is a function which is defined using the following
lemma.

Lemma C.11 (Lemma 3.7 of [52]). For any α, β > 0, there is δ > (0, β) and a function ϕ : R≥0 →
[0, 1] with an absolutely continuous first derivative such that

• For t ∈ [0, δ], ϕ(t) = 1.

• For t ≥ β, ϕ(t) < e−1/α.

• For all t ≥ 0, |tϕ′(t)| ≤ 4α.

• For almost all t ≥ 0, |t2ϕ′′(t)| ≤ 10α.

Vondrák [52] proved that the above functions F̂ and Ĝ have all the properties guaranteed by
Lemma C.7 for the δ whose existence is guaranteed by Lemma C.11 when the values of α and
β are set to be α = ε

2000M |N |3 and β = ε
16M |N | . Moreover, the proof of [52] continues to work as

long as α ≤ ε
2000M |N |3 and β ≤ ε

16M |N | . Therefore, we assume below that α = min{1, ε
2000M |N |3 }

and β = min{α2, ε
16M |N |}, and we prove only the part of Lemma C.9 that is not stated in the

guarantees of Lemma C.7, which is Property 4 of the lemma. We begin by showing that the function
Ĝ indeed has this property.

Lemma C.12. For every two vectors x,y ∈ [0, 1]N obeying x ≤ y, m · Ĝ(x) ≤ Ĝ(y).

Proof. Consider the random sets R(x̄) and R(ȳ). Since x̄ ≤ ȳ, the set R(ȳ) stochastically dominates
R(x̄). In other words, one can correlate the randomness of these sets in a way that does not alter their
distributions, but guarantees that the inclusion R(x̄) ⊆ R(ȳ) holds deterministically. Assuming this
done, we get

m ·G(x) = m · F (x̄) = m · E[f(R(x̄))] ≤ E[f(R(ȳ))] = F (ȳ) = G(y) , (3)

where the inequality follows from the linearity of the expectation and the m-monotonicity of f .

Observe now that for every element u ∈ N , the partial derivative of J with respect to zu at any point
z ∈ [0, 1]N is

∂J(z)

∂zu
= 3|N | − 2

∑
v∈N

zv ≥ |N | ≥ 0 .

Hence, the inequality x ≤ y implies m · J(x) ≤ J(x) ≤ J(y). Together with Inequality (3), this
implies the lemma.

One can observe that the arguments used to prove Inequality(3) in the proof of the last lemma also
show that m ·F (x) ≤ F (y), which is a fact that we use below. However, proving that F̂ also has this
property (and therefore, obeys Property 4 of Lemma C.9) is more involved. As a first step towards
this goal, we bound the gradient of

F̃ (x)− F (x) = ϕ(D(x)) · [G(x)− F (x)] .

The following lemma does that in the regime in which D(x) is small, and the next lemma handles
the other regime.

Lemma C.13. For every element u ∈ N and vector x ∈ [0, 1]N obeying D(x) ≤ β, the absolute
value of the partial derivative ∂{ϕ(D(x))·[G(x)−F (x)]}

∂xu
is at most 72

√
βM |N | ≤ 72αM |N |.

Proof. Observe that

∂{ϕ(D(x)) · [G(x)− F (x)]}
∂xu

= ϕ′(D(x)) · ∂D(x)

∂xu
· [G(x)− F (x)]

+ ϕ(D(x)) ·
[
∂G(x)

∂xu
− ∂F (x)

∂xu

]
.

21

To use this equation to bound the absolute value of the left hand side, we need to make some
observations. First, Lemma 3.6 of [52] shows that ∥∇D(x)∥2 = 2

√
D(x), which implies

∂D(x)

∂xu
≤ ∥∇D(x)∥2 = 2

√
D(x) .

Additionally, Lemma 3.5 of [52] shows that |G(x)− F (x)| ≤ 8M |N | ·D(x), and therefore,∣∣∣∣ϕ′(D(x)) · ∂D(x)

∂xu
· [G(x)− F (x)]

∣∣∣∣ ≤ |ϕ′(D(x))| ·
∣∣∣∣∂D(x)

∂xu

∣∣∣∣ · |G(x)− F (x)|

≤ |ϕ′(D(x))| · 2
√
D(x) · 8M |N | ·D(x)

= |D(x) · ϕ′(D(x))| · 16M |N | ·
√
D(x)

≤ 64α
√

βM |N | ,
where the second inequality follows from Lemma C.11 and our assumption that D(x) ≤ β.

We now observe that∣∣∣∣ϕ(D(x)) ·
[
∂G(x)

∂xu
− ∂F (x)

∂xu

]∣∣∣∣ = ϕ(D(x)) ·
∣∣∣∣∂G(x)

∂xu
− ∂F (x)

∂xu

∣∣∣∣
≤ ϕ(D(x)) · ∥∇G(x)−∇F (x)∥2 ≤ ϕ(D(x)) · 8M |N | ·

√
D(x) ≤ 8

√
βM |N | ,

where the second inequality holds since Lemma 3.5 of [52] shows that ∥∇G(x) − F (x)∥2 ≤
8M |N | ·

√
D(x); and the last inequality holds by our assumption that D(x) ≤ β and by recalling

that the range of ϕ is [0, 1].

Combining all the above yields∣∣∣∣∂{ϕ(D(x)) · [G(x)− F (x)]}
∂xu

∣∣∣∣ ≤ 64α
√
βM |N |+ 8

√
βM |N | ≤ 72

√
βM |N | ,

where the second inequality holds since α ≤ 1.

Lemma C.14. For every element u ∈ N and vector x ∈ [0, 1]N obeying D(x) ≥ β, the absolute
value of the partial derivative ∂{ϕ(D(x))·[G(x)−F (x)]}

∂xu
is at most 72αM |N |3/2.

Proof. Repeating the proof of Lemma C.13, except for the use of the inequality D(x) ≤ β (which
does not hold in the current lemma) and the inequality ϕ(x) ≤ 1 (which too weak for our current
purpose), we get∣∣∣∣ϕ(D(x)) ·

[
∂G(x)

∂xu
− ∂F (x)

∂xu

]∣∣∣∣ ≤ 64αM |N | ·
√
D(x) + |ϕ(D(x))| · 8M |N | ·

√
D(x) .

The expression ϕ(D(x)) can be upper bounded by e−1/α ≤ α by Lemma C.11. Also, D(x) =
∥x − x̄∥22 ≤ |N |. The lemma now follows by plugging these two upper bounds into the previous
inequality.

Corollary C.15. For every element u ∈ N and vector x ∈ [0, 1]N , the absolute value of the partial
derivative ∂{ϕ(D(x))·[G(x)−F (x)]}

∂xu
is at most 72αM |N |3/2.

The last corollary implies that F̃ can be presented as the sum of F and a component that changes
slowly. Therefore, if we add to F̃ a function that increases quickly enough (as is done to define F̂),
then we should get a function that can be represented as F plus a monotone component. This is the
intuition formalized in the proof of the next lemma.

Lemma C.16. The function F̂ (x)−F (x) has non-negative partial derivatives for every x ∈ [0, 1]N .

Proof. By the definition of F̂ (x),

F̂ (x)− F (x) = F̃ (x)− F (x) + 256M |N |αJ(x) .

By Corollary C.15 and the observation that all the partial derivatives of J(x) are at least |N | (see the
proof of Lemma C.12), the last equality implies, for every element u ∈ N ,

∂[F̂ (x)− F (x)]

∂xu
≥ −72αM |N |3/2 + 256αM |N |2 ≥ 0 .

22

We are now ready to show that F̂ obeys Property 4 of Lemma C.9.

Lemma C.17. For every two vectors x,y ∈ [0, 1]N obeying x ≤ y, m · F̂ (x) ≤ F̂ (y).

Proof. Note that 1∅ = 1∅, which implies that G(1∅) = F (1∅), and therefore,

F̃ (1∅)− F (1∅) = ϕ(D(1∅)) · [G(1∅)− F (1∅)] = 0 .

Plugging this observation into the definition of F̂ now gives

F̂ (1∅)− F (1∅) = F̃ (1∅)− F (1∅) + 256M |N |αJ(1∅) = 256M |N |αJ(1∅) .

Since all the first partial derivatives of F̂ (z) − F (z) are non-negative by Lemma C.16, the last
inequality implies

F̂ (y)− F (y) ≥ F̂ (x)− F (x) ≥ 256M |N |αJ(x) ≥ 0 .

Hence,

m·F̂ (x) ≤ m·[F (x)+F̂ (y)−F (y)] ≤ F (y)+m·[F̂ (y)−F (y)] ≤ F (y)+[F̂ (y)−F (y)] = F̂ (y) ,

where the second inequality holds by the discussion immediately after the proof of Lemma C.12, and
the last inequality holds since m ≤ 1 and F̂ (y)− F (y) ≥ 0.

C.3 Proof of Lemma 3.3

Lemma 3.3. The problem max{f(S) | S ∈ F} has a symmetry gap of 1
2−m .

Proof. Observe that our definition of F implies that P (F) = [0, 1]N . Therefore,

max{F (x) | x ∈ P (F)} = max{F (x) | x ∈ [0, 1]N } = max{f(S) | S ⊆ N} = 1 , (4)

where the second equality holds since, for every vector x, F (x) is a convex combination of values of
f for subsets of N ; and on the other hand, for every set S ⊆ N , f(S) = F (1S).

Observe now that the definition of f implies that

F (x) = m[1− (1− xu)(1− xv)] + (1−m) · [xu(1− xv) + xv(1− xu)]

= xu + xv − xuxv(2−m) .

Since x̄ is a vector that has the value (xu + xv)/2 in both its coordinates, if we we use the shorthand
y = (xu + xv)/2, then we get

F (x̄) = 2y − (2−m)y2 .

This expression is maximized for y = 1/(2−m), and the maximum attained for this y is

2

2−m
− (2−m)

(2−m)2
=

1

2−m
.

Since the value y = 1/(2 − m) is obtained, for example, when x = (y, y) ∈ [0, 1]N , the above
implies

max{F (x̄) | x ∈ P (F)} = 1

2−m
.

Together with Equation (4), this implies the lemma.

D Inapproximability and Proofs of Section 4

In this section we state and analyze the algorithms used to prove the results given in Section 4. We
also state and prove in Section D.3 the inapproximability result mentioned in Section 4.

23

D.1 Analysis of the Greedy Algorithm

In this section we prove Theorem 4.1, which we repeat here for convenience.

Theorem 4.1. The Greedy algorithm (Algorithm 2) has an approximation ratio of at least m(1−
1/e) for the problem of maximizing a non-negative m-monotone submodular function subject to a
cardinality constraint.

The greedy algorithm starts with an empty solution, and then augments this solution in k iterations
(recall that k is the maximum cardinality allowed for a feasible solution). Specifically, in iteration i,
the algorithm adds to the current solution the element ui with the best (largest) marginal contribution
with respect to the current solution—but only if this addition does not decrease the value of the
solution. A formal description of the greedy algorithm appears as Algorithm 2. Note that in this
description the solution of the algorithm after i iterations, for every integer 0 ≤ i ≤ n, is denoted by
Ai.

Algorithm 2: The Greedy Algorithm (f, k)

1 Let A0 ← ∅.
2 for i = 1 to k do
3 Let ui be the element of N \Ai−1 maximizing f(ui | Ai−1).
4 if f(ui | Ai−1) ≥ 0 then Let Ai ← Ai−1 + ui.
5 else Let Ai ← Ai−1.
6 return Ak.

Our first step towards proving Theorem 4.1 is the following lemma, which lower bounds the increase
in the value of f(Ai) as a function of i. Specifically, the lemma shows that this increase is significant
as long as there is a significant gap between between f(Ai−1) and m · f(OPT), where OPT is an
arbitrary optimal solution.

Lemma D.1. For every integer 1 ≤ i ≤ k, f(Ai)− f(Ai−1) ≥ k−1[m · f(OPT)− f(Ai−1)].

Proof. We need to distinguish between two cases. Consider first the case in which f(ui | Ai−1) ≥ 0.
In this case,

f(Ai)− f(Ai−1) = f(ui | Ai−1) ≥
|OPT \Ai−1|

k
· f(ui | Ai−1)

≥ |OPT \Ai−1|
k

· max
u∈OPT\Ai−1

f(u | Ai−1) ≥
∑

u∈OPT\Ai−1
f(u | Ai−1)

k

≥ f(OPT ∪Ai−1)− f(Ai−1)

k
≥ m · f(OPT)− f(Ai−1)

k
,

where the first inequality holds since |OPT \ Ai−1| ≤ |OPT | ≤ k because OPT is a feasible
solution, the second inequality is due to the way used by the greedy algorithm to choose the element
ui, the penulatimate inequality follows from the submodularity of f , and the last inequality holds
since f is m-monotone.

Consider now the case in which f(ui | Ai−1) < 0. In this case, f(Ai) − f(Ai−1) = 0 because
Ai = Ai−1. Furthermore, repeating the arguments used to prove the above inequality yields

m · f(OPT)− f(Ai−1) ≤ |OPT \Ai−1| · max
u∈OPT\Ai−1

f(u | Ai−1)

≤ |OPT \Ai−1| · max
u∈N\Ai−1

f(u | Ai−1) ≤ 0 .

Rearranging the last lemma, we get the following inequality.

m · f(OPT)− f(Ai) ≤ (1− 1/k) · [m · f(OPT)− f(Ai−1)] . (5)

This inequality bounds the rate in which the gap between m · f(OPT) reduces as a function of i.
This allows us to prove Theorem 4.1.

24

Proof of Theorem 4.1. Combining Inequality (5) for every integer 1 ≤ i ≤ k yields

m · f(OPT)− f(Ak) ≤ (1− 1/k)k · [m · f(OPT)− f(A0)] .

Rearranging this inequality, we get

f(Ak) ≥ m · f(OPT)−m · (1− 1/k)k · [f(OPT)− f(A0)] ≥ m ·
(
1− 1

e

)
· f(OPT) ,

where the last inequality follows from the non-negativity of f and the inequality (1−1/k)k ≤ 1
e .

D.2 Analysis of Random Greedy

In this section we prove Theorem 4.2, which we repeat here for convenience.

Theorem 4.2. Random Greedy (Algorithm 3) has an approximation ratio of at least m(1− 1/e) +
(1 −m) · (1/e) for the problem of maximizing a non-negative m-monotone submodular function
subject to a cardinality constraint.

Like the standard greedy algorithm from Section D.1, the Random Greedy algorithm starts with an
empty solution, and then augments it in k iterations. Specifically, in iteration i the algorithm finds a
set Mi of at most k elements whose total marginal contribution with respect to the current solution is
maximal. Then, at most one element of Mi is added to the algorithm’s current solution in a random
way guaranteeing that every element of Mi is added to the solution with probability exactly 1/k.
A formal presentation of the Random Greedy algorithm appears as Algorithm 3. Note that in this
presentation the solution of the algorithm after i iterations is denoted by Ai.

Algorithm 3: Random Greedy (f, k)

1 Let A0 ← ∅.
2 for i = 1 to k do
3 Let Mi ← argmaxB⊆N\Ai−1,|B|≤k{

∑
u∈B f(u | Ai−1)}.

4 with probability (1− |Mi|/k) do
5 Ai ← Ai−1.
6 otherwise
7 Let ui be a uniformly random element of Mi.
8 Set Ai ← Ai−1 + ui.

9 return Ak.

We start the analysis of the Random Greedy algorithm with the following lemma.

Lemma D.2. For every integer 0 ≤ i ≤ k and element u ∈ N , Pr[u ∈ Ai] ≤ 1− (1− 1/k)i.

Proof. Note that in each iteration i of Algorithm 3, any element u ∈ N \Ai−1 is added to the current
solution with probability of at most 1/k. Hence,

Pr[u ∈ Ai] = 1− Pr[u /∈ Ai] = 1−
i∏

j=1

Pr[u ̸∈ Aj | u ̸∈ Aj−1] ≤ 1− (1− 1/k)i .

Plugging the guarantee of the last lemma into Lemma 2.1 yields the following lower bound on the
expected value of Ai ∪OPT .

Corollary D.3. For every integer 0 ≤ i ≤ k, E[f(Ai ∪OPT)] ≥ [1− (1−m) · (1− (1− 1
k)

i)] ·
f(OPT) = m · f(OPT) + (1−m)(1− 1

k)
i · f(OPT).

Using the last corollary we are now ready to prove Theorem 4.2.

25

Proof of Theorem 4.2. Let Ei−1 be an arbitrary possible choice for the random decisions of Random
Greedy during its first i− 1 iterations. Observe that, conditioned on Ei−1 happening,

E[f(Ai)− f(Ai−1)] =

∑
u∈Mi

f(u | Ai−1)

k

≥
∑

u∈OPT\Ai−1
f(u | Ai−1)

k
≥ f(Ai−1 ∪OPT)− f(Ai−1)

k
,

where the first inequality follows from the choice of Mi by the algorithm, and the second inequality
follows from submodularity. Taking now expectation over the choice Ei−1 that realized, the last
inequality yields

E[f(Ai)− f(Ai−1)] ≥
E[f(Ai−1 ∪OPT)]− E[f(Ai−1)]

k
(6)

≥ m · f(OPT) + (1−m)(1− 1
k)

i−1 · f(OPT)− E[f(Ai−1)]

k
,

where the second inequality is due to Corollary D.3.

The last inequality lower bounds the expected increase in the value of the solution of Random Greedy
in every iteration. This implies also a lower bound on the expected value of f(Ai). To complete the
proof of the theorem, we need to prove a closed form for this implied lower bound, which we do by
induction. Specifically, let us prove by induction on i that

E[f(Ai)] ≥
[
m ·

(
1−

(
1− 1

k

)i
)

+ (1−m) · i
k
·
(
1− 1

k

)i−1
]
· f(OPT) (7)

for every integer 0 ≤ i ≤ k, which implies the theorem by plugging i = k because (1 − 1/k)k ≤
1/e ≤ (1− 1/k)k−1.

For i = 0, Inequality (7) holds since the non-negativity of f guarantees that f(A0) ≥ 0 = [(1−m) ·
(0k) · (1− 1

k)
−1 +m · (1− (1− 1

k)
0)] · f(OPT). Consider now some integer 0 < i ≤ k, and let us

prove Inequality (7) for this value of i assuming that its holds for i− 1. By Inequality (6),

E[f(Ai)] = E[f(Ai−1)] + E[f(Ai)− f(Ai−1)]

≥ E[f(Ai−1)] +
m · f(OPT) + (1−m)(1− 1

k)
i−1 · f(OPT)− E[f(Ai−1)]

k

=

(
1− 1

k

)
· E[f(Ai−1)] +

m+ (1−m)(1− 1
k)

i−1

k
· f(OPT) .

Plugging the induction hypothesis into the last inequality, we get

E[f(Ai)] ≥
(
1− 1

k

)
·
[
m ·

(
1−

(
1− 1

k

)i−1
)

+ (1−m) · i− 1

k
·
(
1− 1

k

)i−2
]
· f(OPT)

+
m+ (1−m)(1− 1

k)
i−1

k
· f(OPT)

=

[
m

(
1−

(
1− 1

k

)i
)

+ (1−m) · i
k
·
(
1− 1

k

)i−1
]
· f(OPT) .

D.3 Inapproximability for a Cardinality Constraint

In this section we state and prove the inapproximability result stated in Section 4.
Theorem D.4. For any constant ε > 0, no polynomial time algorithm can obtain an approximation
ratio of

min
α∈[0,1]

maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)(1− ex−1)(1− (1−m)x)}
max{1, 2(1− α)} + ε

for the problem of maximizing a non-negative m-monotone submodular function subject to a cardi-
nality constraint.

26

We prove Theorem D.4 using the symmetry gap technique, and specifically, via our extension of
this technique proved in Theorem 3.2. To use this theorem, we need to construct an instance of our
problem in which there is a large gap between the values of the best (general) solution and the best
symmetric solution. Our instance is based on an instance constructed by Oveis Gharan and Vondrák
[46]. However, the objective function in the original instance of [46] is not m-monotone for any
m > 0, and therefore, we need to modify it so that it becomes m-monotone for a value m ∈ [0, 1] of
our choosing.

Fix some positive integer value r to be determined later and some value α ∈ [0, 1]. The ground set of
the instance we construct is N = {a, b} ∪ {ai, bi | i ∈ [r]}, and the constraint of the instance is a
cardinality constraint allowing a feasible solution to include up to 2 elements. The objective function
of our instance is the function f : 2N → R≥0 defined by f(S) = α ·f1(S)+(1−α)[f2(S)+f3(S)],
where

f1(S) = m · 1[S ∩ {a, b} ≠ ∅] + (1−m) · (|S ∩ {a, b}| mod 2) ,

f2(S) = 1[S ∩ {ai | i ∈ [r]} ≠ ∅] · (1− (1−m) · 1[a ∈ S])

and
f3(S) = 1[S ∩ {bi | i ∈ [r]} ≠ ∅] · (1− (1−m) · 1[b ∈ S]) .

Let us denote the above described instance of submodular maximization subject to a cardinality
constraint by I. We begin the analysis of I by proving some properties of its objective function.

Lemma D.5. The objective function f of I is non-negative, m-monotone and submodular.

Proof. We prove below that the functions f1, f2 and f3 have the properties stated in the lemma. This
implies that f also has these properties by Observation 2.2 and the well-known closure of the class of
submodular functions to multiplication by a non-negative constant and addition (see, e.g., Lemma 1.2
of [4]). The function f1 is identical to the function proved in Section 3 to have the properties stated
in the lemma, and the functions f2 and f3 are identical to each other up to switching the roles of a
with b and ai with bi. Therefore, to prove that both f2 and f3 have the properties stated by the lemma
it suffices to show that f2 has these properties, which we do in the rest of this proof.

Clearly, f2 is non-negative. To see that f2 is a submodular function, note that

• For every set S ⊆ N − a, f2(a | S) = −1[S ∩ {ai | i ∈ [r]} ≠ ∅] · (1−m).

• For every integer 1 ≤ i ≤ r and set S ⊆ N − ai, f2(ai | S) = 1[S ∩ {ai | i ∈ [r]} =
∅] · (1− (1−m) · 1[a ∈ S]).

• For every element u ∈ (N − a) \ {ai | i ∈ [r]} and set S ⊆ N − u, f2(u | S) = 0.

Since all the above marginal contributions are down-monotone functions of S (i.e., functions whose
value can only decrease when elements are added to S), the function f2 is submodular.

It remains to argue why f2 is m-monotone. Consider any two sets S ⊆ T ⊆ N . If f2(S) = 0, then
the inequality m · f(S) ≤ f(T) follows from the non-negativity of f2. Therefore, consider the case
in which f2(S) > 0, which implies that S ∩ {ai | i ∈ [r]} ̸= ∅; and therefore, f2(S) = (1− (1−
m) · 1[a ∈ S]) ≤ 1. Since S is a subset of T , we also get f2(T) = (1− (1−m) · 1[a ∈ T]) ≥ m,
and hence, m · f2(S) ≤ m · 1 = m ≤ f2(T).

A cardinality constraint is symmetric in the sense that the feasibility of a set depends only on the
number of elements in it, and is completely independent of the identity of these elements. Let us
now denote by G the group of permutations of N that are equivalent to applying any number of the
following two steps: (1) switching a with b and ai with bi for every i ∈ [r], or (2) switching ai with
aj for two integers i, j ∈ [r]. The first step preserves the value of f because it simply switches the
values of f2 and f3, while leaving the value of f1 unaffected; and the second step preserves the value
of f since it deals with elements that both f1 and f3 ignore, and f2 treats in the same way. Hence, for
every set S ⊆ N and permutation σ ∈ G, we have f(S) = f(σ(S)), which implies the following
observation.

Observation D.6. The instance I is strongly symmetric with respect to G.

27

To use Theorem 3.2, we still need to bound the symmetry gap of I, which we do next.

Lemma D.7. The symmetry gap of I is at most

maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)[1− (1− (1− x)/r)r](1− (1−m)x)}
max{1, 2(1− α)}

≤ maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)(1− ex−1)(1− (1−m)x)}
max{1, 2(1− α)} + 2/r .

Proof. Two possible feasible solutions for I are the sets {a, b1} and {a1, b1} whose values according
to f are 1 and 2(1− α), respectively. Therefore, the value of the optimal solution for I is at least
max{1, 2(1 − α)}. Since the symmetry gap is the ratio between the value of the best symmetric
solution and the value of the best solution, to prove the lemma it remains to argue that the best
symmetric solution for I has a value of maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)[1− (1− (1−
x)/r)r](1− (1−m)x)}.
We remind the reader that a symmetric solution for I is ȳ = Eσ∈G [y] for some vector y ∈ [0, 1]N

obeying ∥y∥1 ≤ 2. Since a and b can be exchanged with each other by the permutations of G, the
values of the coordinates of a and b in ȳ must be equal to each other. Similarly, every two elements
of {ai, bi ∈ i ∈ [r]} can be exchanged by the permutations of G, and therefore, the values of the
coordinates of these elements in ȳ must all be identical. Thus, any symmetric solution ȳ can be
represented as

ȳu =

{
x if u = a or u = b ,

z if u ∈ {ai, bi | i ∈ [r]}
for some values x, z ∈ [0, 1] obeying 2x+ 2rz ≤ 2 (or equivalently, z ≤ (1− x)/r). The value of
this solution (according to the multilinear extension F of f) is

α[m(1− (1− x)2) + 2(1−m)x(1− x)] + 2(1− α)(1− (1− z)r)(1− (1−m)x)

= α(mx2 + 2x− 2x2) + 2(1− α)(1− (1− z)r)(1− (1−m)x) .

Since this expression is a non-decreasing function of z, the maximum value of any symmetry solution
for I is

max
x,z∈[0,1]

z≤(1−x)/r

{α(mx2 + 2x− 2x2) + 2(1− α)(1− (1− z)r)(1− (1−m)x)}

= max
x∈[0,1]

{α(mx2 + 2x− 2x2) + 2(1− α)[1− (1− (1− x)/r)r](1− (1−m)x)} .

Since any refinement of a cardinality constraint is a cardinality constraint over a larger ground set,
plugging Lemma D.5, Observation D.6 and Lemma D.7 into Theorem 3.2 yields the following
corollary.

Corollary D.8. For every constant ε′ > 0, no polynomial time algorithm for maximizing a non-
negative m-monotone submodular function subject to a cardinality contraint obtains an approxima-
tion ratio of

maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)(1− ex−1)(1− (1−m)x)}
max{1, 2(1− α)} + 2/r + ε′ .

Theorem D.4 now follows from the last corollary by choosing ε′ = ε/2, r = ⌈4/ε⌉ and

α = argmin
α′∈[0,1]

maxx∈[0,1]{α′(mx2 + 2x− 2x2) + 2(1− α′)(1− ex−1)(1− (1−m)x)}
max{1, 2(1− α′)} .

E Inapproximability and Proofs of Section 5

In this section we state and analyze the algorithms used to prove the results given in Section 5. We
also state and prove in Section E.4 the inapproximability result mentioned in Section 5.

28

E.1 Analysis of the Greedy algorithm

A version of the greedy algorithm designed for matroid constraints appears as Algorithm 4. This
algorithm starts with an empty solution, and then iteratively adds elements to this solution, where the
element added in each iteration is the element with the largest marginal contrition with respect to the
current solution among all the elements whose addition to the solution does not violate feasibility. The
algorithm terminates when no additional elements can be added to the solution without decreasing its
value.

Algorithm 4: The Greedy Algorithm (for a Matroid Constraint) (f,M = (N , I))
1 Let A0 ← ∅, and i← 0.
2 while true do
3 Let ui+1 be the element of {v ∈ N \Ai | Ai + v ∈ I} maximizing f(ui+1 | Ai).
4 if f(ui+1 | Ai) ≥ 0 then Let Ai+1 ← Ai + ui+1, and then, increase i by 1.
5 else return Ai.

Theorem 5.1. The Greedy algorithm (Algorithm 4) has an approximation ratio of at least m/2 for
maximizing a non-negative m-monotone submodular function subject to a matroid constraint.

Proof. Lemma 3.2 of [27] shows that the greedy algorithm outputs a solution S of value at least
f(S ∪OPT)/2 for the problem of maximizing a non-negative submodular function f subject to a
matroid constraint, where OPT is an optimal solution for the problem.6 The theorem now follows
since for an m-monotone function f we are guaranteed to have f(S ∪OPT) ≥ m · f(OPT).

E.2 Analysis of Measured Continuous Greedy

In this section, we reanalyze the Measured Continuous Greedy algorithm of [22] in view of the
monotonicity ratio. Given a non-negative submodular function f : 2N → R≥0 and a down-closed
solvable7 convex body P ⊆ [0, 1]N , Measured Continuous Greedy is an algorithm designed to
find a vector x ∈ P that approximately maximize F (x), where F is the multilinear extension of f .
Specifically, we prove the following theorem.
Theorem E.1. Given a non-negative m-monotone submodular function f : 2N → R≥0, a solvable
down-close convex body P ⊆ [0, 1]N and a parameter T ≥ 0, Measured Continuous Greedy outputs
a vector x ∈ [0, 1]N obeying F (x) ≥ [m(1 − e−T) + (1 −m)Te−T] · f(OPT), where F is the
multilinear extension of f and OPT is the set maximizing f among all sets whose characteristic
vectors belong to P . Furthermore, x ∈ P whenever T ∈ [0, 1].

We note that Feldman et al. [22] discussed conditions that guarantee that x belongs to P also for
some values of T that are larger than 1. However, the above stated form of Theorem E.1 already
suffices to prove Theorem 5.2. Let us explain why this is the case. When P is the matroid polytope
PM of a matroidM, there are algorithms called Pipage Rounding [9] and Swap Rounding [11]
that, given a vector x ∈ P produce a set S that is independent inM and also obeys E[f(S)] ≥
F (x) − o(1) · f(OPT). Therefore, one can obtain an algorithm for maximizing f subject to the
matroidM by executing Measured Continuous Greedy with P = PM and T = 1, and then applying
either Pipage Rounding or Swap Rounding to the resulting vector; which yields an algorithm with the
properties specified by Theorem 5.2.

We now describe the version of Measured Continuous Greedy that we analyze (given as Algorithm 5).
For simplicity, we chose to analyze a continuous version of this algorithm that assumes direct access
to the multilinear extension F of the objective function rather than just to the objective function itself.
We refer the reader to [22] for details about discretizing the algorithm and avoiding the assumption of
direct access to F . We also note that the o(1) error term in the approximation guarantee stated in

6In fact, Lemma 3.2 of [27] proves a more general result for p-set systems, but it implies the stated result
since matroids are 1-set systems.

7A body P ⊆ [0, 1]N is solvable if one can efficiently optimize linear functions subject to it, and is down-
closed if y ∈ P implies x ∈ P for every vector x ∈ [0, 1]N obeying x ≤ y (this inequality should be
understood to hold coordinate-wise).

29

Theorem E.1 is due to these issues. Our description of Measured Continuous Greedy requires some
additional notation, namely, given two vectors x and y, we denote by x ∨ y their coordinate-wise
maximum and by x⊙ y their coordinate-wise multiplication.

Measured Continuous Greedy starts at “time” 0 with the empty solution, and improves this solution
during the time interval [0, T]. We denote the solution of the algorithm at time t by y(t). At every time
t ∈ [0, T], the algorithm calculates a vector w whose u-coordinate is the gain that can be obtained
by increasing this coordinates in the solution y(t) to be 1 (i.e., wu(t) = F (y(t) ∨ 1{u})− F (y(t))).
Then, the algorithm finds a vector x(t) ∈ P that maximizes the objective function w(t) · x(t), and
adds to the solution y(t) an infinitesimal part of (1N − y(t))⊙ x(t) (to understand where the last
expression comes from, we note that when x is integral, fully adding (1N −y(t))⊙x(t) to y(t) sets
to 1 all the coordinates that are 1 in x(t), which matches the “spirit” of the definition of w).

Algorithm 5: Measured Continuous Greedy(f, P, T)
1 Let y(0)← 1∅.
2 foreach t ∈ [0, T) do
3 For each u ∈ N , let wu(t)← F (y(t) ∨ 1{u})− F (y(t)).
4 Let x(t)← argmaxx∈P {w(t) · x}.
5 Increase y(t) at a rate of dy(t)

dt = (1N − y(t))⊙ x(t).
6 return y(T).

The first step in the analysis of Measured Continuous Greedy is bounding the maximum value of the
coordinates of the solution y(t).

Lemma E.2. For every t ∈ [0, T], ∥y(t)∥∞ ≤ 1− e−t.

Proof. Fix an arbitrary element u ∈ N , and let us explain why yu(t) ≤ 1 − e−t. By Line 5 of
Algorithm 5, yu(t) obeys the differential inequality

dyu(t)

dt
= (1− yu(t)) · xu(t) ≤ 1− yu(t) ,

and the solution of this differential inequality for the initial condition yu = 0 is

yu(t) ≤ 1− e−t .

We are now ready to prove Theorem E.1

Proof of E.1. Recall that x(t) is a vector inside P for every time t ∈ [0, T], and since P is down-
closed, (1N − y(t))⊙ x(t) and 1∅ both belong to P as well. This means that for T ≤ 1 the vector
y(T) = (1 − T) · 1∅ +

∫ T

0
(1N − y(t)) ⊙ x(t)dt is a convex combination of vectors in P , and

therefore belongs to P by the convexity of P .

It remains to lower bound the value of F (y(T)). By the chain rule,

dF (y(t))

dt
=
∑
u∈N

(
dyu(t)

dt
· ∂F (y)

∂yu

∣∣∣
y=y(t)

)
=
∑
u∈N

(
(1− yu(t)) · xu(t) ·

∂F (y)

∂yu

∣∣∣
y=y(t)

)
.

Since F is multilinear, its partial derivative with respect to a single coordinate is equal to the
difference between the value of the function for two different values of this coordinate over the
difference between these values. Plugging this observation into the previous inequality yields

dF (y(t))

dt
=
∑
u∈N

(
(1− yu(t)) · xu(t) ·

F (y(t) ∨ 1{u})− F (y(t))

1− yu(t)

)
= x(t) ·w(t) .

30

One possible candidate to be x(t) is 1OPT . Hence, by the definition of x(t), x(t) · w(t) ≥
1OPT ·w(t). Combining this inequality with the previous one, we get

dF (y(t))

dt
≥ 1OPT ·w(t) =

∑
u∈OPT

[
F (y(t) ∨ 1{u})− F (y(t))

]
≥ F (y(t) ∨ 1OPT)− F (y(t)) ≥ [1− (1−m) · ∥y(t)∥∞] · f(OPT)− F (y(t))

≥ [1− (1−m)(1− e−t)] · f(OPT)− F (y(t))

= [m+ (1−m)e−t] · f(OPT)− F (y(t)) ,

where the second inequality holds by the submodularity of f , the penultimate inequality holds by
Lemma 2.1, and the last inequality follows from Lemma E.2.

Solving the differential inequality that we got for the initial condition F (y(0)) ≥ 0 (which holds by
the non-negativity of f) yields

F (y(t)) ≥
[
m(1− e−t) + (1−m)te−t

]
· f(OPT) ,

and the theorem now follows by plugging t = T .

E.3 Analysis of Random Greedy for Matroids

In this section we prove Theorem 5.3, which we repeat here for convenience.
Theorem 5.3. For every ε ∈ (0, 1), Random Greedy for Matroids (Algorithm 6) has an approximation
ratio of at least 1+m+e−2/(1−m)

4 − ε − ok(1) for the problem of maximizing a non-negative m-
monotone submodular function subject to a matroid constraint (except in the case of m = 1 in which
the approximation ratio is 1/2− ε− ok(1)), where ok(1) represents a term that diminishes with k.

To prove the theorem, we first need to state the algorithm it refers to. Towards this goal, let us assume
that the ground set N contains a set D of 2k “dummy” elements that are known to the algorithm and
have the following two properties.

• f(S) = (S \D) for every set S ⊆ N .
• S ∈ I if and only if S \D ∈ I and |S| ≤ k.

This assumption is useful since it allows us to assume that the optimal solution OPT is a base ofM,
and thus, simplifies the description of our algorithm (Random Greedy for Matroids). We can justify
our assumption using the following procedure: (i) add 2k dummy elements to the ground set, (ii)
extend f and I according to the above properties, (iii) execute Random Greedy for Matroids on the
resulting instance, and (iv) remove from the output of the algorithm any dummy elements that end up
in it. This procedure guarantees that any approximation guarantee obtained by Random Greedy for
Matroids using our assumption can be obtained also without the assumption.

Our version of the Random Greedy for Matroids algorithm is given as Algorithm 6. Like the original
version of the algorithm (due to [6]), our version starts with a base ofM consisting only of dummy
elements, and then modifies it in a series of iterations. In each iteration i, the algorithm starts with a
solution Si−1, and then identifies a base Mi ofM whose elements have the largest total marginal
contribution with respect to Si−1 (Mi is also required to be disjoint from Si−1). The algorithm then
picks a uniformly random element ui ∈ Si−1, and adds it to the solution Si−1 at the expense of
an element gi(ui) of Si−1 given by a function gi that is chosen carefully (the existence of such a
function follows, for example, from Corollary 39.12a of [48]).

As mentioned above, our version of Random Greedy for Matroids differs compared to the version
of [6] in two respects. The first modification is in the number of iterations that the algorithm makes.
To get the result of Buchbinder et al. [6], it suffices to use k iterations. However, the optimal number
of iterations increases with m, and therefore, our version of the algorithm uses k/ε iterations for
some parameter ε ∈ (0, 1) (we assume without loss of generality that k/ε is integral; otherwise, we
can replace ε with a value which is smaller than ε by at most a factor of 2 and has this property).
Furthermore, since we do not want to assume knowledge of m in the algorithm, we use a number of
iterations that is appropriate for m = 1, which requires us to make the second modification to the
algorithm; namely, we check whether replacing g(ui) with ui is beneficial, and make the swap only

31

Algorithm 6: Random Greedy for Matroids(f,M = (N , I), ε)
1 Initialize S0 to be an arbitrary base containing only elements of D.
2 for i = 1 to k/ε do
3 Let Mi ⊆ N be a base ofM that contains only elements of N \ Si−1 and maximizes∑

u∈Mi
f(u | Si−1) among all such bases.

4 Let gi be a function mapping each element of Mi to an element of Si−1 obeying
Si−1 − gi(u) + u ∈ I for every u ∈ Si−1.

5 Let ui be a uniformly random element from Mi. if f(Si−1 − gi(ui) + ui) > f(Si−1)
then Let Si ← Si−1 − gi(ui) + ui.

6 else Let Si ← Si−1.
7 return Sk/ε.

if this is indeed the case. This guarantees that doing more iterations can never decrease the value of
the algorithm’s solution.

Since Theorem 5.3 is trivial for a constant k, we can assume in the analysis of Algorithm 6 that k is
larger than any given constant. The first step in this analysis is proving the following lower bound on
the expected value of OPT ∪ Si.

Observation E.3. For every integer 0 ≤ i ≤ k/ε, E[f(OPT ∪ Si)] ≥ 1
2 (1 +m + (1 −m)(1 −

2/k)i) · f(OPT).

Proof. For every integer 0 ≤ i ≤ k/ε and element u ∈ N \ D, let pu,i denote the probability u
belongs to Si. We would like to argue that when i > 0, we have pu,i ≤ pu,i−1(1− 2/k) + 1/k. To
see why this is the case, note that u belongs to Si only if one of the following happens: (i) u belongs
to Si−1 and is not removed from the solution (happens with probability pu,i−1(1− 1/k) since gi(ui)
is a uniformly random element of Si−1), or (ii) u belongs to Mi−1 and is chosen as ui (happens with
probability at most (1− pu,i)/k). Therefore,

pu,i ≤ pu,i−1 · (1− 1/k) + (1− pu,i−1)/k = pu,i−1 · (1− 2/k) + 1/k . (8)

Next, we aim to prove by induction that pu,i ≤ 1
2 (1− (1− 2/k)i) for every integer 0 ≤ i ≤ k/ε. For

i = 0, this is true since u ∈ N \D implies that pu,0 = 0 = 1
2 (1− (1− 2/k)0). Assume now that the

claim holds for i− 1, and let us prove it for i ≥ 1. By the induction hypothesis and Inequality (8),

pu,i ≤ pu,i−1(1− 2/k) + 1/k ≤ 1
2 (1− (1− 2/k)i−1)(1− 2/k) + 1/k = 1

2 (1− (1− 2/k)i) .

The observation now follows since Lemma 2.1 guarantees that E[f(OPT ∪ Si)] = E[f(OPT ∪
(Si \D))] ≥ (1− (1−m) ·maxu∈N\D pi,u) · f(OPT).

Below we prove a lower bound on the value of the solution of Algorithm 6 after any number
of iterations. However, to prove this lower bound we first need to prove the following technical
observation.

Observation E.4. For every positive integer i,(
1− 2

k

)i−1

≥ e−
2i
k − k

i
· ok(1) .

Proof. Note that

e−
2i
k =

(
e−

2
k

)i
≤
(
1− 2

k
+

4

k2

)i

≤
(
1− 2

k

)i

+
4

k2
· i
(
1− 2

k
+

4

k2

)i−1

≤
(
1− 2

k

)i

+
4i

k2

(
1− 1

k

)i−1

≤
(
1− 2

k

)i

+
4i

k2
· e− i−1

k ,

32

where the third inequality holds for k ≥ 4, and the second inequality holds since the derivative of the
function (1− 2/k + x)i is i(1− 2/k + x)i−1, which implies(

1− 2

k
+

4

k2

)i

=

(
1− 2

k

)i

+

∫ 4/k2

0

i(1− 2/k + x)i−1dx

≤
(
1− 2

k

)i

+
4i

k2
(1− 2/k + 4/k2)i−1dx .

To complete the proof of the observation, it remains to note that, since the maximum of the function
x2e−x for x ≥ 0 is 4e−2,

4i

k2
· e− i−1

k ≤ 16e−2

i
· e 1

k =
k

i
· ok(1) .

We are now ready to prove the promised lower bound on the value of the solution Si of Algorithm 6
after any number of iterations.

Lemma E.5. For every integer 0 ≤ i ≤ k/ε,

E[f(Si)] ≥
[
1 +m

4
·
(
1− e−

2i
k

)
+

(1−m)i

2k
· e− 2i

k − ok(1)

]
· f(OPT) .

Proof. For i = 0 the lemma follows from the non-negativity of f since the right hand side of the
inequality that we need to prove is non-positive for i = 0. Together with Observation E.4, this implies
that it suffices to prove the following inequality

E[f(Si)] ≥
[
1 +m

4
·
(
1−

(
1− 2

k

)i
)

+
(1−m)i

2k
·
(
1− 2

k

)i−1
]
· f(OPT) , (9)

and the rest of the proof is devoted to this goal.

Fix an arbitrary integer 1 ≤ i ≤ k/ε. We would like to derive a lower bound on the expected
marginal contribution of the element ui to the set Si−1, and an upper bound on the expected marginal
contribution of the element g(ui) to the set Si−1 \ g(ui). Let Ai−1 be an event fixing all random
choices of Algorithm 6 up to iteration i− 1 (including), and let Ai−1 be the set of all possible Ai−1

events. Conditioned on any event Ai−1 ∈ Ai−1, the sets Si−1 and Mi becomes deterministic, and
we can define M ′

i as a set containing the elements of OPT \ Si−1 plus enough dummy elements of
D \ Si−1 to make the size of M ′

i exactly k. Then,

E[f(u | Si−1) | Ai−1] =

∑
u∈Mi

f(u | Si−1)

k
≥
∑

u∈M ′
i
f(u | Si−1)

k

=

∑
u∈OPT\Si−1

f(u | Si−1)

k
≥ f(OPT ∪ Si−1)− f(Si−1)

k
,

where Si, Mi and M ′
i represent here their values conditioned on Ai, the first inequality follows from

the definition of Mi and the second inequality holds by the submodularity of f . Similarly,

E[f(g(ui) | Si−1 − g(ui)) | Ai−1] =

∑
u∈Mi

f(g(ui) | Si−1 − g(u))

k

≤ f(Si−1)− f(∅)

k
≤ f(Si−1)

k
,

where the first inequality follows from the submodularity of f . Taking expectation over the event
Ai−1, we get

E[f(ui | Si−1)] ≥
E[f(OPT ∪ Si−1)]− E[f(Si−1)]

k

≥
1
2 (1 +m+ (1−m)(1− 2/k)i−1) · f(OPT)− E[f(Si−1)]

k
,

33

where the last inequality is due to Observation E.3, and

E[f(g(ui) | Si−1 − g(ui))] ≤
E[f(Si−1)]

k
.

Combing the last two inequalities now yields

E[f(Si)] ≥ E[f(Si−1 − g(ui) + ui)] (10)
= E[f(Si−1)] + E[f(ui | Si−1 − g(ui))]− E[f(g(ui) | Si−1 − g(ui)]

≥ E[f(Si−1)] + E[f(ui | Si−1)]− E[f(g(ui) | Si−1 − g(ui)]

≥
(
1− 2

k

)
· E[f(Si−1)] +

1
2 (1 +m+ (1−m)(1− 2/k)i−1) · f(OPT)

k
,

where the first inequality follows from the submodularity of f since g(ui) ̸= ui because g(ui) ∈ Si−1

and ui ∈Mi.

Since Inequality (10) holds for every integer 1 ≤ i ≤ k/ε, we can use it repeatedly to get, for every
integer 0 ≤ i ≤ k/ε,

E[f(Si)] ≥
1

2k

(1 +m)

i∑
j=1

(
1− 2

k

)i−j

+ (1−m)
i∑

j=1

(
1− 2

k

)i−1
 · f(OPT)

+

(
1− 2

k

)i

· f(S0) .

Since the non-negativity of f guarantees that f(S0) ≥ 0, the last inequality implies Inequality (9),
and therefore, completes the proof of the lemma.

One can show that the lower bound for f(Si) proved by Lemma E.5 is maximized when i = k/(1−m).
Unfortunately, we cannot simply plug this i value into the lower bound due to two issues: this value
of i might not be integral, and this value of i might be larger than the number k/ε of iterations. The
following two lemmata prove the approximation guarantee of Theorem 5.3 despite these issues, and
together they complete the proof of the theorem.
Lemma E.6. When m ≤ 1− ε, the approximation ratio of Algorithm 6 is at least

1 +m+ e−2/(1−m)

4
− ok(1) .

Proof. Let i′ = ⌊k/(1 −m)⌋. Due to the condition of the lemma, Algorithm 6 makes at least i′
iterations. Furthermore, since Algorithm 6 makes a swap in its solution only when this swap is
beneficial, the expected value of the output of the algorithm is at least

E[f(Si′)] ≥
[
1 +m

4
·
(
1− e−

2i′
k

)
+

(1−m)i′

2k
· e− 2i′

k − ok(1)

]
· f(OPT)

≥
[
1 +m

4
·
(
1− e

2
k− 2

1−m

)
+

k − 1

2k
· e− 2

1−m − ok(1)

]
· f(OPT)

≥
[
1 +m

4
·
(
1− e−

2
1−m

)
− e

2
k − 1

2
+

1

2
· e− 2

1−m − 1

2k
− ok(1)

]
· f(OPT) ,

where the first inequality follows from Lemma E.5, and the second inequality holds since k/(1−
m)−1 ≤ i′ ≤ k/(1−m). Since the terms e2/k−1

2 and 1
2k are both diminishing with k (and therefore,

can be replaced with ok(1)), the last inequality implies the lemma.

Lemma E.7. When 1− ε ≤ m < 1, the approximation ratio of Algorithm 6 is at least

1 +m+ e−2/(1−m)

4
− ε− ok(1) ,

and when m = 1 the approximation ratio of this algorithm is at least 1/2− ε− ok(1).

34

Proof. The output set of Algorithm 6 is f(Sk/ε). By Lemma E.5, the expected value of this set is at
least

E[f(Sk/ε)] ≥
[
1 +m

4
·
(
1− e−

2
ε

)
+

1−m

2ε
· e− 2

ε − o1(k)

]
· f(OPT)

≥
[
1 +m

4
·
(
1− e−

2
ε

)
− ok(1)

]
· f(OPT)

≥
[
1 +m

4
·
(
1− 1

1 + 2/ε

)
− ok(1)

]
· f(OPT)

=

[
1 +m

2(ε+ 2)
− ok(1)

]
· f(OPT) ≥

[
1 +m

4
− ε

4
− ok(1)

]
· f(OPT) ,

where the third inequality holds since for every x ≥ 0, ln(1/(1 + x)) = ln(1 − x/(1 + x)) ≥
− x/(1+x)

1−x/(1+x) = −x.

The above inequality completes the proof for the case of m = 1. To complete the proof also for the
case of 1− ε ≤ m < 1, it suffice to observe that in this case

e−2/(1−m) ≤ e−2/ε ≤ 1

1 + 2/ε
≤ ε

2
.

E.4 Inapproximability for a Matroid Constraints

In this section we state and prove the inapproximability result mentioned in Section 5.
Theorem E.8. For any constant ε > 0, no polynomial time algorithm can obtain an approximation
ratio of

min
α∈[0,1]

max
x∈[0,1/2]

{α(mx2 + 2x− 2x2) + 2(1− α)(1− e−1/2)(1− (1−m)x)}+ ε

for the problem of maximizing a non-negative m-monotone submodular function subject to a matroid
constraint.

The proof of Theorem E.8 is very similar to the proof of Theorem D.4. Recall that in Section D.3,
we proved Theorem D.4 by constructing an instance I of submodular maximization subject to a
cardinality constraint, and then applying Theorem 3.2 to this instance. The proof of Theorem E.8 is
based on an instance I ′ of submoduar maximization subject to a matroid constrained that is identical
to I except for the following difference. In I, the constraint is a cardinality constraint allowing the
selection of up to 2 elements from the ground set N = {a, b} ∪ {ai, bi | i ∈ [r]}. In I ′, we have
instead a (simplified) partition matroid constraint allowing the selection of up to 1 element from
{a, b} and up to 1 element from {ai, bi | i ∈ [r]}.
Since the instances I and I ′ have the same objective function, the properties of this function stated in
Lemma D.5 apply to both of them. Furthermore, one can verify that I ′ is strongly symmetric with
respect to the group G of permutation defined in Section D.3. Therefore, we concentrate on analyzing
the symmetry gap of I ′.
Lemma E.9. The symmetry gap of I ′ is at most

max
x∈[0,1/2]

{α(mx2 + 2x− 2x2) + 2(1− α)[1− (1− 1/(2r))r](1− (1−m)x)}

≤ max
x∈[0,1/2]

{α(mx2 + 2x− 2x2) + 2(1− α)(1− e−1/2)(1− (1−m)x)}+ 1/(2r) .

Proof. One possible feasible solution for I ′ is the set {a, b1} whose value according to f is 1.
Therefore, the value of the optimal solution for I ′ is at least 1. Since the symmetry gap is the ratio
between the value of the best symmetric solution and the value of the best solution, to prove the lemma
it remains to argue that the best symmetric solution for I has a value of at most maxx∈[0,1/2]{α(mx2+

2x− 2x2) + 2(1− α)[1− (1− 1/(2r))r](1− (1−m)x)}.
We remind the reader that a symmetric solution for I ′ is ȳ = Eσ∈G [y] for some vector y ∈ [0, 1]N

obeying ya + yb ≤ 1 and
∑r

i=1 yai
+ ybi ≤ 1. Since a and b can be exchanged with each other

35

by the permutations of G, the values of the coordinates of a and b in ȳ must be equal to each other.
Similarly, every two elements of {ai, bi ∈ i ∈ [r]} can be exchanged by the permutations of G, and
therefore, the values of the coordinates of all these elements in ȳ must be all identical. Thus, any
symmetric solution ȳ can be represented as

ȳu =

{
x if u = a or u = b ,

z if u ∈ {ai, bi | i ∈ [r]}

for some values x ∈ [0, 1/2] and z ∈ [0, 1/(2r)]. The value of this solution (according to the
multilinear extension F of f) is

α[m(1− (1− x)2) + 2(1−m)x(1− x)] + 2(1− α)(1− (1− z)r)(1− (1−m)x)

= α(mx2 + 2x− 2x2) + 2(1− α)(1− (1− z)r)(1− (1−m)x)

≤ α(mx2 + 2x− 2x2) + 2(1− α)(1− (1− 1/(2r))r)(1− (1−m)x) .

Therefore, one can obtain an upper bound on the value of the best symmetric solution for I ′ by taking
the maximum of the last expression over all the values that x can take, which completes the proof of
the lemma.

Since any refinement of a (simplified) partition matroid constraint is a (generalized) partition matroid
constraint on its own right, plugging Lemmata D.5 and Lemma E.9 into Theorem 3.2 yields the
following corollary.

Corollary E.10. For every constant ε′ > 0, no polynomial time algorithm for maximizing a non-
negative m-monotone submodular function subject to a matroid contraint obtains an approximation
ratio of

max
x∈[0,1/2]

{α(mx2 + 2x− 2x2) + 2(1− α)(1− e−1/2)(1− (1−m)x)}+ 1/(2r) + ε′ .

Theorem E.8 now follows from the last corollary by choosing ε′ = ε/2, r = ⌈ε−1⌉ and

α = argmin
α′∈[0,1]

max
x∈[0,1/2]

{α′(mx2 + 2x− 2x2) + 2(1− α′)(1− e−1/2)(1− (1−m)x)} .

F Personalized Image Summarization

Consider a setting in which we get as input a collection N of images from ℓ disjoint categories (e.g.,
birds, dogs, cats) and the user specifies r ∈ [ℓ] categories, and then demands a subset of the images
in these categories that summarize all the images of the categories. Following [40] again, to evaluate
a given subset of images we use the function f(S) =

∑
u∈N maxv∈S su,v − 1

|N |
∑

u∈S

∑
v∈S su,v ,

where su,v is a non-negative similarity between u and v.

One can verify that the above function f is non-negative and submodular. Unfortunately, this function
can have a very low monotonicity ratio. To compensate for this, we observe that most the analyses we
described in the previous sections use the monotonicity ratio only to show that f(S ∪ T) ≥ m · f(S)
for sets S and T that are feasible. This motivates the following weak version of the monotonicity ratio.
We note that many continuous properties of set functions have such weak versions. For example,
the original paper presenting the submodularity-ratio [16] presented in fact the weak version of this
property, and the non-weak version was only formulated at a later point.

Definition F.1. Consider maximization of a non-negative function f subject to some constraint. In
the context of this constraint, we say that f is m-weakly monotone if f(S ∪ T) ≥ m · f(S) holds for
every two feasible sets S and T .

Theorem F.2. The objective function f of personalized image summarization is 1 − 2k
|N | -weakly

monotone when the size of feasible solutions is at most k for some 1 ≤ k ≤ |N |.

36

2 4 6 8 10

Maximum Number of Images

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
bj
ec
ti
ve

V
al
ue

×107

Threshold Random Greedy

Random

Previous Upper Bound

Our Upper Bound

(a) Results for Personalized Image Summarization
with a cardinality constraint for varying number of
images in the summary produced.

1 2 3 4

Maximum Number of Images per Category

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
bj
ec
ti
ve

V
al
ue

×107

Measured Continuous Greedy

Random Greedy for Matroids

Random

Previous Upper Bound

Our Upper Bound

(b) Results for Personalized Image Summarization
with a matroid constraint. The x-axis is the number
k of images allowed from each category.

Figure 3: Personalized Image Summerization Results

Proof. When k ≥ |N |/2, the theorem is trivial. Thus, we can assume below k < |N |/2. Consider
two feasible sets S, T ∈ N , and let us lower bound f(S ∪ T).

f(S ∪ T) =
∑
u∈N

max
v∈S∪T

su,v −
1

|N |
∑

u∈S∪T

∑
v∈S∪T

su,v

≥
∑
u∈N

max
v∈S∪T

su,v −
|S ∪ T |
|N |

∑
u∈S∪T

max
v∈S∪T

su,v

≥
∑
u∈N

max
v∈S∪T

su,v −
2k

|N |
∑

u∈S∪T

max
v∈S∪T

su,v

=

(
1− 2k

|N |

) ∑
u∈N

max
v∈S∪T

su,v ≥
(
1− 2k

|N |

) ∑
u∈N

max
v∈S

su,v .

Using this lower bound, we now get

f(S) =
∑
u∈E

max
v∈S

su,v −
1

|N |
∑
u∈S

∑
v∈S

su,v ≤
∑
u∈E

max
v∈S

su,v ≤
f(S ∪ T)

1− 2k/|N | ,

which completes the proof of the theorem since S and T have been chosen as arbitrary feasible
sets.

Our experiments for this setting are based on a subset of the CIFAR-10 dataset [33] including 10,000
Tiny Images. These images belong to 10 classes, with 1000 images per class. Each image consists
of 32 × 32 RGB pixels represented by a 3072 dimensional vector. To compute the similarity su,v
between images, we used the dot product.

In our first experiment, we simply looked for a summary consisting of a limited number of images.
Since this is a cardinality constraint, we again used the scarecrow algorithm Random and the
accelerated versions mentioned in Section 6.1 of the algorithms from Section 4. In Figure 3a we
depict the outputs of Threshold Random Greedy and Random for various limits on the number of
images in the summary (like in Section 6.1 we omit the other non-scarecrow algorithms since their
performance is essentially identical to the one of Threshold Random Greedy, and we refer the reader
to Appendix I for more detail). Figure 3a also includes the upper bounds on the optimal solution
obtained via the previous approximation ratio for Random Greedy and our improved approximation
ratio (the area between the two upper bounds is shaded). We can see that the upper bound obtained
via our improved approximation ratio is much tighter, and this upper bound also demonstrates that the
gap between the non-scarecrow and the scarecrow algorithms is significant compared to the optimal
solution.

In our second experiment, we looked for a summary containing up to k images from each category
selected by the user for some parameter k (we assumed in the experiment that the user chose the

37

categories: “airplane”, “automobile” and “bird”). Since this is a (generalized partition) matroid
constraint, in this experiment we used versions of the algorithms from Section 5. Specifically, we
used Random Greedy for Matroids and an accelerated version of Measured Continuous Greedy based
on the acceleration technique underlying the Accelerated Continuous Greedy of [1]. Additionally, we
used in this experiment a scarecrow algorithm called Random that outputs a set containing a random
selection of k images from each one of the chosen categories. The values of the outputs of all these
algorithms are depicted in Figure 3b (values shown are averaged over 10 executions).

Figure 3b also includes upper bounds on the value of the optimal solution. The previous upper bound
is computed based on the previously known approximation ratios of the algorithms, and our upper
bound is computed based on the approximation ratios proved in Theorems 5.2 and 5.3 and the weak
monotonicity ratio proved in Theorem F.2.8 As is evident from the similarity between Figures 3a
and 3b, our observations from the first experiment extend also the more general constraint considered
in the current experiment.

G Ride-Share Optimization

In this application, given a set R of possible customer locations specified as (latitude, longitude)
coordinate pairs, we aim to find a subset of these locations that will serve as waiting locations for
drivers and minimizes the distance from each costumer to her closest driver. This problem can be
modeled using the classical facility location problem, whose objective is known to be monotone and
submodular. More formally, Mitrovic et al. [41] defined for every set T of locations the objective
value f(T) as

f(T) =
∑
a∈R

max
b∈T

c(a, b) ,

where c(a, b) is a convenience score defined by c(a, b) ≜ 2 − 2
1+e−200d(a,b) , and d(a, b) = |xa −

xb|+ |ya − yb| is the Manhattan distance between the points a and b.

One drawback of the above objective function is that it does not promote diversity in the set of chosen
locations. For example, imagine a scenario where, due to congestion or road maintenance in a specific
area, traffic in and out of this area is slow or completely blocked. If all the selected waiting locations
happen to be inside the affected area (i.e., there is no diversity in the selected locations), it will be
difficult for the drivers to move between the waiting locations and the customers. To avoid such
unfavorable scenarios, a diversity component should be added to the objective function. However,
when a diversity component is added, the function becomes non-monotone (but still submodular),
making the approximation guarantees of state-of-the-art algorithms much lower, as is discussed
above.

Using the monotonicity ratio, the effect of the diversity component on the approximation guarantee
can be significantly reduced. For example, a natural way to add a diversity component is demonstrated
by the next objective function.

f(T) =
∑
a∈R

max
b∈T

c(a, b)− 1

|R|
∑
x∈T

∑
y∈T

c(x, y) .

One can note that the last function has the same form as the function discussed in Appendix F. Hence,
by Theorem F.2, the previous function is (1 − 2k

|R|)-weakly monotone, where 1 ≤ k ≤ |R| is the
maximum size of a feasible solution.

H Proofs of Section 6

In this section we prove the theorems from Section 6.

8From a purely formal point of view this upper bound is not fully justified since Measured Continuous Greedy
is a rare example of an algorithm whose analysis cannot use in a black box fashion the weak monotonicity ratio
instead of the monotonicity ratio. However, due to probabilistic concentration, we expect the upper bound to still
hold up to at most a small error.

38

H.1 Proof of Theorem 6.1

Theorem 6.1. The objective function f is monotone for 0 ≤ λ ≤ 1/2 and 2(1 − λ)-monotone for
1/2 ≤ λ ≤ 1.

Proof. We first prove the first part of the theorem. Thus, we assume λ ≤ 1/2, and we need to
show that for arbitrary set S ⊆ N and element u ∈ N \ S the marginal contribution f(u | S) is
non-negative. This holds because

f(u | S) =
∑
v∈N

sv,u − λ

[∑
v∈S

su,v +
∑
v∈S

sv,u + su,u

]

=
∑
v∈N

sv,u − λ

[
2
∑
v∈S

sv,u + su,u

]
≥
∑
v∈N

sv,u −
∑
v∈S

sv,u − su,u ≥ 0 ,

where the second equality holds because su,v = sv,u, and the first inequality holds since λ ≤ 1/2 in
the case we consider and the su,v values are non-negative.

It remains to prove the second part of the theorem. Thus, we assume from now on λ ∈ [1/2, 1], and we
consider two sets S ⊆ T ⊆ N . To prove the theorem we need to show that f(T) ≥ 2(1− λ) · f(S).
The first step towards showing this is to prove the following lower bound on f(S).

f(S) = 2(1− λ) · f(S) + (2λ− 1) ·
[∑
u∈N

∑
v∈S

su,v − λ
∑
u∈S

∑
v∈S

su,v

]
(11)

≥ 2(1− λ) · f(S) + (2λ− 1) ·
∑

u∈T\S

∑
v∈S

su,v

= 2(1− λ) · f(S) + (2λ− 1) ·
∑
u∈S

∑
v∈T\S

su,v , (12)

where the inequality holds since λ ≤ 1, and the second equality holds since su,v = sv,u. Using this
lower bound, we now get

f(T) = f(S) +
∑
u∈N

∑
v∈T\S

su,v − λ

∑
u∈S

∑
v∈T\S

su,v +
∑

u∈T\S

∑
v∈S

su,v +
∑

u∈T\S

∑
v∈T\S

su,v


= f(S) +

∑
u∈N

∑
v∈T\S

su,v − λ

2∑
u∈S

∑
v∈T\S

su,v +
∑

u∈T\S

∑
v∈T\S

su,v


≥ f(S) + (1− 2λ) ·

∑
u∈S

∑
v∈T\S

su,v ≥ 2(1− λ) · f(S) ,

where the first inequality holds since λ ≤ 1, and the second inequality holds by Inequality (11).

H.2 Proof of Theorem 6.2

Theorem 6.2. For β ∈ (0, 1/2), the objective function F given by Equation (1) is (1−2β)·α
1+α -monotone.

Furthermore, when min0̄≤x≤u(
1
2x

THx+ hx) ≥ 0, F is even (1− 2β)-monotone.

Proof. Fix two vectors 0̄ ≤ x ≤ y ≤ u. We begin this proof by providing a lower bound on F (y)
and an upper bound on F (x). The lower bound on F (y) is as following.

F (y) =
1

2
yTHy + hTy + c ≥ min

0̄≤x≤u

(
1

2
xTHx+ hx

)
+ c .

To get the upper bound on F (x), we first need to prove an upper bound on c.

c ≥ − min
0≤x≤u

(
1

2
xTHx+ hTx

)
= − min

0≤x≤u

(
1

2
xTHx− βuTHx

)
≥ −

(
1

2
− β

)
uTHu .

39

20 40 60 80 100 120 140

Number of Movies

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
bj
ec
ti
ve

V
al
ue

×106

Threshold Random Greedy

Random

Threshold Greedy

Sample Greedy

(a) Performance of the various algorithms in the
movie recommendation setting (for λ = 0.75).

2 4 6 8 10

Maximum Number of Images

1.32

1.33

1.34

1.35

1.36

1.37

O
bj
ec
ti
ve

V
al
ue

×107

Threshold Random Greedy

Sample Greedy

Threshold Greedy

Random

(b) Performance of the non-scarecrow algo-
rithms in the image summarization setting with
a cardinality constraint. The shaded area repre-
sents the standard deviation of Threshold Ran-
dom Greedy.

Figure 4: Comparing the performance of algorithms for a cardinality constraint in our experiments.

The promised upper bound on F (x) now follows.

F (x) =
1

2
xTHx+hTx+ c ≤ hTx+ c ≤ hTu+ c = −βuTHu+ c ≤ βc

1/2− β
+ c =

c

1− 2β
,

where the first inequality holds since H is non-positive, and the second inequality holds since h is
non-negative.

Recall now that c = −M + α|M |, which implies

min
0≤x≤u

(
1

2
xTHx+ hTx

)
= M ≥ − c

1 + α
,

and therefore,

F (y) ≥ − c

1 + α
+ c =

cα

1 + α
≥ (1− 2β)α

1 + α
· F (x) .

It remains to consider the case in which min0̄≤x≤u

(
1
2x

THx+ hx
)
≥ 0. In this case

F (y) ≥ c ≥ (1− 2β) · F (x) .

I Additional Plots for Section 6

As discussed in Section 6, the various algorithms we use in the context of a cardinality constraint
have very similar empirical performance. Figure 4a presents the performance of all these algorithms
in the movie recommendation setting with the number of movies in the summery varying. One can
observe that the lines of the three non-scarecrow algorithms almost overlap. Figure 4b presents the
performance of the non-scarecrow algorithms in the image summarization setting. In this figure
we had to ignore the scarecrow algorithm Random because otherwise the lines of the three non-
scarecrows algorithms are indistinguishable. Furthermore, we had to zoom in on a very small range of
y-axis values. Despite these steps, the lines of Sample Greedy and Threshold Greedy still completely
overlap, but the large zoom allows us to see that Threshold Random Greedy is marginally worse.

J Maximizating DR-submodular Functions subject to a Polytope Constraint

There are (at least) two natural ways in which the notion of submodularity can be extended from set
functions to continuous functions. The more restrictive of these is known as DR-submodularity (first
defined by [3]). Given a domain X =

∏n
i=1 Xi, where Xi is a closed range in R for every i ∈ [n],

40

a function F : X → R is DR-submodular if for every two vectors a,b ∈ X , positive value k and
coordinate i ∈ [n] the inequality

F (a+ kei)− F (a) ≥ F (b+ kei)− F (b)

holds whenever a ≤ b and b+ kei ∈ X (here and throughout the section ei denotes the standard
i-th basis vector, and comparison between two vectors should be understood to hold coordinate-wise).
If F is continuously differentiable, then the above definition of DR-submodulrity is equivalent to∇F
being an antitone mapping from X to Rn (i.e., ∇F (a) ≥ ∇F (b) for every two vectors a,b ∈ X
that obey a ≤ b). Moreover, when F is twice differentiable, it is DR-submodular if and only if its
Hessian is non-positive at every vector x ∈ X .

In this section we consider the problem of maximizing a non-negative DR-submodular function
F : 2N → R≥0 subject to a solvable down-closed9 convex body P ⊆ X (usually polytope) constraint.
As is standard when dealing with problems of this kind, we assume that F is L-smooth, i.e., for every
two vectors x,y ∈ X it obeys

∥∇F (x)−∇F (y)∥2 ≤ L∥x− y∥2
for some non-negative parameter L. Additionally, for simplicity, we assume that X = [0, 1]n. This
assumption is without loss of generality because the natural mapping from X to [0, 1]n preserves all
our results.

We analyze a variant of the Frank-Wolfe algorithm for the above problem due to [2] called Non-
monotone Frank-Wolfe. This variant was motivated by the Measured Continuous Greedy algorithm
studied in Section E.2, and its assumes access to the first order derivatives of F . The details of
the algorithm we consider appear as Algorithm 7. This algorithm gets a quality control parameter
ε ∈ (0, 1), and it is assumed that ε−1 is an integer (if this is not the case, one can fix that by reducing
ε by at most a factor 2). Algorithm 7 and its analysis also employ the notation defined in Section E.2,
namely, given two vectors x,y, their coordinate-wise multiplication is denoted by x⊙y. Additionally,
we denote by 0̄ and 1̄ the all zeros and all ones vectors, respectively.

Algorithm 7: Non-monotone Frank-Wolfe(ε)

1 Let y(0) ← 0̄ and t = 0.
2 while t ≤ 1 do
3 s(t) ← argmaxx∈P x · ((1̄− y(t))⊙∇F (y(t))).
4 y(t+ε) ← y(t) + ε · (1̄− y(t))⊙ s(t).
5 t← t+ ε.

6 return y(1).

To analyze Algorithm 7 we need to define two additional parameters. The first parameter is the
diameter D = maxx∈P ∥x∥2 of P , which is a standard parameter. The other parameter is the
monotonicity ratio of F , which can be extended to the continuous setting we study in the following
natural way.10

m = inf
x,y∈X
x≤y

F (y)

F (x)
,

where the ratio F (y)/F (x) should be understood to have a value of 1 whenever F (x) = 0. Addition-
ally, let us denote by o an arbitrary optimal solution for the problem described above. Using these
definitions, we are now ready to state the result that we prove for Algorithm 7.

Theorem J.1. When given a non-negative m-monotone DR-submodular function F : X → R≥0

and a down-closed solvable convex body P ⊆ X , the Measured Greedy Frank-Wolfe algorithm
(Algorithm 7) outputs a solution y ∈ P such that F (y) ≥ [m(1−1/e)+(1−m)·(1/e)]·F (o)−εLD2.

9In Section E.2, down-closeness of was defined for the special case of P ⊆ [0, 1]N . More generally, a body
P ⊆ X is down-closed if b ∈ P implies a ∈ P for every vector a ∈ X obeying a ≤ b.

10In Appendix 6.2 we showed how the monotonicity ratio can be extended to the particular continuous setting
studied in that section. The definition of Appendix 6.2 is obtained from the more general definition we give here
by setting X =

∏n
i=1[0, ui].

41

Our first objective towards proving Theorem J.1 is to lower bound the expression F (o+y(t) ·(1̄−o)),
which we do in the next two lemmata.
Lemma J.2. For every integer i ∈ [0, ε−1], y(εi) ≥ 0̄ and ∥y(εi)∥∞ ≤ 1− (1− ε)−i.

Proof. We prove the lemma by induction on i. For i = 0, the lemma follows directly from the
initialization y(0) = 0̄ because 1− (1− ε)−0 = 0. Assume now that the lemma holds for i− 1, and
let us prove it for an integer 0 < i ≤ 1. Observe that, for every j ∈ [n],

yεij = y
ε(i−1)
j + ε ·

(
1− y

ε(i−1)
j

)
· sε(i−1)

j ≥ y
ε(i−1)
j ≥ 0 ,

where the first inequality holds since y
ε(i−1)
j ≤ 1 by the induction hypothesis and the value of

s
(ε(i−1))
j is non-negative by definition. Moreover,

yεij = y
ε(i−1)
j + ε ·

(
1− y

ε(i−1)
j

)
· sε(i−1)

j ≤ y
ε(i−1)
j + ε ·

(
1− y

ε(i−1)
j

)
= ε+ (1− ε) · yε(i−1)

j ≤ ε+ (1− ε) ·
[
1− (1− ε)(i−1)

]
= 1− (1− ε)i ,

where again the first inequality holds since s(ε(i−1)) ∈ X , which implies sij ≤ 1; and the second
inequality holds by the induction hypothesis.

Lemma J.3. For every integer i ∈ [0, ε−1], F (o+y(εi) · (1̄−o)) ≥
[
(1− (1−m)

(
1− (1− ε)i

)]
·

F (o) =
[
m+ (1−m)(1− ε)i

]
· F (o).

Proof. Observe that

F (o+ y(εi) · (1̄− o)) ≥
(
1− ∥y(εi)∥∞

)
· F (o) + ∥y(εi)∥∞ · F

(
o+

y(εi) · (1̄− o)

∥y(εi)∥∞

)
≥
(
1− ∥y(εi)∥∞

)
· F (o) +m · ∥y(εt)∥∞ · F (o)

=
(
1− (1−m) · ∥y(εi)∥∞

)
· F (o) ,

where the first inequality holds since the DR-submodularity of F implies that F is concave along
positive directions (such as the direction y(εi) · (1̄− o)/∥y(εi)∥∞), and the second inequality holds
since the monotonicity ratio of F is at least m. Plugging Lemma J.2 into the previous inequality
completes the proof of the lemma.

Using the previous lemma, we can now provide a lower bound on the increase in the value of y(t) as
a function of t.
Lemma J.4. For every integer 0 ≤ i < ε−1, F (y(ε(i+1)))− F (y(εi)) ≥ ε · [(m+ (1−m) · (1−
ε)i) · F (o)− F (y(εi))]− ε2LD2.

Proof. By the chain rule,

F (yε(i+1))− F (y(εi)) = F (y(εi) + ε · s(εi) ⊙ (1̄− y(εi)))− F (y(εi))

=

∫ ε

0

∇F (y(εi) + r · s(εi) ⊙ (1̄− y(εi))) · (s(εi) ⊙ (1̄− y(εi))) dr

≥
∫ ε

0

∇F (y(εi)) · (s(εi) ⊙ (1̄− y(εi))) dr − ε2LD2

= ε · ∇F (y(εi)) · (s(εi) ⊙ (1− y(εi)))− ε2LD2 ,

where the first inequality holds by the L-smoothness of F . Furthermore,

∇F (y(εi)) · (s(εi) ⊙ (1̄− y(εi))) = ((1̄− y(εi))⊙∇F (y(εi))) · s(εi)

≥ ((1̄− y(εi))⊙∇F (y(εi))) · o
= ∇F (y(εi))) · ((1̄− y(εi))⊙ o)

≥ F (o+ y(εi)(1̄− o))− F (y(εi))

≥
[
m+ (1−m) · (1− ε)i

]
· F (o)− F (y(εi)) ,

42

where the first inequality holds by the definition of s(εi) since o is a candidate to be this vector, the
second inequality follows from the concavity of F along positive directions, and the last inequality
holds by Lemma J.3. The lemma now follows by combining the two above inequalities.

We are now ready to prove Theorem J.1.

Proof of Theorem J.1. Rearranging the guarantee of Lemma J.4, we get

F (yε(i+1)) ≥ (1− ε) · F (y(εi)) + ε[m+ (1−m) · (1− ε)i] · F (o)− ε2LD2 .

Since this inequality applies for every integer 0 ≤ i < ε−1, we can use it repeatedly to obtain

F (y(1)) ≥ ε ·
1/ε∑
i=1

(1− ε)1/ε−i ·
[
(m+ (1−m) · (1− ε)i−1) · F (o)− εLD2

]
+(1− ε)1/ε ·F (0̄)

≥ mε ·
1/ε∑
i=1

(1− ε)
1
ε−i · F (o) + ε(1−m) ·

1/ε∑
i=1

[(1− ε)
1/ε−1 · F (o)− εLD2]

= mε · 1− (1− ε)1/ε

ε
· F (o) + ε(1−m) · (1− ε)1/ε−1 · F (o)− εLD2

ε

≥
[
m(1− e−1) + (1−m) · e−1

]
· F (o)− εLD2 ,

where the second inequality follows from the non-negativity of F , and the last inequality holds since
(1− ε)1/ε ≤ e−1 ≤ (1− ε)1/ε−1.

43

	Introduction
	Our Results

	Preliminaries and Basic Observations
	Unconstrained Maximization
	Maximization with a Cardinality Constraint
	Maximization with a Matroid Constraint
	Applications and Experiment Results
	Personalized Movie Recommendation
	Quadratic Programming

	Conclusion
	Additional Related Work
	Proof of Lemma 2.1
	Proofs of Section 3
	Proof of the first part of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Lemma 3.3

	Inapproximability and Proofs of Section 4
	Analysis of the Greedy Algorithm
	Analysis of Random Greedy
	Inapproximability for a Cardinality Constraint

	Inapproximability and Proofs of Section 5
	Analysis of the Greedy algorithm
	Analysis of Measured Continuous Greedy
	Analysis of Random Greedy for Matroids
	Inapproximability for a Matroid Constraints

	Personalized Image Summarization
	Ride-Share Optimization
	Proofs of Section 6
	Proof of Theorem 6.1
	Proof of Theorem 6.2

	Additional Plots for Section 6
	Maximizating DR-submodular Functions subject to a Polytope Constraint

