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ABSTRACT

Diffusion-based video generation has achieved significant progress, yet generat-
ing multiple actions that occur sequentially remains a formidable task. Directly
generating a video with sequential actions can be extremely challenging due to
the scarcity of fine-grained action annotations and the difficulty in establishing
temporal semantic correspondences and maintaining long-term consistency. To
tackle this, we propose an intuitive and straightforward solution: splicing multiple
single-action video segments sequentially. The core challenge lies in generating
smooth and natural transitions between these segments given the inherent com-
plexity and variability of action transitions. We introduce MAVIN (Multi-Action
Video INfilling model), designed to generate transition videos that seamlessly
connect two given videos, forming a cohesive integrated sequence. MAVIN incor-
porates several innovative techniques to address challenges in the transition video
infilling task. Firstly, a consecutive noising strategy coupled with variable-length
sampling is employed to handle large infilling gaps and varied generation lengths.
Secondly, boundary frame guidance (BFG) is proposed to address the lack of se-
mantic guidance during transition generation. Lastly, a Gaussian filter mixer (GFM)
dynamically manages noise initialization during inference, mitigating train-test
discrepancy while preserving generation flexibility. Additionally, we introduce a
new metric, CLIP-RS (CLIP Relative Smoothness), to evaluate temporal coherence
and smoothness, complementing traditional quality-based metrics. Experimental
results on horse and tiger scenarios demonstrate MAVIN’s superior performance in
generating smooth and coherent video transitions compared to existing methods.

1 INTRODUCTION

The evolution of video generation models has been significantly shaped by the advent of
diffusion-based techniques, offering unprecedented fidelity and temporal coherence in video syn-
thesis (Blattmann et al., 2023a; Ho et al., 2022a; Singer et al., 2022; Wang et al., 2023b; Ho et al.,
2022b). However, these models often struggle to generate videos that encompass multiple actions
or adhere to complex instructions, and typically produce relatively short clips, limiting their use in
scenarios requiring longer, multi-action sequences.

Generating multi-action videos directly presents numerous unresolved challenges. Firstly, the
lack of fine-grained action-level annotations in existing large-scale video datasets hampers model
training. Secondly, multi-action sequences, involving extended durations and significant motion
ranges, challenge models to maintain spatiotemporal consistency throughout the video. The structural
characteristics of video U-Net models further complicate complex temporal semantic correspondence
modeling. To circumvent these challenges, in this paper, we propose an innovative approach for
generating multi-action videos by integrating several single-action video clips. This process entails
two fundamental steps: first, the production of various video clips featuring the same subject engaging
in distinct actions; second, the concatenation of these clips through action transitions. While the
first step has been facilitated by recent advancements in text-conditioned image-to-video (TI2V)
generation (Dai et al., 2023; Girdhar et al., 2023; Xing et al., 2023; Ren et al., 2024; Zhang et al.,
2024; Wei et al., 2023), the second step remains understudied. To this end, we introduce MAVIN
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(Multi-Action Video INfilling model), a transition model designed to infill an intermediate video clip
between two adjoining clips, ensuring a fluid and seamless transition.

This task requires meticulous attention to overall motion consistency and smoothness. Therefore,
MAVIN is trained with consistent conditioning on the reference videos. To manage the potential for
substantial motion gaps and the requirement for flexible infilling lengths, we utilize a variable-length
sampling strategy. The performance of MAVIN is further enhanced by boundary frame guidance
(BFG) and a Gaussian filter mixer (GFM). BFG leverages high-level semantic features from the
boundary frames of input videos to guide the video infilling process, ensuring visual coherence
throughout the transition. Meanwhile, GFM dynamically manages the introduction and modulation
of noise during inference, improving generation fidelity while maintaining flexibility. Our method is
trained in a self-supervised manner, eliminating the need for finely annotated video-text transcriptions.

Moreover, existing metrics for evaluating video generation primarily focus on visual quality and
often overlook temporal coherence, which is crucial for assessing action transitions. To address this
gap, we introduce a new metric, CLIP-RS (CLIP Relative Smoothness), specifically designed to
evaluate the temporal consistency and smoothness of transition videos. This metric complements
traditional quality-based metrics and provides a comprehensive evaluation of our model’s performance.
Experimental results conducted on two distinct animal scenarios—horses and tigers—demonstrate
our method’s superior performance in generating smooth and natural video transitions over existing
methods, both in qualitative and quantitative assessments.

2 RELATED WORK

Text-to-Video Generation. Text-to-Video (T2V) studies have shifted their focus from GAN-based
models (Fox et al., 2021; Brooks et al., 2022; Tian et al.; Shen et al., 2023) and auto-regressive
models (Ge et al., 2022; Hong et al., 2022; Le Moing et al., 2021; Yan et al., 2021) to diffusion
models (Zhang et al., 2023; Jeong et al., 2023; Singer et al., 2022; Ge et al., 2023; He et al., 2022; Zhou
et al., 2022; Yang et al., 2023; Ho et al., 2022a), attributed to their superiority in generation quality,
training stability, and condition flexibility. Foundation T2V models such as ModelScopeT2V (Wang
et al., 2023a) and VideoCrafter (Chen et al., 2023a; 2024) are trained on large-scale captioned datasets,
possessing rich motion priors and text-motion correspondences. Nevertheless, challenges persist in
generating actions that fully adhere to complex text descriptions.

Image-to-Video Generation. Generating videos solely from text prompts leads to a high degree of
randomness in the appearance of each generation, thereby limiting its range of applications. Image-
to-Video (I2V) generations, on the other hand, animate a user-input image by leveraging the motion
priors learned from video-only datasets (Blattmann et al., 2023a; Guo et al., 2023; Jin et al., 2024; Wu
et al., 2023b) and have demonstrated the ability to generate high-fidelity and aesthetically pleasing
videos. However, they often exhibit limitations in the form of minor and uncontrollable motion
patterns. Considering these issues, many studies have begun to focus on text-conditioned image-to-
video generation (TI2V) synthesis, which involves generating videos from a reference image, coupled
with a text prompt indicating how the image should be animated. Videos generated in this manner
typically use the provided image as the initial frame (Girdhar et al., 2023; Dai et al., 2023; Zeng et al.,
2023; Ren et al., 2024; Gong et al., 2024) or retain its appearance identity and characteristics (Wei
et al., 2023; Zhang et al., 2024; Xing et al., 2023), while performing the motion described in the text.
There has also been a stream of works that further specialize in motion controllability by integrating
extra controlling signals (Chen et al., 2023b; Kandala et al., 2024; Shi et al., 2024; Ma et al., 2024).

Generative Video Interpolation. Diffusion models have also gained momentum in video interpo-
lation, challenging traditional methods that rely on optical flow computation and frame blending
techniques. MCVD (Voleti et al., 2022) and RaMViD (Höppe et al., 2022) adopt diffusion-based
models with random frame masking, making it capable of handling a range of video generative
modeling tasks, including video prediction and interpolation. LDMVFI (Danier et al., 2024) claims to
be the first effort solving video interpolation using latent diffusion models and has achieved superior
perceptual quality compared to traditional models. However, these works are primarily centered on
standard video frame interpolation tasks, where the motions are less ambiguous and straightforward.
A concurrent work (Jain et al., 2024) delves into large and challenging motions by interpolating 7
frames with an approximate stride of 3. It utilizes a cascaded framework where the interpolation
occurs at a low-resolution pixel level and is subsequently upsampled with a super-resolution model.
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However, the absence of open-source availability of the model and data renders further evaluation
under our task scenario unfeasible. SEINE (Chen et al., 2023c) explores diffusion-based scene
transition, where the model can generate a smooth transition from the start image depicting one scene
to the end image representing another.

3 METHODOLOGY

3.1 PRELIMINARIES

Latent diffusion model (LDM) (Rombach et al., 2022) is a diffusion model (DM) (Ho et al., 2020)
variant that operates on the compressed latent space instead of the pixel space, and has exhibited its
strong efficacy in image generation. LDM first encodes an input image sample x0 into a clean latent
code z0 = E(x0) using a VAE (Kingma & Welling, 2013; Esser et al., 2021) encoder E(·). The latent
code then undergoes a forward diffusion process, where it is incrementally perturbed with Gaussian
noise following a Markov chain

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (1)

where t ∈ {1, . . . , T}, and T is the number of total forward diffusion steps. βt controls the noise
strength at each step. By rewriting ᾱt :=

∏t
i=1(1− βi), this formula can be simplified as

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I). (2)

A U-Net (Ronneberger et al., 2015) model parameterized with θ works as a noise prediction function
ϵθ(·) to predict the added noise ϵ given the time step t and condition c (e.g. text prompt). The training
objective can be formulated as

argmin
θ

Ez0,ϵ,t,c∥ϵ− ϵθ(zt, t, c)∥22 . (3)

Video latent diffusion model (VLDM) (Blattmann et al., 2023b; Ho et al., 2022b; Esser et al.,
2023; Wang et al., 2024) inflates the U-Net model into a 3D architecture by inserting temporal
modules, making it capable of handling video data. Given an encoded video latent representation
z ∈ Rn×h×w×c where n is the number of frames in the video; h and w denote the height and width of
the latent code; and c is the dimension of the latent space, the model performs spatial operations over
the h× w space and temporal operations along the n axis. The spatiotemporal structure empowers
the model to manage spatial and temporal dependencies in a coordinated manner, facilitating the
generation of coherent and high-quality video sequences.

3.2 PROBLEM FORMULATION AND CHALLENGES

Problem formulation. The proposed transition video infilling task is a specialized form of video
interpolation that deals with long ranges and large motions, with the input being two videos. The
objective of this task is to generate a transition video given two videos, one preceding and one
following, thereby seamlessly connecting the two. Given an encoded preceding video latent zP0 =

{z00 , . . . , zs0} and a following video latent zF0 = {ze0, . . . , zL−1
0 }, the model aims to generate an

intermediate latent zI0 = {zs+1
0 , . . . , ze−1

0 }, where s is the end frame index of the preceding video
and e is the start frame index of the following video. We term these two frames as the boundary
frames for simplicity and clarity. L is the length of the integrated video after infilling.

Challenges and remedies. The novel nature of this task presents new challenges. In this section,
we briefly outline the challenges and our solutions, with a detailed elaboration to follow in the next
section.

The first challenge lies in temporal dependency modeling, which should support generating a transition
video with potentially large motion gaps while maintaining motion consistency. Existing works (Chen
et al., 2023c; Höppe et al., 2022) typically adopt a BERT-like masking strategy for conditional
modeling. However, such approaches are not effective for learning long-span motion patterns as
prediction targets and references appear alternately on the temporal axis. To address this issue, we
propose to consistently apply noise to a consecutive subsequence of training data. This method allows
for natural conditioning on reference videos in temporal modules while creating large motion gaps

3
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Figure 1: Model architecture. The input sequence is divided into three clips using variable-length
sampling. Noise is added exclusively to the latent of the intermediate clip, with length embedded as
extra information. Boundary frames are encoded with a CLIP vision encoder as content guidance for
spatial transformers. During inference, a Gaussian filter mixer (GFM) is used for noise initialization.

in the middle, enforcing the capture of long-term temporal dependencies. Nevertheless, denoising
only the middle part of training data can restrict data utilization and model robustness. To overcome
this, we implement a variable-length sampling strategy to optimize data usage and simultaneously
enhance the flexibility in generation length.

Furthermore, in text-conditioned generations, text prompts guide the generation direction in spatial
modules, where each frame is processed independently, and the temporal modules align them, as
vividly illustrated in (Blattmann et al., 2023b). However, in this task, the model operates in a self-
supervised fashion and there is no text providing content or semantic guidance to the model. Without
such guidance, spatial modules can generate incoherent images, placing extreme burdens on temporal
modules to align them. We propose boundary frame guidance (BFG) in spatial modules to mitigate
this issue.

Lastly, as revealed in (Lin et al., 2024; Chen, 2023), a train-test noise initialization discrepancy
hinders VLDM from generating high-quality videos. While previous solutions in I2V generation (Wu
et al., 2023b; Dai et al., 2023) generally involve a shared noise strategy, it is not optimal for this task
because the preserved condition frame signal throughout the generation sequence can limit motion
range, discouraging synthesis of distinct transition states. To better serve the transition video infilling
scenario, we propose a Gaussian filter mixer (GFM) module to balance initialization discrepancy and
generation flexibility.

3.3 MODEL ARCHITECTURE

The overall model architecture is depicted in Figure 1. In the model training stage, we simulate
transition video infilling by dividing a training video into three segments. An entire video sample
is first encoded into z0 = {z00 , . . . , zL−1

0 }, and only the intermediate clip is corrupted by t-step
Gaussian noise according to Eq. 2 resulting in zIt . The input to the U-Net model hence becomes
zt = {zP0 , zIt , z

F
0 }, and the model is optimized to predict {ϵs+1

t , . . . , ϵe−1
t } as per Eq. 3. Loss is

computed only on noised frames. Since this approach does not involve extra mask or condition frame
concatenation to the channel dimension, it enables the utilization of most pre-trained foundation
models that accept 3-channel RGB inputs.

Variable-length sampling. To improve data utilization and generation flexibility, we employ variable-
length sampling by randomly shifting the start and end points of the infilling clip. Concretely, at each
training step, we draw the boundary frame indices s and e randomly from two independent uniform
distributions: s ∼ U(as, bs); e ∼ U(ae, be), where 0 < as < bs < ae < be < L− 1. The resulting
length of the noised clip l := e− s− 1 thereby follows a triangular distribution with the upper and
lower limits lupper = be − as, llower = ae − bs. Particularly, when bs − as = be − ae, the PDF of
the distribution is symmetric and has the mode lmode = (llower + lupper)/2. To avoid confusion
stemming from variable-length sampling, we equip the model with an awareness of the generation
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length it is handling. This is achieved by incorporating a length embedding using sinusoidal encoding
followed by an MLP. The length embedding is subsequently added to the timestep encoding and
collectively processed through another MLP into the spatial convolution module. This approach
improves the model’s capacity to leverage training samples by accommodating predictions at varying
positions and lengths. It effectively allows for generating at various lengths and accepting reference
videos of diverse durations, thereby bolstering the model’s robustness and flexibility.

Dynamic boundary frame guidance. Boundary frames play a pivotal role in guiding the model’s
generation as they provide explicit information about the gap the model is tasked to bridge. Therefore,
we propose boundary frame guidance (BFG) to compensate for the lack of guidance in transition
video generation. Most popular frame conditioning strategies entail extending the keys and values of
spatial self-attention layers to include those of the condition frames (Wu et al., 2023a; Ren et al., 2024;
Henschel et al., 2024). However, empirical experiments did not prove these approaches effective
for this task, and the low-level visual information sometimes restricted the freedom of generation,
resulting in synthesized frames copying too much information from existing ones. Instead, we inject
the guidance signal into the cross-attention layers via a higher-level CLIP representation. Concretely,
we encode the pixel-level boundary frames xs

0 and xe
0 using a CLIP vision encoder and concatenate

the representations along the sequence dimension. This integrated representation serves both as
content and semantic guidance due to the nature of CLIP representations, informing the model
about the generation direction. A short text prompt briefly describing the subject, such as “horse
movement”, can be optionally leveraged to help classify the action subject or extract knowledge
from a pre-trained foundation model. The combined use of the CLIP encoders and the concatenation
operation provides the model with a consistent understanding of the integrated condition signal.

Gaussian filter mixer for inference-time noise initialization. We propose a dynamic inference-time
noise mixing strategy tailored for the transition video infilling task. Since the infilling video functions
as a bridge, its first few frames should thereby resemble the preceding video, while the last few frames
approach the following video. The frames in the middle should be granted the flexibility to display
transition states that are significantly distinct from any reference frames. Inspired by FreeInit (Wu
et al., 2023c), we propose a Gaussian filter mixer (GFM) module that dynamically retains a certain
amount of information from the closest boundary frame latent. This is accomplished by keeping
the low-frequency component of the diffused boundary latent, which offers a rough layout guidance
to the denoising process. The preserved information gradually diminishes as the frame position
moves away from the boundaries, allowing for greater freedom in generation. It is then mixed with
individual Gaussian noise at each frame, resulting in the mixed inference-time noise initialization z̃nt
at frame n as

F low(n) =


FFT 3D(zst )⊙ G(fS(n), fT (n)) if n ≤ s+ e

2
,

FFT 3D(zet )⊙ G(fS(n), fT (n)) if n >
s+ e

2
,

(4)

Fhigh(n) = FFT 3D(ϵnt )⊙ (1− G(fS(n), fT (n))) , (5)

z̃nt = GFM(n) = IFFT 3D(F low(n) + Fhigh(n)), (6)

where s and e are the indices of the boundary frames; FFT 3D(·) and IFFT 3D(·) represent discrete
fast Fourier transform and its inverse operation, performing in 3D dimensions; fS(·) and fT (·) are
functions that adjust the spatial and temporal stop frequencies, respectively; and G(·, ·) is a 3D
Gaussian low-pass filter taking both spatial and temporal stop frequencies as control parameters.

Eq. 4 first ensures that each intermediate frame refers to its closest boundary frame. Subsequently,
the adjusting functions progressively reduce the stop frequency values as the distance to the selected
boundary increases. We opt for a straightforward linear decreasing function with a scaling coefficient
λ to realize such control. The stop frequency for both fS(·) and fT (·) is computed as

f(n) = max(0, f0 − λ ·min(|n− s|, |n− e|) · f0), (7)

where f0 is the initial stop frequency of the low-pass filter. Here, f0 determines the maximum layout
information we aim to retain from the boundary frames, and λ regulates the rate at which such
information decreases as the synthesis target moves away from the referred boundary.
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Table 1: Quantitative comparison with other generative transition models.
test-manual test-auto

MS-SSIM↑ PSNR↑ LPIPS↓ FVD↓ CLIP-RS↑ CLIPSIM↑ MS-SSIM↑ PSNR↑ LPIPS↓ FVD↓ CLIP-RS↑ CLIPSIM↑

Horse - 8 frames

DynamiCrafter (Xing et al., 2023) 0.564 17.51 0.204 802.0 0.746 0.478 0.355 15.24 0.253 355.5 0.715 0.368
DynamiCrafter-Vid 0.609 17.75 0.198 1073.6 0.830 0.468 0.430 15.96 0.264 814.2 0.790 0.380
SEINE (Chen et al., 2023c) 0.710 19.79 0.129 635.4 0.866 0.546 0.481 16.90 0.184 271.7 0.813 0.439
SEINE-Vid 0.588 17.54 0.179 571.7 0.719 0.480 0.434 16.23 0.224 165.6 0.700 0.395
MAVIN (Ours) 0.724 19.97 0.128 479.5 0.844 0.517 0.560 18.24 0.162 147.7 0.819 0.453

Horse - 12 frames

DynamiCrafter (Xing et al., 2023) 0.452 16.05 0.252 866.6 0.740 0.408 0.317 14.75 0.280 367.8 0.747 0.340
DynamiCrafter-Vid 0.553 17.09 0.212 820.6 0.811 0.456 0.374 15.34 0.267 419.7 0.776 0.362
SEINE (Chen et al., 2023c) 0.591 17.78 0.176 743.6 0.815 0.487 0.383 15.48 0.236 289.6 0.782 0.379
SEINE-Vid 0.357 14.15 0.330 1096.0 0.522 0.349 0.283 13.97 0.327 343.1 0.570 0.294
MAVIN (Ours) 0.666 19.12 0.148 559.9 0.844 0.491 0.458 16.68 0.211 208.8 0.798 0.400

Tiger - 8 frames

DynamiCrafter (Xing et al., 2023) 0.383 15.58 0.251 856.8 0.733 0.447 0.260 13.81 0.309 377.9 0.691 0.415
DynamiCrafter-Vid 0.477 16.35 0.224 1177.3 0.822 0.477 0.408 15.22 0.239 619.5 0.836 0.491
SEINE (Chen et al., 2023c) 0.613 18.23 0.152 612.5 0.860 0.553 0.417 15.29 0.211 297.3 0.844 0.506
SEINE-Vid 0.580 17.83 0.177 447.5 0.766 0.528 0.525 16.49 0.182 232.7 0.798 0.544
MAVIN (Ours) 0.678 19.17 0.137 536.8 0.846 0.530 0.635 17.87 0.139 245.3 0.869 0.562

Tiger - 12 frames

DynamiCrafter (Xing et al., 2023) 0.346 15.13 0.276 834.3 0.763 0.423 0.221 13.50 0.336 395.7 0.744 0.385
DynamiCrafter-Vid 0.396 15.51 0.253 873.1 0.793 0.443 0.290 14.23 0.288 371.5 0.803 0.434
SEINE (Chen et al., 2023c) 0.504 16.86 0.196 707.4 0.859 0.500 0.361 14.61 0.245 356.3 0.847 0.472
SEINE-Vid 0.390 15.49 0.268 733.5 0.703 0.425 0.277 13.72 0.314 423.6 0.675 0.405
MAVIN (Ours) 0.595 18.08 0.167 689.7 0.835 0.500 0.513 16.23 0.183 310.9 0.852 0.512

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For our experiments, we focus on two distinct animal species to verify the effectiveness
of the proposed method: horses and tigers. We use the AnimalKingdom dataset (Ng et al., 2022)
for training the horse model and the TigDog dataset (Del Pero et al., 2015) for the tiger model. The
AnimalKingdom dataset encompasses a diverse range of species and tasks, but we only utilize the
videos labeled as “Horse” from the action_recognition task for training. However, we noticed that
the video clips in action_recognition are generally too short and correspond to only single actions,
resulting in insufficient action transition patterns for model training. Therefore, we supplemented the
horse training data with additional long-take web videos that capture horse movements. Consequently,
the total duration of the training data for each dataset is approximately 45 minutes under 30 FPS.

Testing clips for the transition video infilling task should ideally contain action transitions or large
motions to effectively evaluate the model’s efficacy. Such data, however, is challenging to source
from existing datasets, prompting us to construct our own. We collect videos from the Internet and
generate the test data in two ways: manual cutting, which yields high-quality samples, and automatic
generation, which produces a large number of test clips. We refer to the test sets generated in these
ways as test-manual and test-auto, respectively. For test-manual, we meticulously cut web videos
into 32-frame clips by ensuring the occurrence of significant movements or posture changes (e.g.,
transitioning from grazing to standing upright) in the intermediate clips. We curated 34 such test
samples for each animal class. For test-auto, we employ an optical flow estimator, RAFT (Teed
& Deng, 2020), to estimate the motion intensity between the two reference clips. Concretely, we
select video clips based on the average optical flow magnitudes of the boundary frames. Since small
magnitude values suggest minor motions and excessively large values typically result from dramatic
camera movements, only those with values falling within a certain range are leveraged. To formalize
this, the boundary frame indices s and e for test-auto are selected using the following equation:

{(s, e)} =

(s, e) | 1

h · w

h∑
i=1

w∑
j=1

∥Eflow(xs, xe)i,j∥2 ∈ (Tlower, Tupper) , e−s−1= ltest

 , (8)

where Tlower and Tupper are the lower and upper thresholds; h and w are the height and width of
estimated optical flows; and ltest is the length of the generation sequence we want to test. We tuned
the thresholds and obtained 113 visually satisfactory test samples for the horse class and 104 for the
tiger class by setting ltest to 12.

Implementation details. We initialize our model from ModelScopeT2V-1.7b (Wang et al., 2023a)
and fine-tune it with the proposed framework for 40K steps. The optimization is carried out using
an AdamW optimizer (Loshchilov & Hutter, 2017), with a constant learning rate of 5e-6 and a
batch size of 1. Training videos are randomly sampled into 32-frame clips at a sample rate of 2,
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and pre-processed to eliminate potential shot transitions by excluding clips where any SSIM (Wang
et al., 2004) value between consecutive frames falls below 0.1. Videos shorter than 32 frames are
discarded. Experiments are conducted at a resolution of 256×256. Training and inference require
around 40 and 12 GB vRAM, respectively. All training is performed on a single NVIDIA L40 GPU,
with each trial taking approximately one day. The length range of random intermediate clips is set to
llower = 2, lupper = 22. The GFM parameters employed are f0 = 0.6, λ = 0.1.

Evaluation Metrics. We present the following evaluation metrics: multi-scale structural similarity
(MS-SSIM)(Wang et al., 2003), peak signal-to-noise ratio (PSNR), LPIPS(Zhang et al., 2018),
FVD (Unterthiner et al., 2019), and CLIP similarity (Radford et al., 2021). However, most of
these metrics primarily assess reconstruction quality and similarity between generated and ground-
truth videos, considering each frame independently. They do not adequately account for temporal
coherence, which reflects the smoothness of generated motions. To address this gap, we propose
a CLIP-similarity-based inner-frame consistency measurement to quantify the relative smoothness
with respect to the ground truth video clip. We term this measure CLIP Relative Smoothness score
(CLIP-RS), computed as follows:

CLIP-RS =
1

L− 1

L−1∑
i=1

min(CLIPSIM(pi−1, pi),CLIPSIM(qi−1, qi))

max(CLIPSIM(pi−1, pi),CLIPSIM(qi−1, qi))
, (9)

where pi is the i-th generated frame and qi is the corresponding ground truth frame. L is the length of
the generated video. CLIPSIM(pi, pj) denotes the cosine similarity between the CLIP representations
of images pi and pj . Each summation term quantifies the relative frame change in the generated video
compared to the actual change in the ground truth. Either a relatively drastic or subtle change results
in a low score. For example, if the oracle transition occurs at a steady rate while the synthesized
video initially remains stationary and then abruptly changes to complete the transition, the differences
in transition pace will be captured, leading to low relative smoothness values.

Table 2: CLIP-RS responds to temporal changes and is not
sensitive to visual aesthetics.

SSIM↑ PSNR↑ LPIPS↓ CLIPSIM↑ CLIP-RS↑
Original (self-comparison) 1.00 inf 0.00 1.00 1.00
Decrease luminance by 50% 0.71 13.6 0.21 0.66 0.97
Increase contrast by 50% 0.69 19.9 0.08 0.82 0.97
Zeroing-out red channel 0.67 11.3 0.29 0.66 0.96
Zeroing-out red&green channels 0.33 8.44 0.60 0.49 0.95
Replicating 1st frame as video 0.79 20.7 0.06 0.77 0.87

CLIP-RS is a metric calculated along
the frame axis, measuring the degree
of changes between adjacent frames.
Although it references the ground
truth video, it does not engage in any
direct frame-to-frame comparisons be-
tween the two videos. This character-
istic renders this metric indifferent to
the quality of the generated images or
their resemblance to the original video. We demonstrate this by manipulating a 12-frame video clip
and computing the metrics with the original video. As shown in Table 2, when the video’s visual
aesthetics are perturbed (rows 2-5), metrics based on predicted-actual similarity are significantly
impacted despite the structural content and motion effect of the video remaining unchanged, whereas
CLIP-RS maintains a score close to 1. In contrast, when the video’s temporal property is altered (the
last row, where the new video is comprised of a 12-time repetition of the original video’s first frame),
similarity-based and quality-based metrics yield superior results compared to when visual aesthetics
were disturbed, while CLIP-RS can identify such smoothness discrepancies. This is in direct contrast
to the use of absolute smoothness measurement Chen et al. (2023c), where a static video can achieve
a perfect smoothness score of 1, which contradicts our objective. The CLIPSIM(·, ·) function in
CLIP-RS can also be substituted with other similarity measurements such as SSIM, averaged optical
flow momentum, etc.

4.2 RESULTS

Comparison with existing methods. For our comparative analysis, we selected two open-source
diffusion-based generative models: DynamicCrafter (Xing et al., 2023) and SEINE (Chen et al.,
2023c). Both models are capable of generating transition videos from two condition images. However,
to ensure a more fair and relevant comparison to our work, we also conducted experiments where these
models were conditioned on video inputs. We refer to these modified versions as DynamicCrafter-Vid
and SEINE-Vid.

We conducted experiments with two infilling length settings: (i) generating 8 frames given 12-frame
condition clips on each side, and (ii) generating 12 frames given 10-frame references. The total input
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SMU Classification: Restricted

P: Preceding video  F: Following video | GT: Ground Truth | D: DynamiCrafter  DV: Dynami-Vid  S: SEINE  SV: SEINE-Vid | M: MAVIN(Ours)

P
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Figure 2: Qualitative comparison of MAVIN with baseline models. The top two rows are input
reference videos, with glowing frames marking the boundaries. MAVIN demonstrates smoother and
more natural transitions and superior spatiotemporal consistency compared to baseline models.

length is 32, matching our test set samples. Particularly, we found that DynamicCrafter, which was
trained to generate fixed 16-frame videos, performed poorly when this length was altered. Therefore,
for DynamicCrafter, we use a 4-frame reference on each side for 8-frame infilling, and 2 for 12-frame
infilling, maintaining a total length of 16. For image-conditioned generations, where DynamicCrafter
generates 14 frames (16 minus 2 reference images), we evenly sampled 8 and 12 frames from the 14
for metric computations. All metrics were calculated only on intermediate clips, except for FVD,
which was compared with the entire input sequence.

We show quantitative results in Table 1 and qualitative results in Figure 2. MAVIN substantially
outperforms other generative baseline methods, especially when the motion is difficult. Specifically,
SEINE is the most competitive transition generation model, but as the number of infilling frames
increases, the gap between MAVIN and SEINE becomes obvious. test-auto is generated at a sample
rate of 4, which is rather challenging. It is equivalent to bridging a 48-frame gap when infilling
12 frames on test-auto. The performance gap further increases under this setting, showing the
effectiveness of the proposed method in infilling videos with large and complex motions.

As the only existing generative model trained for transition purposes, SEINE adopts a BERT-like
masking strategy for masked modeling, where each frame is corrupted by chance independently,
resulting in an intermittent corruption pattern. Although this method enhances data utilization and
robustness, it falls short in generating long-term temporally cohesive videos because the corruption
pattern allows the model to rely on nearby clean frames for predictions. In contrast, our method
consistently applies continuous corruption up to a maximum length of 22 frames, compelling the
model to capture long-term motion dependencies.

Ablation Study. We ablate the two key components of the proposed framework and present the
qualitative results in Table 3. Results were obtained on Horse test-manual by predicting 12 frames
under the same experimental setup. Boundary frame guidance (BFG) offers important content
direction during model training, and the Gaussian filter mixer (GFM) helps stabilize the generation by
providing essential information to address the discrepancy between training and inference phases. By
ablating either BFG or GFM, the performance deteriorates across all metrics. When both components
are removed together, the model experiences severe degradation, demonstrating the effectiveness and
necessity of these components for high-quality video generation. (See supplementary materials)
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Table 3: Ablation study on boundary frame guidance (BFG) during training and Gaussian filter mixer
(GFM) noise initialization during inference.

MS-SSIM↑ PSNR↑ LPIPS↓ FVD↓ CLIP-RS↑ CLIPSIM↑
MAVIN (Proposed Method) 0.666 19.12 0.148 559.9 0.844 0.491
−Boundary Frame Guidance 0.651 (-2.3%) 19.00 (-0.6%) 0.153 (-3.4%) 570.9 (-2.0%) 0.833 (-1.3%) 0.483 (-1.6%)
−Gaussian Filter Mixer 0.647 (-2.9%) 18.03 (-5.7%) 0.167 (-12.8%) 627.2 (-12.0%) 0.815 (-3.4%) 0.475 (-3.3%)
−BFG −GFM 0.606 (-9.0%) 17.78 (-7.0%) 0.189 (-27.7%) 672.2 (-20.1%) 0.781 (-7.5%) 0.443 (-9.8%)
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A horse jumps first, then stands still, and finally runs.

Figure 3: Application of the transition video infilling model. It connects multiple TI2V-generated
single-action video clips into a cohesive extended video with smooth and natural action transitions.

4.3 APPLICATION FOR MULTI-ACTION GENERATION

We achieve multi-action generations by connecting single-action videos with MAVIN. This work
does not focus on optimizing the single-action models; instead, we employ existing TI2V models that
animate an input image through text control, as discussed in Section 2. In our empirical experiments,
directly generating large motions or non-continuous actions using pre-trained TI2V models (Dai
et al., 2023; Ren et al., 2024) led to failure. Therefore, we fine-tune these models for the single-action
generation purpose. To integrate the synthesized single-action videos, we insert noise of the desired
length between two videos and use MAVIN to infill a transition video. Alternatively, instead of
inserting noise, we can concatenate single-action videos and replace the junction frames with noise to
regenerate the transition parts.

We initialize the action model from AnimateAnything (Dai et al., 2023). The training data for
single actions is also derived from the AnimalKingdom and TigDog datasets, except that we collect
additional data for training the action “horse jumping”. We train one model per animal species. A
fixed action prompt, such as “horse is jumping”, is tied to each action and serves as the text condition
during training.

To create a multi-action video, we first use a single image, controlled by multiple action prompts, to
generate multiple single-action videos separately. These videos are then concatenated into a longer
sequence, arranged in the desired order. We regenerate the junction frames using the infilling model
for smooth action transitions. Figure 3 illustrates an example of such an application. In this example,
we generate 20 frames for each single action and refine 12 frames centered around each junction,
resulting in a 60-frame-long video that contains three actions: jump, stand, and run. The first, third,
and fifth rows depict the single-action videos generated by the action model, while the second and
fourth rows are generated by the infilling model to connect them. This approach generates highly
temporally cohesive examples with great flexibility.
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5 CONCLUSION

In conclusion, this study has presented a novel approach to generative video infilling, specifically
targeting the generation of transition clips in multi-action sequences, leveraging the capabilities
of diffusion models. Our model, MAVIN, demonstrates a significant improvement over existing
methods by generating smoother and more natural transition videos across complex motion sequences.
This research lays the groundwork for future advancements in unsupervised motion pre-training,
large-motion video interpolation, and multi-action video generation. While this technique enables
new applications, it is also crucial to establish guidelines and implement safeguards to prevent its
potential misuse in creating fake content, which raises ethical and security concerns.

Limitations. Due to computational limitations and the proprietary nature of the widely used video
training dataset WebVid-10M (Bain et al., 2021), our experiments were conducted only under specific
scenarios and initialized from existing foundation models. Further exploration of the task might
require training at scale. Moreover, while we did not concentrate on optimizing the single-action
(TI2V) models, a notable trade-off between visual quality and motion intensity persists even after
fine-tuning, highlighting an area for further research. The failure cases include the single-action
model’s inability to follow the action prompt and the inconsistency in appearance in later frames for
actions involving large motions.
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