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ABSTRACT

Text-rich visual understanding—the ability to process environments where dense
textual content is integrated with visuals—is crucial for multimodal large lan-
guage models (MLLMs) to interact effectively with structured environments. To
enhance this capability, we propose synthesizing general multimodal instructions
from webpage UIs using text-based large language models (LLMs). Despite lack-
ing direct visual input, text-based LLMs are able to process structured text rep-
resentations from webpage accessibility trees. These instructions are then paired
with UI screenshots to train multimodal models. We introduce MultiUI, a dataset
containing 7.3 million samples from 1 million websites, covering diverse multi-
modal tasks and UI layouts. Models trained on MultiUI not only excel in web
UI tasks—achieving up to a 48% improvement on VisualWebBench and a 19.1%
boost in element accuracy on a web agent dataset Mind2Web—but also generalize
surprisingly well to non-web UI tasks and even to non-UI domains, such as doc-
ument understanding, OCR, and chart interpretation. These results highlight the
broad applicability of web UI data for advancing text-rich visual understanding
across various scenarios.

1 INTRODUCTION

Text-rich visual understanding, the ability to interpret environments where textual content is densely
intertwined with visual elements, is a crucial cognitive skill in humans. For multimodal large lan-
guage models (MLLMs) (OpenAI, 2023; Liu et al., 2024b), replicating this ability is essential for
tasks that involve complex text-visual interactions, such as document processing (Mathew et al.,
2021; Singh et al., 2019; Liu et al., 2023c), web navigation (Liu et al., 2024c; Deng et al., 2023),
chart interpretation (Masry et al., 2022) and text-rich visual reasoning (Yue et al., 2024b). These
tasks require models to integrate dense textual information with surrounding visuals, enabling AI
systems to interact intelligently with the increasingly text-rich digital landscape (Koh et al., 2024).

To advance text-rich visual understanding in MLLMs, we propose leveraging webpage UIs as a
naturally structured, diverse, and text-dense data source. Web UIs, where textual content is often
central and tightly integrated with visual elements and interactivity, offer an ideal setting for training
models to interpret and navigate complex text-visual interactions.

Existing approaches to using web content in multimodal models have limitations (Figure 1). Rule-
based extraction of images and their surrounding text (Zhu et al., 2023; Schuhmann et al., 2021;
2022) often introduces noise and lacks contextual depth. Converting screenshots into simplified
HTML structures (Lee et al., 2023; Gao et al., 2024) imposes a rigid format that limits generaliza-
tion across domains. Models like GPT-4 generate captions (Chen et al., 2023) for web images but
frequently overlook the rich interaction between text and visuals.

Our approach addresses these limitations by synthesizing general multimodal instructions from web-
page UIs using text-based LLMs. Although text-based LLMs lack direct visual input, they can
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Figure 1: MultiUI compared with previous methods. Our proposed MultiUI construction ap-
proach synthesizes full structured webpage UIs into multimodal instruction samples of versatile
tasks by harnessing powerful LLMs, which leads to more generalizable training samples.

effectively process the textual representations of webpages. By reading the cleaned accessibility
tree—a structured and refined representation of a webpage’s HTML and metadata—LLMs generate
meaningful instructions that capture both the content and interactions present on the page. These
generated instructions are then paired with UI screenshots to train multimodal models, allowing
them to learn from both text and visual representations.

To facilitate this, we introduce MultiUI, an open-source dataset containing 7.3 million samples span-
ning 1 million websites and various visual understanding tasks. Our pipeline captures key web
elements and layout structures using screenshots and enhanced accessibility trees, filtering out irrel-
evant data while preserving the core structure of web UIs. Our task taxonomy, which covers three
categories and nine tasks, ensures that models trained on MultiUI generalize across a wide range
of multimodal interactions. Additionally, we introduce variations in device types, aspect ratios, and
question formats to further increase the dataset’s diversity and enhance model robustness.

Our experiments show that training on MultiUI significantly improves model performance in both
UI-related and general multimodal tasks. Notably, models trained on MultiUI achieved up to a 48%
improvement on VisualWebBench (Liu et al., 2024c) and a 19.1% increase in element accuracy
on Mind2Web (Deng et al., 2023). More surprisingly, we observed that this training generalizes
to non-UI domains, resulting in improved performance in document understanding (Mathew et al.,
2021), OCR (Singh et al., 2019; Liu et al., 2023c), and chart interpretation (Masry et al., 2022)
tasks—outperforming even models specialized in these areas. These findings underscore the broader
utility of web UI data as a powerful resource for improving text-rich visual understanding, enabling
models to excel not only in UI tasks but across a diverse range of scenarios, including more complex
agent tasks and non-UI domains.

2 DATASET CONSTRUCTION

In this section, we outline the process of constructing MultiUI. We developed an automated data
collection pipeline by leveraging accessibility trees1 and off-the-shelf LLMs. As illustrated in Fig-
ure 2, we construct the data collection pipeline through four stages: (1) raw website data scraping,
(2) website curation, (3) task extraction from scraped websites, and (4) instruction construction.

2.1 WEBSITE RAW DATA SCRAPING

We begin by constructing a web raw dataset that includes HTML/CSS, high-resolution screenshots,
and accessibility trees. The URLs in the “CC-MAIN-2024-10” dump from FineWeb (Penedo et al.,
2024) are used to render websites via Playwright2. To prevent any potential contamination, we
removed URLs that also appear in downstream benchmarks, such as VisualWebBench (Liu et al.,
2024c). We employ the accessibility tree (refer to Appendix B for an example) as the text represen-
tation of a webpage for further utilization by LLMs because it typically provides a more compact
structured representation compared to the raw HTML. The accessibility tree focuses on the most
important visual elements, such as buttons, links, and headings, which are crucial for understanding
the content and functionality of the page. It excludes non-essential elements like those related to
styling or purely decorative purposes, which are often present in HTML but do not contribute to the

1https://developer.mozilla.org/en-US/docs/Glossary/Accessibility tree
2https://github.com/microsoft/playwright
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Figure 2: Construction pipeline of MultiUI. The process consists of four main stages: (1) Website
Scraping; (2) Website Curation with Llama-3-70b-Instruct; (3) Task Extraction utilizing Llama-3-
70b-Instruct, GPT-4o mini, and rule-based approaches to generate Web UI tasks across three cat-
egories: visual understanding and reasoning, text recognition, and grounding; (4) For each task,
generate tasks samples by applying the diverse instruction templates paraphrased by GPT-4o.

core information. This higher information density in the accessibility tree makes it a more efficient
and relevant input for language model processing, allowing the model to focus on key content with-
out unnecessary noise. For details on raw data processing, see Appendix A. In total, 1.1 million
websites were crawled. To ensure comprehensive coverage across diverse platforms and window
size variations, we rendered websites on two simulated devices (Windows 10 and iPhone 12 Pro)
using dynamic window size settings.

2.2 WEBSITE CURATION

Despite FineWeb’s filtering, our crawled raw data still contains instances of inappropriate content
and network errors. To address this issue, we employ an additional processing step using a filter
language model. Specifically, we utilize the Llama-3-70B-Instruct (Dubey et al., 2024) as our filter
model. It analyzes the accessibility tree of each website to identify problematic content, includ-
ing adult material, gambling-related content, violence, discriminatory language, and network errors
such as “403 Forbidden”, “502 Bad Gateway”, “Cloudflare blocking”, “blank pages”, and “404 Not
Found” errors. Websites flagged as problematic are subsequently removed from the dataset. The
prompt used by filter model can be found in Appendix C. After this step, approximately 10% of
the raw websites were identified as harmful or invalid and subsequently removed, resulting in a raw
dataset of 1 million website instances.

2.3 TASK EXTRACTION FROM SCRAPED WEBSITES

Existing approaches to using web content in multimodal models have limitations (Figure 1). Tradi-
tional rule-based methods for extracting images and surrounding text often introduce noise and lack
contextual depth (Zhu et al., 2023; Schuhmann et al., 2021; 2022), while converting screenshots
into simplified HTML structures imposes rigid formats (Lee et al., 2023; Gao et al., 2024), limiting
generalization across domains. Additionally, methods that rely on GPT-4 to generate captions for
web images (Chen et al., 2023) tend to overlook the rich interaction between text and visuals. Our
approach aims to overcome these challenges by synthesizing general multimodal instructions from
webpage UIs using text-based LLMs.

To provide multimodality models with robust perception, understanding, grounding, and reasoning
capabilities, we construct a diverse set of tasks, featured by their different focuses of abilities to in-
teract with the web. These types of tasks are crucial for effective web interaction, they are: (1) visual
understanding and reasoning; (2) text recognition; (3) grounding. See Figure 3 for an overview of
our constructed task samples. All prompts required in the sample construction process are metic-
ulously refined through manual tuning, based on observations of the generated samples. Refer to
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Understand & Reason
Text Recognition
Visual Grounding

MultiUI Webpage Caption
Question: Explain the webpage in detail.
Answer: This webpage appears to be a 
website that discusses how to get better at 
disk golf.

Element OCR
Question: Please extract the text 
content from the UI element 
enclosed by the red rectangle.
Answer: Best Disc Golf Putters ...

Element Grounding
Question: Provide the 
bounding box coordinates 
of the UI element 
described: “About Us”. 
The coordinates should be 
formatted as [left, top, 
right, bottom], with each 
number being a float 
between 0 and 1.
Answer: [0.624, 0.311, 
0.769, 0.439]

Webpage QA
Question: What is the name of the author 
of article displayed on the website?
Answer: Peter Howell.

Embedded Image QA
Question: What is the person throwing?
Answer: A disc.

Embedded Image Caption
Question: Generate a description of the 
image highlighted within the red border.
Answer: A person in a blue jacket and 
yellow beanie throws a disc towards...

Action Prediction
Question: Select the most suitable website 
that matches the new page after clicking 
the element in the red bounding box.
A. Twitter B. Instagram C. Youtube
Answer: B

Heading OCR
Question: Extract the main 
heading from the webpage.
Answer: How to Get Better at 
Disc Golf [Techniques & Tips]

Action Grounding
Question: Find the 
bounding box coordinates 
of the element you need to 
click on to perform this 
action: learn more about 
“perfect throws”.
Answer: [0.624, 0.207, 
0.769, 0.312]

Figure 3: Task samples from MultiUI. To enhance multimodal models’ perception, comprehen-
sion, grounding, and reasoning capabilities, we have designed a diverse set of nine tasks, emphasiz-
ing the critical abilities for text-rich visual understanding scenarios.

Appendix C for the complete set of prompts used for task extraction and Appendix D for examples
of created task samples.

2.3.1 VISUAL UNDERSTANDING AND REASONING TASKS

Our visual understanding and reasoning tasks are designed to improve the model’s ability to describe
both the overall structure of web pages and the specific visual elements within them (Captioning),
meanwhile, enhancing the models’ abilities to answer questions (QA), and predict functionalities of
elements (Action Prediction) about webpages.

Webpage Captioning: comprehending and summarizing the overall content and structure of a web
page. The accessibility tree of each webpage serves as a concise textual representation that encodes
the page’s structural and semantic information. Therefore, we prompt Llama-3-70B-Instruct to syn-
thesize the structured and informative accessibility tree into coherent and detailed descriptions.

Webpage QA: answering questions with respect to non-image content within webpages. Unlike
Webpage Captioning, which provides a high-level summary of the entire page, this task targets de-
tailed information extraction and reasoning about particular aspects of the page content. Given the
accessibility tree, Llama-3-70B-Instruct is prompted to generate question-answer pairs. To improve
the versatility and adaptability of this task, we design a dynamic in-context examples strategy and
consider two kinds of styles of output answers. Specifically, a set of five questions from the LLaVA
v1.5 instruction-tuning dataset are randomly sampled as in-context examples during each genera-
tion. This strategy helps the model draw from a broad range of patterns, reducing redundancy and
increasing variability in question types. Furthermore, answers are provided in two distinct formats:
detailed conversational responses to accommodate scenarios that require contextual richness, and
concise, direct answers for use cases where brevity is preferred. The dual-format answers construc-
tion method ensures that the generated QA pairs are versatile and adaptable to different user needs.

Embedded Image Captioning: describing embedded images within a web page. While the acces-
sibility tree provides a useful overview of the textual and interactive components of a webpage, it
often falls short when dealing with embedded images. Descriptions for embedded images are often
inadequate, with brief or even missing alt-text being a common issue. To address this issue, we
employ the GPT-4o-mini3 to generate rich and context-sensitive captions for these embedded im-

3https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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Platform Visual Understanding and Reasoning Grounding Text Recognition Total
Web Capt. Img Capt. Web QA Img QA Act. Pred. Action Elem. Head Elem.

Desktop 150K 526K 1.1M 979K 65K 1.2M 694K 98K 175K 5.0M
Mobile 100K 0 936K 0 34K 613K 488K 74K 41K 2.3M

Total 250K 526K 2.1M 979K 99K 1.8M 1.2M 172K 217K 7.3M

Table 1: Statistics of our dataset MultiUI.
ages. The model is instructed to consider not only the visual features of the images but also their
surrounding context provided by the accessibility tree, producing captions that are more informative
and contextually relevant compared to standard alt-text tags.

Embedded Image QA: answering questions with respect to embedded images within webpages.
Different from Embedded Image Captioning which provides general descriptions of images in the
context of the webpage, Embedded Image QA focuses on answering specific questions about the
visual content, requiring more detailed analysis. The Llama-3-70B-Instruct model is also employed
to generate QA pairs from corresponding captions. The same dynamic in-context examples strategy
and dual-format answers generation method as in Webpage QA are employed here.

Action Prediction: predicting the outcome of clicking a specific element on a webpage. Follow-
ing Liu et al. (2024c), this task aims to predict the title of the redirected webpage after clicking a
specified element, under a multiple-choice setting. Negative elements are randomly selected from
the same webpage as the positive element and the titles of redirected sites are obtained through
automated interaction using PlayWright.

2.3.2 OCR TASKS.

Element OCR. In this process, the HTML DOM tree of the crawled webpages is traversed to
identify elements with textual descriptions exceeding 20 words, which are then utilized to create
OCR task samples. Each task sample consists of a screenshot of the webpage, with a red bounding
box highlighting the element targeted for OCR.

Heading OCR. Following Liu et al. (2024c), we incorporate Heading OCR to complement the El-
ement OCR and provide a more comprehensive text recognition capability. It focuses on identifying
and extracting the textual content of headlines or titles from web pages.

2.3.3 GROUNDING TASKS

Action Grounding: predicting the click position in response to a specific instruction, such as “learn
more about perfect throws” as illustrated in Figure 3. Action grounding is crucial for developing
web agents capable of performing actions autonomously based on user commands. Utilizing our
processed accessibility data enhanced by the bounding boxes of elements, Llama-3-70b-Instruct is
not only prompted to generate multiple grounding instructions but also provides the corresponding
ground-truth bounding boxes.

Element Grounding: identifying the coordinates of an element based on its textual description.
The training examples for this task are created by extracting textual descriptions alongside their
corresponding bounding boxes from the HTML DOM tree.

For both grounding tasks, we implement two distinct settings: multi-choice and bounding box gen-
eration. In the multi-choice setting, eight candidate bounding boxes are presented within an input
screenshot, and the model must select the correct one based on the given element description or
instruction. In the bounding box generation setting, the model directly predicts the coordinates of
the target element .

2.4 INSTRUCTION TEMPLATE CONSTRUCTION

We further diversify the instruction templates through a prompt variation approach (Appendix J).

We ultimately curated a dataset of 7.3 million web UI-related samples in the form of VQA, covering
nine tasks across perception, comprehension, grounding, and reasoning capabilities, which we refer
to as MultiUI. The statistics are shown in Table 1 and refer to Appendix D for examples.
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3 EXPERIMENTAL SETUP

3.1 IMPLEMENTATION DETAILS

Model Architecture We developed UIX using Qwen2-7B-Instruct (Yang et al., 2024) as the
primary LLM backbone. We also use Vicuna-7B-v1.5 (Chiang et al., 2023) and Llama-3.1-8B-
Instruct (Meta, 2024) as backbones to further verify the effectiveness of our dataset. See Appendix E
for details about our model architectures.

Training Strategy To develop MLLMs with comprehensive GUI knowledge while maintaining
robust general multimodal capabilities, we propose a two-stage training pipeline for our UIX models.

• Stage 1: GUI Knowledge Learning. In this stage, we fine-tune the model on 95% of MultiUI
dataset to enhance its web/UI-related understanding capabilities. This stage is crucial for devel-
oping the model’s proficiency in interpreting and interacting with GUI environments.

• Stage 2: Visual Instruction Tuning. To help the model acquire robust general multimodal ca-
pabilities alongside enhanced GUI knowledge, we then continue the fine-tuning process using a
combination of general visual instruction dataset (i.e., LLaVA–1.5 data4 or LLaVA-NeXT data5)
and the remaining 5% of the MultiUI data.

3.2 BENCHMARKS

We have selected diverse evaluation benchmarks, encompassing a variety of in-domain GUI sce-
narios, out-of-domain OCR-related tasks, general multimodal tasks, agent benchmark, to as-
sess the models’ capabilities in diverse multimodal tasks. See Appendix F for more details of these
benchmarks.

• GUI-Related Tasks. We select VisualWebBench (Liu et al., 2024c), WebSRC (Chen et al., 2021),
ScreenQA-Short (Hsiao et al., 2022), WidgetCap (Li et al., 2020) for GUI understanding. We also
include Bbox-version of element and action grounding subtasks in VisualWebBench (Liu et al.,
2024c), ScreenSpot (Cheng et al., 2024), RefExp (Wichers et al., 2018) for GUI grounding.

• OCR-Related Tasks. DocVQA (Mathew et al., 2021), ChartQA (Masry et al., 2022),
TextVQA (Singh et al., 2019), InfoVQA (Mathew et al., 2022), VisualMRC (Tanaka et al., 2021),
OCRBench (Liu et al., 2023c).

• General Multimodal Tasks. MMMU (Yue et al., 2024a), MMBench (Liu et al., 2023b) and
VQA-V2 (Goyal et al., 2017). We also include RefCOCO+(REC) (Yu et al., 2016) to evaluate the
grounding capability in natural image scenarios.

• Agent Task. We employ Mind2Web (Deng et al., 2023) to train and evaluate the agent’s capabil-
ity of performing complex instructions on real-world websites.

We evaluate our models against various baselines, including LLaVA-1.5 series (Liu et al., 2024a)
and LLaVA-1.6 (NeXT) series (Liu et al., 2024b). To ensure a fair comparison, given the differ-
ent backbones of UIX from the original LLaVA checkpoints, we re-implemented three baselines:
LLaVA-Vicuna, Llama3.1, Qwen2, utilizing the same training data as LLaVA. We also compare our
models with Pix2Struct (Lee et al., 2023), S4 (Gao et al., 2024), SeeClick (Cheng et al., 2024), Co-
gAgent (Hong et al., 2023), and ScreenAI (Baechler et al., 2024). Furthermore, we include GPT-4V
and GPT-4o as strong baselines to provide a comprehensive evaluation.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 RESULTS ON GUI-RELATED TASKS

Significant Improvement on GUI Understanding and Grounding Benchmarks: We present
performance on GUI understanding and grounding benchmarks in Table 2. Overall, our dataset

4https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava v1 5 mix665k.json
5https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Data
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Model
GUI Understanding GUI Grounding

Visual
WebBench

Web
SRC

SQA
Short

Widget
Cap

VWB
Ele-G

VWB
Act-G SSpot RefExp

GPT-4V (OpenAI, 2023) 64.6 - - - 0.2 0 16.2 -
GPT-4o (OpenAI, 2024) - - - - - - 18.3 -
Gemini 1.5 Pro (Reid et al., 2024) 64.8 - - - - - - -

Pix2Struct (Lee et al., 2023) - - - 136.7∗ - - - -
S4 (Gao et al., 2024) - 61.1∗ - 130.6∗ - - - -
SeeClick (Cheng et al., 2024) 9.7 - - - - - 53.4 -
CogAgent (Hong et al., 2023) 28.7 - - - 29.3 36.6 47.4 -
ScreenAI (Baechler et al., 2024) - 87.2∗ 94.8∗ 156.4∗ - - - -

Trained with LLaVA-1.5 data

LLaVA-1.5-7B (Liu et al., 2023a) 17.0 30.9 42.6 20.0 0.7 0.0 0.6 0.4
LLaVA-1.5-13B (Liu et al., 2023a) 19.4 32.5 46.0 10.2 0.0 0.0 0.9 1.1
LLaVA-Vicuna† 23.1 41.5 53.0 38.4 0.0 0.0 1.3 1.2

Trained with LLaVA-1.5 data + MultiUI

UIX-Vicuna 71.1 69.5 73.9 66.5 55.5 26.7 44.7 35.8
∆ over LLaVA-Vicuna +48.0 +28.0 +20.9 +28.1 +55.5 +26.7 +43.4 +34.6

Trained with LLaVA-NeXT data

LLaVA-NeXT-7B (Liu et al., 2023a) 36.0 67.2 66.0 35.4 0.2 0.0 0.9 0.4
LLaVA-NeXT-13B (Liu et al., 2023a) 39.4 71.2 68.3 23.4 0.0 1.0 0.4 0.0
LLaVA-NeXT-34B (Liu et al., 2023a) 50.5 83.2 74.0 46.3 1.7 3.0 2.8 3.4
LLaVA-NeXT-8B (Liu et al., 2024b) 42.1 72.8 68.0 49.8 1.0 0.0 1.7 1.1
LLaVA-Llama3.1† (Liu et al., 2024b) 35.3 65.0 65.7 34.2 0.5 0.0 1.3 0.9
LLaVA-Qwen2† (Liu et al., 2024b) 41.7 72.5 68.6 38.0 1.2 0.0 1.3 1.9

Trained with MultiUI+ LLaVA-NeXT data

UIX-Llama3.1 74.2 75.3 72.7 55.6 16.2 11.9 22.2 17.9
∆ over LLaVA-Llama3.1 +38.9 +10.3 +7.0 +21.4 +16.2 +11.9 +20.9 +17.0
UIX-Qwen2-7B 75.9 82.9 78.8 72.7 66.1 35.6 55.2 43.5
∆ over LLaVA-Qwen2 +34.2 +10.4 +10.2 +34.7 +64.9 +35.6 +53.9 +41.6

Table 2: Results on GUI understanding and grounding benchmarks. ∗ indicates specific fine-
tuning on the corresponding training set. † denotes our re-implementation with the same backbone
model architecture of UIX.

significantly improves model performances over all three backbones (i.e., LLaVA-Vicuna, LLaVA-
Llama3.1, and LLaVA-Qwen2) as shown in light cyan rows. When training with LLaVA-1.5 data,
the performance improvements on the nine benchmarks are all above 20%, up to 55.5%. The corre-
sponding numbers training with LLaVA-1.6 data are 7.0% and 64.9%.

Superior Performance over Larger Models: In contrast, our UIX models, trained on the Mul-
tiUI dataset, demonstrate substantial performance improvements across GUI-related tasks. Despite
having a relatively modest parameter count of 7B/8B, our models outperform baselines with signifi-
cantly larger parameter counts, highlighting the efficacy of learning from text-rich web UI informa-
tion. For instance, on VisualWebBench, UIX-Qwen2 achieves the highest score (75.9), surpassing
all other MLLMs, including LLaVA-1.6-34B (50.5) and even GPT-4V (64.6).

Enhanced GUI Grounding Capability: Meanwhile, we observe that, compared with general fig-
ure grounding (Table 3), current MLLMs fail to handle grounding tasks in complex GUI scenarios.
Conversely, trained with MultiUI, which encompasses two web grounding tasks, UIX also demon-
strates enhanced GUI grounding capability.

4.2 RESULTS ON GUI AGENT TASKS

To further validate the effectiveness of the learned web UI knowledge, we evaluated UIX on
Mind2Web (Deng et al., 2023), a web navigation GUI agent task.

Following previous work (Cheng et al., 2024), we use step-level success rate and element accuracy
as the metrics. We include SeeClick (Cheng et al., 2024) and CogAgent (Hong et al., 2023) as
baselines, both of which are trained on Mind2Web training set. See more experimental details in
Appendix H.
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Model
General OCR / DocQA / ChartQA General Grounding

Doc
VQA

Chart
QA

Text
VQA

Info
VQA

Visual
MRC

OCR
Bench RefCOCO+

GPT-4V (OpenAI, 2023) 88.4 78.5 78 75.1 - 64.5 -
GPT-4o (OpenAI, 2024) 92.8 85.7 77.4 79.2 - 73.6 -
Gemini 1.5 Pro (Reid et al., 2024) 93.1 87.2 78.7 81.0 - - -
Claude-3.5 Sonnet 95.2 90.8 74.1 74.3 - - -

Pix2Struct (Lee et al., 2023) 76.6 58.6 - 40 - - -
S4 (Gao et al., 2024) - 55.0 - - - - -
CogAgent (Hong et al., 2023) 81.6 68.4 76.1 44.5 - - -
DocOwl-1.5-Chat (Hu et al., 2024a) 82.2 70.2 68.6 50.7 - - -
DocOwl2 (Hu et al., 2024b) 80.7 70 66.7 46.4 - - -

Trained with LLaVA-1.5 data

LLaVA-1.5-7B (Liu et al., 2023a) 28.1 18.1 46.0 25.8 35.3 31.3 50.0
LLaVA-1.5-13B (Liu et al., 2023a) 30.2 18.2 48.7 29.4 38.3 52.1 59.9
LLaVA-Vicuna† 46.1 21.2 59.6 31.9 39.7 38.1 61.7

Trained with MultiUI + LLaVA-1.5 data

UIX-Vicuna 72.8 24.2 67.0 41.6 43.3 53.4 65.7
∆ over LLaVA-Vicuna +26.7 +3.0 +7.4 +9.7 +3.6 +15.3 +4.0

Trained with LLaVA-NeXT data

LLaVA-NeXT-7B (Liu et al., 2023a) 74.4 54.8 64.8 37.0 33.3 52.1 77.0
LLaVA-NeXT-13B (Liu et al., 2023a) 77.5 62.4 67.0 41.5 35.9 55.0 80.8
LLaVA-NeXT-34B (Liu et al., 2023a) 83.9 68.6 69.4 51.3 37.9 57.2 84.8
LLaVA-NeXT-8B (Liu et al., 2024b) 78.2 69.2 65.3 37.6 29.3 55.2 79.5
LLaVA-Llama3.1† 74.7 66.5 64.3 35.7 46.8 54.0 74.8
LLaVA-Qwen2† 76.5 68.5 67.0 41.1 44.1 55.7 75.9

Trained with MultiUI + LLaVA-NeXT data

UIX-Llama3.1 78.0 66.9 65.1 44.2 49.7 58.6 71.7
∆ over LLaVA-Llama3.1 +3.3 +0.4 +0.8 +8.5 +2.9 +4.6 -3.1

UIX-Qwen2 85.3 74.0 72.7 52.2 49.1 66.3 79.1
∆ over LLaVA-Qwen2 +8.8 +5.5 +5.7 +11.1 +5.0 +10.6 +3.2

Table 3: Results on general OCR/Doc/Chart related QA and grounding benchmarks. Bold text
and underlined indicate the best-performing and the second-best models in each group, respectively.

Model
Mind2Web

Cross-Task Cross-Website Cross-Domain
Step SR Element Acc. Step SR Element Acc. Step SR Element Acc.

SeeClick (Cheng et al., 2024) 25.5† 28.3† 16.4† 21.4† 20.8† 23.2†

CogAgent (Hong et al., 2023) 26.9 30.2 23.4 27.3 28.5 33.1

LLaVA-Qwen2 - 7.5 - 7.6 - 10.4
UIX-Qwen2 - 13.5 - 9.8 - 13.8
LLaVA-Qwen2-M2W 20.4 24.3 14.3 20.1 16.4 20.0
UIX-Qwen2-M2W 38.2 43.4 31.0 39.2 34.9 40.4
∆ over LLaVA-Qwen2-M2W +17.8 +19.1 +16.7 +19.1 +18.5 +20.4

Table 4: Performance on a GUI agent task: Mind2Web. † indicates numbers taken from (Cheng
et al., 2024). -M2W means further fine-tuning models on the Mind2Web training set.

Superior Agent Performance compared with Larger Models: As shown in Table 4, training on
MultiUI improves our model’s performance by up to 19.1% in element accuracy. After further train-
ing on the Mind2Web training set, UIX-Qwen2-M2W outperforms other existing GUI agent models
significantly, surpassing both SeeClick and CogAgent in step success rate and element accuracy
across all three test subsets, while UIX(7B) is smaller than SeeClick(9.6B) and CogAgent(18B) in
model size.

4.3 RESULTS ON GENERAL DOCUMENT UNDERSTANDING AND GROUNDING TASKS

Generalization to OCR/Doc/Chart Benchmarks: As illustrated in Table 3, training on MultiUI
yields substantial improvements in out-of-domain OCR-related figure comprehension. Notably,
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UIX-Qwen2 outperforms both LLaVA-1.6-34B and DocOwl (Hu et al., 2024a;b), a model specif-
ically designed for document understanding, across all evaluated OCR-related benchmarks. This
success can be attributed to the diverse nature of MultiUI, which comprises an extensive collection
of webpage screenshots, inherently covering a wide spectrum of OCR-related and abstract figure
comprehension tasks.

Transfer between Grounding Tasks: Furthermore, the incorporation of web grounding instruc-
tion data during training demonstrates a significant enhancement in general grounding performance.
UIX-Vicuna exhibits an improvement of 4.0% on RefCOCO+, when compared to models trained
exclusively on general instruction data.

4.4 RESULTS ON GENERAL MULTIMODAL TASKS

Model MMMU MMBench VQA-V2

LLaVA-Llama3.1 38.8 72.0 80.0
UIX-Llama3.1 42.3 74.7 80.0

LLaVA-Qwen2 44.7 76.5 81.6
UIX-Qwen2 41.8 77.4 82.1

Table 5: Performance on other general multi-
modal benchmarks.

Robust General Multimodal Capabilities:
Here, we conduct an experiment to validate
the efficacy of our MultiUI in maintaining gen-
eral multimodal capabilities. As shown in Ta-
ble 5, our UIX model trained with the mix of
LLaVA data and MultiUI performs on par with
the counterparts trained with only general vi-
sual instruction data. This demonstrates that
our MultiUI dataset successfully enables mod-
els to acquire enhanced GUI knowledge alongside robust general multimodal capabilities simulta-
neously.

4.5 ABLATIONS

Two-stage training outperforms single-stage training We conducted a comparative experiment
to evaluate the effectiveness of the two-stage training mechanism (Section 4.5). As illustrated in
Figure 4 the two-stage strategy outperforms the single-stage approach in both GUI and general
scenarios. This result highlights the efficacy of the two-stage training strategy that achieves robust
GUI knowledge while preserving strong general multimodal understanding capabilities.

Model performance improves with more MultiUI data To assess the scaling effect, we con-
ducted an analysis by gradually increasing the volume of data in MultiUI and evaluating the aggre-
gated performance across the four task categories. As illustrated in Figure 5, performance across all
task categories generally improves as the data size increases. Specifically, GUI capabilities experi-
ence the most substantial improvements with increased data volume. GUI Grounding, in particular,
demonstrates a remarkable increase, rising dramatically from approximately 12% to 60%.

Different MultiUI tasks enhance unique abilities To study the impact of different task types in
MultiUI, we trained models with data in each individual task type and evaluated their performances.
Figure 6 highlights several key findings from this study. In particular, both QA and Caption sam-
ples enhance performance in GUI understanding and OCR-related benchmarks, while OCR samples
benefit most in GUI understanding. More detailed analysis can be found in Appendix I.
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5 RELATED WORK

Web-Based Multimodal Pre-training Dataset Collection Web can be utilized as a valuable re-
source for collecting multimodal data for MLLM training. For example, the LAION series (Schuh-
mann et al., 2021; 2022) harvesting billions of image-text pairs from CommonCrawl6 by extracting
images with their corresponding alt-text tags from HTML. MMC4 (Zhu et al., 2023) and OBELICS
(Laurençon et al., 2023) focus on an interleaved image-text format that can accommodate multiple
images within a single instance. However, we argue that these datasets do not make full use of web
UI information, since they cannot capture the rich layout information and diverse UI elements of
webpages. In this paper, we propose that the accessibility tree serves as a well-structured and in-
formative textual representation of a webpage, enabling powerful LLMs to be harnessed to generate
diverse multimodal instructional data that encompasses perception, understanding, reasoning, and
grounding capabilities.

Recently, there have also been some datasets focusing on pre-training on the rich structure infor-
mation of webpage, such as Pix2Struct (Lee et al., 2023) which involves parsing screenshots into
simplified HTML, and S4 (Gao et al., 2024) which focus collect multiple types training signals from
the web. However, these methods either fall short in a specific task type so must be followed by
further fine-tuning downstream tasks, or only focus on tasks in web scenarios and cannot easily
generalize to domains beyond web pages and HTML.

MLLMs for GUI-related Multimodal Tasks Graphical user interfaces (GUIs) serve as a pivotal
medium for human-computer interactions. Recently, MLLMs have made significant strides in UI
understanding, focusing on two key areas: information extraction from images and the development
of foundation models for UI tasks. For information extraction, deep learning-based Optical Char-
acter Recognition (OCR) has advanced text reading capabilities (Baek et al., 2019). Concurrently,
methods like Pix2Struct (Lee et al., 2023) and DocOwl (Hu et al., 2024a) have emerged for identify-
ing and localizing UI elements within screenshots. Building on these element extraction techniques,
several foundation models have demonstrated impressive UI comprehension abilities. Notable ex-
amples include ScreenAI (Baechler et al., 2024), CogAgent (Hong et al., 2023), and Ferret-UI (You
et al., 2024). These models can perform tasks such as element detection, captioning, and inter-
action prediction using only screenshot inputs, without relying on additional metadata like DOM
structures. Concurrently, UGround (Gou et al., 2024) proposes a strong universal visual ground-
ing model for GUI agents. Different from these existing works, we focus on leveraging structured
textual information from web UIs to enhance MLLMs’ text-rich visual understanding capabilities
across diverse domains. Our approach utilizes text-based LLMs to synthesize general multimodal
instructions from webpage accessibility trees, creating a large-scale dataset that improves model
performance not only on web UI tasks but also generalizes well to non-UI domains.

6 CONCLUSION

In this work, we tackled the challenge of improving text-rich visual understanding in MLLMs by
leveraging webpage UIs as a naturally structured and diverse data source. We introduced the dataset
MultiUI, which we demonstrated to significantly improves model across domains. Our experiments
also underscore the importance of structured web data as a training resource, which helps MLLMs
process and interact with text-rich visual environments more effectively.

6https://commoncrawl.org/
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tor Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language
model for ui and infographics understanding, 2024. URL https://arxiv.org/abs/
2402.04615.

Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwalsuk Lee. Char-
acter region awareness for text detection. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 9365–9374, 2019. URL
https://openaccess.thecvf.com/content_CVPR_2019/html/Baek_
Character_Region_Awareness_for_Text_Detection_CVPR_2019_paper.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen, and
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A SCREENSHOT CROPPING & ACCESSIBILITY TREE REFINEMENT

The original full-page webpage screenshots may be quite long (e.g., height is much larger than
width), to produce screenshots that are suitable to be input into an image-based model with image
size or resolution requirements, we crop the full-page screenshots. Because webpage screenshots
are typically structured vertically, horizontal cuts preserve the logical flow of text and sections.
Thus, we crop the screenshots horizontally by selecting a random height while keeping the width
fixed as the original one. Specifically, a height-width ratio is sampled from a uniform distribution
[min height width ratio, max height width ratio], where the ranges are [0.5, 1.5] and [1.5, 2.5]
for Windows 10 and iPhone 12 Pro, respectively. These ranges are determined by considering
screenshot sizes in existing GUI datasets (e.g., VisualWebBench, ScreenSpot).

Required by grounding tasks samples, which need element coordinates, we extend the accessibility
tree as used in Zhou et al. (2024) by adding the bounding boxes of each element into the original
accessibility tree. Figure 7 illustrates an example of the processed accessibility tree of a webpage.
The accessibility tree is comprised of several lines, each detailing a UI element. Each schema
includes: 1) The UI element ID, 2) The UI element type, 3) the text content (e.g., OCR text, icon
name), and 4) The bounding box coordinates.
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B EXAMPLE OF OUR PROCESSED ACCESSIBILITY TREE

[1] Root Element 'Masala chai madeleines with brown sugar 
and honey – 1001 Tea Facts' focused: True 

[6] navigation 'Primary' [0.0, 0.0, 1.0, 0.055] 
[62] link '1001 Tea Facts' [0.047, 0.012, 0.299, 0.055] 
[89] image '1001 Tea Facts' [0.047, 0.012, 0.299, 0.055] 
[92] link 'HOME' [0.299, 0.018, 0.378, 0.048] 
[93] link 'BLOG' [0.378, 0.018, 0.452, 0.048] 
[31] heading 'Masala chai madeleines with brown sugar 

and honey' [0.135, 0.082, 0.865, 0.127] 
[147] image 'Masala chai madeleines with brown sugar 

and honey' [0.031, 0.155, 0.625, 0.551] 
[118] HeaderAsNonLandmark ‘’ [0.031, 0.558, 0.625, 

0.684] 
[202] time '' [0.031, 0.559, 0.131, 0.576] 
[303] StaticText 'October 14, 2015' [0.031, 0.559, 0.131, 

0.576] 
[205] StaticText 'by ' [0.134, 0.559, 0.152, 0.576] 
[207] link 'David Kartuzinski' [0.152, 0.559, 0.263, 0.576] 
[309] StaticText '*' [0.031, 0.581, 0.039, 0.601] 
[310] StaticText 'Note: 1001teafacts.com contains paid 

advertising and contextual affiliate links where …

Webpage Processed Accessibility Tree

Figure 7: Example of processed accessibility tree. (Left) The webpage screenshot; (Right) The
corresponding accessibility tree. Each line represents an element in the webpage, formatted as
<element-id> <element-type> <embedded text> <bounding-box coordinates>
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C PROMPTS FOR TASK EXTRACTION

Prompt for Website Curation.
You are given a truncated accessibility tree of a webpage, which is derived by a crawling program:

{axtree}

You need to answer the following two questions: whether the crawl is successful (e.g., 403 forbidden, 502
bad gateway, blocked by Cloudflare, blank page, 404 not found are considered as unsuccessful etc. )? Does
the webpage contain some harmful content (e.g., adult content, gambling, violence, discrimination)

Your output only consists of two lines, each line is your final answer to one question. Only output ”YES” or
”NO” each line and do not generate any other content. Note that the truncation does not necessarily mean the
crawl is not successful.
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Prompt for Constructing Webpage Captioning Samples.
You are an AI visual assistant that can analyze a single screenshot of a webpage. You receive the meta
description extracted from its HTML content and the accessibility tree of the webpage.

The accessibility tree consists of several lines, each describing an UI element. Each schema contains: 1) The
UI element IDs, 2) The UI element types, 3) The OCR text (when applicable) or the element descriptions
(e.g. captioning, or the icon name), and 4) The bounding box coordinates [left, top, right, bottom], as [x1,
y1, x2, y2] with floating numbers ranging from 0 to 1. These values correspond to the left, top, right, and
bottom. Indentation are used to indicate the hierarchical structure between the elements.

Using the provided meta description and accessibility tree, describe the webpage in a detailed manner.

Instead of directly mentioning the bounding box coordinates, utilize this data to explain the webpage using
natural language. Include details like element counts of a specific UI element type, position of the UI
elements, relative position between the UI elements.

Important Notes about your caption:
(1) When using the information from the meta description and the accessibility tree, directly explain the
webpage, and do not mention that the information source is the meta description or the accessibility tree (e.g.,
”Based on the provided meta description and accessibility tree, I can describe the webpage as follows”).
(2) When you mention some text or paragraph, mention the summarized content instead of just saying ”there
are some news articles or text”.
(3) Every time when you want to express ”below”, ”right”, ”left”, ”following”, ”above” and other words
representing relative position, you must carefully compare the bounding coordinates of elements you want to
mention, because the orders within the accessibility tree do not mean the relative position, e,g, element ”A”
appearing after another element ”B” within the accessibility tree may be on top of the other element ”B”, in
term of bounding box coordinates.
(3) Every time when you want to express ”top”, ”right”, ”left”, ”bottom”, ”above” and other words
representing absolute position, you must determine its position based on the reference points: top left [0, 0,
0, 0], top right [1.0, 0, 1.0, 0], bottom left [0, 1.0, 0, 1.0], and bottom right [1.0, 1.0, 1.0, 1.0].
(4) No need to discuss overall design, e.g., ”The overall layout is clean and organized, with clear headings
and concise text”).
(5) You cannot say there are no images on the page.
(6) Do not mention line breaks and separator line.
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Prompt for constructing Webpage QA Samples.
You are given the following webpage, describe in words. Follow the following guidance to think step by step
before generating five questions and their answers.

(Webpage Mete Description) The meta description of the current web page is ”description”. Based on both
the web page description and your understanding, think carefully what the website can be used to do.

(Webpage Accessibility Tree) You are given the following accessibility tree, Each schema contains: 1) The
UI element IDs, 2) The UI element types, 3) The OCR text (when applicable) or The element descriptions
(e.g. captioning, or the icon name), 4) The bounding box coordinates [left, top, right, bottom], as [x1, y1, x2,
y2] with floating numbers ranging from 0 to 1. These values correspond to the left, top, right, and bottom.
Indentation are used to indicate the hierarchical structure between the elements.
Note: The appearing orders of elements in the accessibility tree do not represent their relative vertical
positions. For instance, even if element ”A” comes after element ”B” in the accessibility tree, it might still
appear above element ”B” based on their bounding box coordinates (y1, y2 of ”A” values are smaller than
those of ”B”, so ”A” is above ”B” vertically). You must determine their vertical positions by carefully
comparing their y1, y2 coordinates instead of infering their positions based on the orders within the
accessibility tree. axtree

(Potential Questions) Some example questions on other websites are shown below for your reference.
{question demo}

(Answers) For each question, you should generate two kinds of answers: short answer and detailed answer.
Ask questions whose short answers consist of fewer than 10 words, and the answer should be as short as
possible.
The detailed answer consists of thinking or reasoning process of obtaining the final answer and should be as
detailed as possible. (Notes)
1) Your questions should be as hard as possible, and need deep understanding about the webpage and
reasoning ability.
2) You must ask objective questions, not subjective ones.
3) Your questions should be as diverse as possible.
4) Do not mention in answers that you answer questions based on accessbility tree, instead, answer as if you
are seeing the webpage screenshot.
5) The given meta description is only for your better understanding about the webpage, so you should never
ask any questions specific to the meta description.
6) You can only generate questions that can be answered immediately based on the current webpage, do not
ask those that need your background knowledge.
7) You should never ask questions about the advertisements or the whether-accept-cookie-or-not section of
the webpage, if any.
8) Do not user element IDs to refer an element.
9) Do not ask questions that you cannot answer based on the given webpage accessibility tree.
10) Do not ask any questions about the main heading of the webpage, like ”what is the title of the webpage?
”, ”What is the title of the main heading? ”.

(Final Output) Your output should be several lines of json with each line being an question-answer pair, and
do not generate any other content. You only speak JSON. Do not write text that isn’t JSON.

{{“question”: <the question content, string data type enclosed in double quotes>, “answer”: <short answer,
string data type enclosed in double quotes>, “detailed answer”: <detailed answer, string data type enclosed
in double quotes>}}

21



Published as a conference paper at ICLR 2025

Prompt for constructing Embedded Image QA Samples.
(Caption)
[The start of the caption]
{caption}
[The end of the caption]

(Potential Questions)
Some example questions on other websites are shown below for your reference.
{question demo}

(Answers)
For each question, you should generate two kinds of answers: short answer and detailed answer. Ask
questions whose short answers consist of fewer than 10 words, and the answer should be as short as possible.
The detailed answer consists of thinking or reasoning process of obtaining the final answer and should be as
detailed as possible.

(Notes)
1) Your questions should be as hard as possible, and need deep understanding about the webpage and
reasoning ability.
2) You must ask objective questions, not subjective ones. 3) Your questions should be as diverse as possible.
4) Do not mention in answers that you answer questions based on the caption, instead, answer as if you are
seeing the webpage screenshot.
5) You can only generate questions that can be answered immediately based on the current webpage, do not
ask those that need your background knowledge.
6) You should never ask questions about the advertisements or the whether-accept-cookie-or-not section of
the webpage, if any.
7) Do not ask questions that you cannot answer based on the caption.
8) Do not ask any questions about the main heading of the webpage, like ”what is the title of the webpage?
”, ”What is the title of the main heading? ”.

(Final Output)
Your output should be several lines of json with each line being an question-answer pair, and do not generate
any other content. You only speak JSON. Do not write text that isn’t JSON.
{{“question”: <the question content, string data type enclosed in double quotes>, “answer”: <short answer,
string data type enclosed in double quotes>, “detailed answer”: <detailed answer, string data type enclosed
in double quotes>}}
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Prompt for constructing Action Grounding Samples.
The screenshot below shows the webpage you see. Follow the following guidance to think step by step
before generating several executable instructions on it.

(Webpage Mete Description)
The meta description of the current web page is “{description}”. Based on both the web page description
and your understanding, think carefully what the website can be used to do.

(Webpage Accessibility Tree)
You are given the following accessibility tree, Each schema contains: 1) The UI element IDs, 2) The UI
element types, 3) The OCR text (when applicable) or The element descriptions (e.g. captioning, or the icon
name), 4) The bounding box coordinates (left, top, right, bottom), quantized and normalized between 0 and
999.
Indentation are used to indicate the hierarchical structure between the elements.
{axtree}

(Potential Instructions and Target Bounding Boxes)
Think what instructions would be taked by human to the above interactive elements on the current webpage.
Describe the instruction (i.e., action description) using natural expression, and output the corresponding
bounding box (exactly same as in the accessibility tree). Some example instructions on other websites are
shown below.
1) search in the forum
2) go to personal homepage
3) create a new issus
4) view orders
5) zoom in the map
6) check my postbox
Notes:
1) The instructions above are only for reference and the generated instructions must be executable on the
current web page and as diverse as possible.
2) Do not generate action description about accepting or decline cookie policy
3) Because the generated action descriptions are used to test the capability of other multi-modal models,
your action description should not be too detailed and simple, even include the detailed position of the target
element. E.g., click the red log-in button at bottom-right side
4) Your generated action description / instruction must only correspond to one element within the screenshot,
in order not to lead to ambiguous answers.
5) Your generated action description / instruction must corresponds to a interactive element within the
screenshot, e.g., button, input field, link, etc, instead of those not interactive, e.g., StaticText.
6) Do not user element IDs to refer an element.
7) Do not generate instructions targeted on the root element named “Root Element”.

(Final Answer)
Finally, conclude your answer with the format below strictly, comprising one to five single-step executable
instructions / action descriptions on the current webpage. Note that you can output a line whose content is
“Invalid]” if you find no proper instructions can be generated and you don’t have to force yourself to generate
one. Your answer should be several lines of json or a line with “[Invalid]”, and do not generate any other
content. You only speak JSON. Do not write text that isn’t JSON.
Output format:
{{“instruction”: <the action description / instruction, string data type enclosed in double quotes>, “bbox”:
<the corresponding bounding box coordinate copy in the accessibility tree, list of integers>}}
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D EXAMPLE TRAINING DATA BY TASK

Webpage Captioning

Prompt: Describe all the visual and textual components of the webpage comprehensively.

Response: The webpage appears to be a product or
company page, with a prominent logo displayed at the
top left corner, repeated five times. Below the logo,
there is a navigation menu with seven links:
"PRODUCTS", "ABOUT US", "CLIENTS", "NEWS
& BLOG", "CLIENT LOGIN", and "English", which
has a small flag icon next to it. These links are
positioned horizontally, taking up most of the top
section of the page. In the middle of the page, there is
a large heading that reads "AI Driven Data for Market

Leading Intelligence", followed by a subheading that explains how the company, dataxet:nama, helps
customers compete in the media marketplace by reimagining monitoring and listening data. This text is
centered on the page and takes up a significant amount of vertical space. There is no prominent image or
graphic on the page, aside from the logo and the small flag icon next to the "English" link. The overall
layout is focused on presenting the company's message and navigation options.

Figure 8: Example of training data for webpage captioning.

Embedded Image Captioning

Prompt: Give an in-depth description of the picture inside the red marked area.

Response: The image depicts a stunning, gothic-style
chapel, likely King’s College Chapel at the University
of Cambridge, illuminated during the night. The chapel
stands tall with its intricate stone architecture, large
pointed windows, and spires reaching towards a sky
filled with textured clouds, dramatically lit by the
moon. The moonlight and artificial lighting create a
serene yet slightly eerie ambiance. The foreground is
dominated by a grassy field and trees, which frame the
structure and add to the overall picturesque and timeless
feel of the scene.

Figure 9: Example of training data for embedded image captioning.
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Webpage QA

Prompt: What is the name of the
company that designed the website?
Look at the screenshot and respond
with one word or a short phrase.

Response: makcad design 

Figure 10: Example of training data for webpage QA.

Embedded Image QA
Prompt: What is the phone number for customer inquiries? Using the image as a reference,
give an elaborate response to the question.

Response: The phone number '1-866-ONEWEST' is provided at the bottom of the
advertisement for customers to contact for inquiries or support. 

Figure 11: Example of training data for embedded image QA.

Action Prediction
Prompt: Consider the screenshot of a webpage with a
red bounding box and select the webpage description that
best describes the new page that appears after clicking
the element inside the red box. Here are the candidates:
A. Make it with idleWilde - Quality custom apparel
solutions for businesses
B. Our Work - idleWilde Printing Co.
C. Make it with idleWilde - Custom Screen Printing &
Embroidery
D. Contact Us - idleWilde Printing Co.
E. Get A Quote - idleWilde Printing Co.
F. Ordering - idleWilde Printing Co.
G. Make it with idleWilde - Custom Screen Printing -
Screen Printed T-Shirts
H. idleWilde Printing Co. - Custom T-Shirts Apparel -
Screen Printing

Response: B

Figure 12: Example of training data for action prediction.
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Element OCR
Prompt: Analyze the screenshot of the webpage and extract the text from the UI element
that is inside the red bounding box.

Response: Quigley said "201ceach
and every ticket holder will be
offered reseating options and
should contact their original point
of purchase for further details".

Figure 13: Example of training data for element OCR.

Heading OCR

Prompt: Please locate and retrieve the main
header text of the webpage.

Response: Making Business Fun

Figure 14: Example of training data for heading OCR.

Element Grounding
Prompt: Based on the element
description: "A5 Sportback", identify the
UI element and provide its bounding box
coordinates. Use four float numbers
between 0 and 1, [left, top, right,
bottom].

Response: [0.706, 0.643, 0.781, 0.657]

Figure 15: Example of training data for element grounding.

Action Grounding

Prompt: Determine the bounding box
coordinates of the clickable region to
execute the instruction: "Read the latest
news". The coordinates should be four
float numbers between 0 and 1, denoted as
[left, top, right, bottom].

Response: [0.706, 0.643, 0.781, 0.657]

Figure 16: Example of training data for action grounding.
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E TRAINING SETUP

To leverage the high-resolution images collected in Section 2, we adopted a dynamic high-resolution
strategy inspired by LLaVA-NeXT (Liu et al., 2024b). The process involves dividing the input im-
age into patches matching the vision encoder’s original resolution, encoding these patches indepen-
dently, and combining them into a single feature map. We also incorporate a downsampled version
of the entire image to provide global context. This combined representation is then processed by the
LLM, which allows us to scale the input to arbitrary resolutions while maintaining data efficiency.

Model LLM Vision Encoder Max Res. Training Data
UIX-Vicuna Vicuna-7B-v1.5 CLIP 672× 672 LLaVA 1.5 + MultiUI
UIX-Llama3.1 Llama-3.1-8B-Instruct CLIP 672× 672 LLaVA NeXT + MultiUI
UIX-Qwen2 Qwen2-7B-Instruct Siglip 768× 768 LLaVA NeXT + MultiUI

Table 6: Details of three models developed in this paper.
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F DETAILS OF EVALUATED BENCHMARKS

GUI Understanding Benchmarks

• VisualWebBench (Liu et al., 2024c) is a multimodal benchmark specifically designed to evaluate
the performance of Multimodal Large Language Models (MLLMs) in web-related tasks. Un-
like existing benchmarks, it focuses on capturing the unique aspects of web pages and measures
fine-grained abilities such as OCR, understanding, and grounding, providing a comprehensive
evaluation of MLLMs in the web domain.

• WebSRC (Chen et al., 2021) is designed to evaluate models on structural reading comprehen-
sion tasks involving web pages, where both text understanding and structural comprehension are
required.

• ScreenQA (Hsiao et al., 2022) bridges the gap between component-level and high-level task un-
derstanding in mobile app screen content. By annotating 86K question-answer pairs over the
RICO dataset, this benchmark offers a comprehensive evaluation of screen reading comprehen-
sion in various application scenarios.

• WidgetCap (Li et al., 2020) evaluates the ability to generate natural language descriptions for
mobile UI elements, a task critical for accessibility and enhancing language-based interaction.

GUI Grounding

• ScreenSpot (Cheng et al., 2024) serves as a comprehensive GUI grounding benchmark, covering
mobile, desktop, and web environments. By encompassing multiple device types, it enables a
thorough assessment of cross-platform GUI grounding capabilities.

• RefExp (Bai et al., 2021) is designed to assess the model’s ability to predict the UI component
referred to by a natural language expression, given an app screenshot. In order to simulate a more
realistic scenario, we evaluate models under the setting of predicting coordinates directly instead
of retrieving a component from a set of candidate components.

GUI Agent Benchmark

• Mind2Web (Deng et al., 2023) is the first dataset for training and evaluating generalist web agents
to perform complex tasks on real-world websites. It includes over 2,000 tasks from 137 websites
across 31 domains, offering diverse interactions for building robust web agents.

General OCR / DocQA / ChartQA Benchmarks

• DocVQA (Mathew et al., 2021) is a benchmark for evaluating models’ ability to answer questions
based on document images. This dataset challenges models to comprehend and extract relevant
information from diverse document formats such as letters, forms, and reports.

• ChartVQA (Masry et al., 2022) presents a unique evaluation scenario where models are tested on
their ability to answer complex reasoning questions about data visualized in charts. This bench-
mark is crucial for evaluating a model’s capability to perform logical and arithmetic operations,
as well as to reference visual features within the charts.

• TextVQA (Singh et al., 2019) focuses on questions that require reading and understanding text
within images. It evaluates a model’s ability to handle text-based reasoning, which is essential for
tasks involving visually impaired users and real-world scenarios.

• InfoVQA (Mathew et al., 2022) focuses on the automatic understanding of infographic images
through Visual Question Answering (VQA). This benchmark requires models to integrate rea-
soning over textual content, graphical elements, and data visualizations, which emphasizes both
elementary reasoning and arithmetic skills.

• VisualMRC (Tanaka et al., 2021) focuses on evaluating the machine’s ability to comprehend the
visual layout and textual content within document images to answer questions. It requires a model
to be able to read and reason about multiple pieces of text and non-text data in images and to
generate abstractive answers.
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• OCRBench (Liu et al., 2023c) encompasses 29 datasets and enables a thorough assessment across
a wide range of text-related visual tasks, such as Text Recognition, Scene Text-Centric Visual
Question Answering, Document-Oriented VQA, Key Information Extraction, and Handwritten
Mathematical Expression Recognition.

General-domain Tasks

• MMMU (Yue et al., 2024a) is a comprehensive benchmark designed to assess multimodal models
on complex, college-level tasks across six core disciplines, including Art & Design, Business,
Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering.

• MMBench (Liu et al., 2023b) is a bilingual benchmark for evaluating the multimodal capabilities
of large vision-language models (VLMs). It features a diverse set of carefully crafted evaluation
questions and employs rigorous quality control measures, enabling precise assessments of model
performance in both English and Chinese contexts.

• VQAv2 (Goyal et al., 2017) introduces a balanced dataset that pairs each question with two similar
images leading to different answers. The findings show that state-of-the-art VQA models struggle
with this dataset, underscoring the need for models to better utilize visual information rather than
relying on language priors.

• RefCOCO+ (Yu et al., 2016) focuses on generating and comprehending natural language referring
expressions for objects in images, particularly by improving the use of visual context.
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G EVALUATION DETAILS AND FULL RESULTS

In this section, we describe the evaluation details and present the full experimental results of both
baselines and our UIX models.

We employ LMMs-Eval (Zhang et al., 2024) for all evaluations except for VisualWebBench, for
which we use official evaluation code7. The 7 shows the employed evaluation metrics for bench-
marks. Table 8 and Table 9 show results of baselines and our UIX models.

Benchmarks Metric Split
VisualWebBench Aggregated Score test
WebSRC SQuAD-F1 validation
ScreenQA-short SQuAD-F1 test
WidgetCap CIDEr test
Element Ground (VWB) Accuracy (IoU>0.5) test
Action Ground (VWB) Accuracy (IoU>0.5) test
ScreenSpot Accuracy (IoU>0.5) test
RefExp Accuracy (IoU>0.5) test
DocVQA ANLS validation
ChartQA Relaxed Accuracy test
TextVQA Exact Match validation
InfoVQA ANLS validation
VisualMRC ROUGE-L test
OCRBench Accuracy (%) test
RefCOCO+ (REC) Accuracy (IoU>0.5) validation

Table 7: Evaluation metrics for all benchmarks.

LLaVA-
1.5-7B

LLaVA-
1.5-13B

LLaVA-
1.6-7B

LLaVA-
1.6-13B

LLaVA-
1.6-34B

LLaVA-
NeXT-8B

VisualWebBench 17.0 19.4 36.0 39.4 50.5 42.1
WebSRC 30.9 32.5 67.2 71.2 83.2 72.8
ScreenQA-short 42.6 46 66 68.3 74 68
WidgetCap 20 10.2 35.4 23.4 46.3 49.8
Element Ground (VWB) 0.73 0 0.24 0 1.7 0.97
Action Ground (VWB) 0 0 0 0.99 3 0
ScreenSpot 0.6 0.9 0.9 0.4 2.8 1.7
RefExp 0.4 1.1 0.4 0 3.4 1.1
DocVQA 28.1 30.2 74.4 77.5 83.9 78.2
ChartQA 18.1 18.2 54.8 62.4 68.6 69.2
TextVQA 46 48.7 64.8 67 69.4 65.3
InfoVQA 25.8 29.4 37 41.5 51.3 37.6
VisualMRC 35.3 38.3 33.3 35.9 37.9 29.3
OCRBench 31.3 33.6 52.1 55 57.2 55.2
RefCOCO+ 50 59.9 77 80.8 84.8 79.5
MMMU 36.3 35.4 36.3 35 49.3 40.3
MMBench 64.2 68.5 67.1 69.2 78.1 72.2
VQAv2 76.1 77.8 79.9 80.6 81.8 80.7

Table 8: Full experimental results of baselines.

7https://github.com/VisualWebBench/VisualWebBench
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LLaVA-
Vicuna

UIX-
Vicuna

LLaVA-
Llama3.1

UIX-
Llama3.1

LLaVA-
Qwen2

UIX-
Qwen2

VisualWebBench 23.1 71.1 35.3 74.2 41.7 75.9
WebSRC 41.5 69.5 65.0 75.3 72.5 82.9
ScreenQA-short 53.0 73.9 65.7 72.7 68.6 78.8
WidgetCap 38.4 66.5 34.2 55.6 38.0 72.7
Element Ground (VWB) 0.0 55.5 0.5 16.7 1.2 66.1
Action Ground (VWB) 0.0 26.7 0.0 11.9 0.0 35.6
ScreenSpot 1.3 44.7 1.3 22.2 1.3 55.2
RefExp 1.2 35.8 0.9 17.9 1.9 43.5
DocVQA 46.1 72.8 74.7 78.0 76.5 85.3
ChartQA 21.2 24.2 66.5 66.9 68.5 74.0
TextVQA 59.6 67.0 64.3 65.1 67.0 72.7
InfoVQA 31.9 41.6 35.7 44.2 41.1 52.2
VisualMRC 39.7 43.3 46.8 49.7 44.1 49.1
OCRBench 38.1 53.4 54.0 58.6 55.7 66.3
RefCOCO+ 61.7 65.7 74.8 71.7 75.9 79.1
MMMU 34.7 33.6 38.8 42.3 44.7 41.8
MMBench 66.1 66.9 72.0 74.7 76.5 77.4
VQAv2 78.5 79.8 80.0 80.0 81.6 82.1

Table 9: Full experimental results of our models compared to three different backbones.
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H MIND2WEB EXPERIMENT DETAILS

In the experiments on Mind2Web, we give the models a raw screenshot, a task description, and
previous actions as inputs. Models are then prompted to directly predict the next action.

Screenshots from Mind2Web’s original observation capture the entire page, which can go as long as
over 8:1 in height-to-width ratio. Observations of this length disconnect from human observations.
Similar to SeeClick (Cheng et al., 2024), we randomly crop around the ground truth element, with a
random window size at least as big as those used in SeeClick.

We evaluated CogAgent-Chat in the same setting as a baseline, as CogAgent-Chat is the recom-
mended version of CogAgent for agent application. We used the exact prompt in Hong et al. (2023)
that is used for agent operation with grounding. To translate model output into GUI action, we con-
vert the model’s predicted bounding box into a point of operation on the web page by taking the
center point of the bounding box. Here is an example prompt we used:

Prompt example for CogAgent
What’s the proper procedure for “Add to cart one Private Vehicle Pass for Yosemite National Park for April
30, for License Plate number 12345 and Zip Code 94587
Previous Actions:
[div] All About Passes -> CLICK
[input] -> TYPE: Yosemite
[link] Yosemite National Park id: 74296 -> CLICK
[img] 0 Private Vehicle Pass -> CLICK
[textbox] Zip Code(Required) -> TYPE: 94587 ”
(with grounding).
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I ABLATION ON TASK TYPES

The tasks defined in Section 2 are categorized into QA, Caption, OCR, and Grounding. To eval-
uate the impact of different types of training samples on downstream performance, we conducted
a comprehensive ablation study. For instance, we trained a captioning model using a combination
of Caption samples from the MultiUI dataset and LLaVA data, and analyzed its performance on
various downstream benchmarks. Figure 6 presents the results of this study, highlighting several
key findings. Specifically, both QA and Caption samples significantly enhance performance in GUI
understanding (VisualWebBench) and OCR-related benchmarks (DocVQA), while OCR samples
primarily benefit tasks in GUI understanding (VisualWebBench) that require basic text recognition.
Notably, relying solely on grounding samples derived from web data can adversely affect perfor-
mance on the RefCOCO+ benchmark, as it involves natural scene images rather than webpage-like
images. Overall, incorporating all sample types yields the most balanced performance across all
four benchmark categories.
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J PROMPT VARIATION

To improve the generalizability of the generated conversation samples, we diversify the instruction
templates for each task. First, we create a detailed task description and initial example templates.
Then, using GPT-4o, we generate 200 varied prompt templates based on the task descriptions and
human-provided demonstrations.
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K COMPARISON WITH OTHER DATASETS

Datasets Task Types #Samples
SeeClick Grounding, Captioning 1M
Ferret-UI QA, Grounding, Captioning 841K
Mind2Web Web agent 2K
MultiUI QA, OCR, Grounding, Captioning, Action Prediction 7.3M

Table 10: Comparision among GUI-related datasets.
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