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Abstract

We analytically investigate how overparameterization of models in randomized1

machine learning algorithms impacts the information leakage about their training2

data. Specifically, we prove a privacy bound for the KL divergence between model3

distributions on worst-case neighboring datasets, and explore its dependence on4

the initialization, width, and depth of fully connected neural networks. We find5

that this KL privacy bound is largely determined by the expected squared gradient6

norm relative to model parameters during training. Notably, for the special setting7

of linearized network, our analysis indicates that the squared gradient norm (and8

therefore the escalation of privacy loss) is tied directly to the per-layer variance of9

the initialization distribution. By using this analysis, we demonstrate that privacy10

bound improves with increasing depth under certain initializations (LeCun and11

Xavier), while degrades with increasing depth under other initializations (He and12

NTK). Our work reveals a complex interplay between privacy and depth that13

depends on the chosen initialization distribution. We further prove excess empirical14

risk bounds under a fixed KL privacy budget, and show that the interplay between15

privacy utility trade-off and depth is similarly affected by the initialization.16

1 Introduction17

Deep neural networks (DNNs) in the over-parameterized regime (i.e., more parameters than data)18

perform well in practice but the model predictions can easily leak private information about the19

training data under inference attacks such as membership inference attacks [38] and reconstruction20

attacks. [14, 5, 23] This leakage can be mathematically measured in terms of how much the algorithm’s21

output distribution changes if it were trained on a neighboring dataset (that only differs in one record),22

following the differential privacy (DP) framework [18].23

To train differential private model, a typical way is randomize each gradient update in neural networks24

training, e.g., stochastic gradient descent (SGD), which leads to the most widely applied differentially25

private training algorithm in the literature – DP-SGD [1]. In each step, DP-SGD employs gradient26

clipping and adds calibrated Gaussian noise, and thus it comes with a differential privacy guarantee27

that scales with the noise multiplier (i.e., per-dimensional Gaussian noise standard deviation divided28

by the clipping threshold) and number of training epochs. However, this privacy bound [1] is overly29

general due to its independence on the network properties (e.g., width and depth) and training schemes30

(e.g., initializations). Accordingly, a natural question arises in the community:31

How does overparameterization (e.g., increasing width and depth) of neural networks affect the32

(worst-case) privacy bound of the training algorithm?33
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Table 1: Our results for the privacy utility trade-off of training linearized network (3) via Langevin
diffusion, under different width m, depth L and initializations. We set per-layer width m0 =
d, m1, · · · ,mL−1 = m and mL = o. We prove privacy bound in KL divergence, and obtain
excess empirical risk bounds given KL privacy budget ε. For the excess risk bounds, we assume
the network width m = Ω(n) is sufficiently large, and the data and network satisfy regularity
assumption Assumption 2.1. For NTK, He and LeCun initialization, we observe that the privacy
utility trade-off improves with overparameterization (increasing depth).

Init Variance βl

for layer l
Gradient norm
constant B (9)

Approximate lazy
training distance

R̃ (12)

Excess Empirical risk
under KL privacy bound ε

(Corollary 5.4)
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m )
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)
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2m

2L−1(1+ d
m )(1+ o

m )
- -

- The Xavier initialization makes neural networks fall into non-lazy training regime [31], so we do not
include the lazy training distance nor privacy-utility trade-off analysis here.

To answer this question, we would need new algorithmic framework and (or) new privacy analyses.34

In this paper, we focus on analyzing privacy for the Langevin diffusion algorithm 1. This is to avoid35

artificially setting a sensitivity constraint on the gradient update and thus making the privacy bound36

insensitive to the network overparameterization (as in DP-SGD analysis). Instead, we prove a KL37

privacy bound for Langevin diffusion that scales with the expected gradient difference between the38

training on any two worst-case neighboring datasets (Theorem 3.1). 2 By proving precise upper39

bounds on the expected ℓ2-norm of this gradient difference, we obtain KL privacy bounds for fully40

connected neural network (Lemma 3.2) and its linearized variant (Corollary 4.2) that changes with41

the network width, depth and per-layer variance for the initialization distribution. We summarized42

the details of our KL privacy bounds in Table 1, and highlight our key observations below.43

• Width always worsen privacy, under all the considered initialization distributions. Mean-44

while, the interplay between network depth and privacy is much more complex and crucially45

depends on what initialization distribution is used and how long the training time is.46

• Specifically, when the initialization distribution has small per-layer variance (such as Le-47

Cun and Xavier initialization), our KL privacy bound for training fully connected network48

(with a small amount of time) and for training linearized network (with finite time) de-49

cay exponentially with increasing depth, as long as the depth is large enough. To the50

best of our knowledge, this is the first time that an improvement of privacy bound under51

overparameterization is observed for randomized training algorithm.52

To further understand how the privacy utility trade-off is affected by overparameterization, we also53

analyze the excess empirical risk and excess population risk of training linearized network using54

Langevin diffusion. Our risk bounds scale with the lazy training distance R (i.e., how close is the55

initialization vector to an optimal solution for the empirical risk minimization problem), as well56

as a constant B for expected gradient norm in Langevin diffusion. By analyzing these two terms57

precisely under overparameterization, we prove that given any fixed KL privacy budget ε, our risk58

bounds strictly improves with increasing depth and width for linearized network under LeCun and He59

initialization. To our best knowledge, this is the first time that such a gain in privacy-utility trade-off60

1A key difference between this paper and existing privacy utility analysis of Langevin diffusion [21] is that
we analyze in the absence of gradient clipping or Lipschitz assumption on loss function. Our results also readily
extend to discretized noisy GD with constant step-size (as discussed in Appendix E).

2We focus on KL privacy loss because it is a more relaxed distinguishability notion than standard (ε, δ)-DP,
and therefore could be upper bounded even without gradient clipping. Moreover, KL divergence enables upper
bound for the advantage (relative success) of various inference attacks, as studied in recent works [32, 22].
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due to overparameterization (increasing depth) is shown. Meanwhile, prior results only prove (nearly)61

dimension-independent privacy utility trade-off for such linear models in the literature [39, 26, 30].62

Our improvement demonstrates the unique benefits of our new KL privacy analysis in understanding63

the effect of overparameterization.64

1.1 Related Works65

Overparameterization in DNNs and NTK. Theoretical demonstration on the benefit of over-66

parameterization in DNNs occurs in global convergence [2, 17], generalization [3, 13]. Under67

proper initialization, the training dynamics of over-parameterized DNNs can be described by a kernel68

function, termed as neural tangent kernel (NTK) [25], which stimulates a series of analysis in DNNs.69

Accordingly, over-parameterization has been demonstrated to be beneficial/harmful to several topics70

in deep learning, e.g., robustness [12, 47], covariate shift [44]. However, the relationship between71

overparameterization and privacy (based on the differential privacy framework) remains largely an72

unsolved problem, as the training dynamics typically change [11] after adding new components in73

the privacy-preserving learning algorithm (such as DP-SGD [1]) to enforce privacy constraints.74

Membership inference privacy risk under overparameterization. A recent line of works [42, 43]75

investigates how overparameterization affects the theoretical and empirical privacy in terms of76

membership inference advantage, and proves novel trade-off between privacy and generalization error.77

These are the closest works in the literature to our objective of investigating the interplay between78

privacy and overparameterization. However, Tan et al. [42, 43] focus on proving upper bounds for79

an average-case privacy risk defined by the advantage (relative success) of membership inference80

attack on models trained from randomly sampled training dataset from a population distribution. By81

contrast, our KL privacy bound is heavily based on the strongest adversary model in the differential82

privacy definition, and holds under an arbitrary worst-case pair of neighboring datasets that only83

differ in one record. Our setting for model (fully connected network) is also very different from that84

considered in Tan et al. [42, 43], thus requiring very different analysis tools.85

Differentially private learning in high dimension. Standard results for private empirical risk86

minimization [6, 41] and private stochastic convex optimization [7, 9, 4] under ℓ1 and ℓ2 constraints87

suggest that there is an unavoidable factor d in the empirical risk and population risk that depends88

on the model dimension. However, for unconstrained optimization, it is possible to go across the89

dimension-dependency in proving risk bounds for certain class of problems (such as generalized90

linear model [39]). Recently, there is a growing line of works that prove dimension-independent91

excess risk bounds for differentially private learning, by utilizing the low-rank structure of data92

features [39] or gradient matrices [26, 30] in training. Several follow-up works [27, 10] further93

explore techniques to enforce the low-rank property (via random projection) and boost privacy utility94

trade-off. However, all the works focus on investigating a general high-dimensional problem for95

private learning, rather than separating the study for different network choices such as structure,96

width, depth and initializaiton. On the contrary, our study focus on the fully connected neural network97

and its linearized variant, which enables us to prove more precise privacy utility trade-off bounds for98

these particular networks under overparameterization.99

2 Problem and Methodology100

We consider the following standard multi-class supervised learning setting. Let D = (z1, · · · , zn) be101

a finite input dataset of size n, where each input data record zi = (xi,yi) contains a d-dimensional102

input feature vector xi ∈ Rd and a label vector yi ∈ Y = {0, 1}o on o possible classes. The goal103

of learning is to learn a neural network output function fW (·) : X → Y parameterized by W that104

achieves high prediction performance on the training dataset D. Formally, we consider the learning105

objective to be the empirical risk defined as follows.106

min
W

L(W ;D) :=
1

n

n∑
i=1

ℓ(fW (xi);yi) , (1)

where ℓ(fW (xi);yi) is a loss function that reflects the approximation quality of model predic-107

tion fW (xi) compared to the ground truth label yi. For simplicity, we assume that the cross-108
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entropy loss is used, i.e., ℓ(fW (x);y) = −⟨y, log softmax(fW (x))⟩ for multi-output network, and109

ℓ(fW (x);y) = log(1 + exp(−yfW (x)) for single-output network.110

Network. We focus on the multi-output, fully connected, deep neural network (DNN) with ReLU111

activation with depth L (i.e., L − 1 hidden layers). Denote the width of each hidden layer with112

m1, · · · ,mL−1. The output function fW (x) := hL(x) is defined recursively as follows.113

h0(x) = x; hl(x) = ϕ(Wlx) for l = 1, · · · , L− 1; hL(x) = WLhL−1(x) (2)
where hl(x) denotes the output after activation at the l-th layer, the parameter matrices of each layer of114

the neural network satisfy W1 ∈ Rm1×d, Wl ∈ Rml×ml−1 , l = 2, . . . , L− 1 and WL ∈ Ro×mL−1 .115

The model parameter W := (Vec(W1), . . . ,Vec(WL)) ∈ Rm1·d+m2·m1+···+o·mL−1 consists of116

concatenation of vectorizations for parameters of all the layers. For consistency, we also denote117

m0 = d and mL = o.118

We also analyze the following linearized network, which is used in prior works [28, 2, 34] as an119

important tool to (approximately and qualitatively) analyze the training dynamics of deep neural120

networks. More formally, the linearized network f lin,0
W (x) is a first-order Taylor expansion of the121

fully connected ReLU network at initialization parameter W lin
0 , as follows.122

f lin,0
W (x) ≡ fW lin

0
(x) +

∂fW (x)

∂W

∣∣∣
W=W lin

0

(
W −W lin

0

)
, (3)

where fW lin
0

(x) is the output function of the fully connected ReLU network (2) at initialization W lin
0 .123

We denote Llin
0 (W ;D) =

∑n
i=1 ℓ

(
fW lin

0
(xi) +

∂fW (x)
∂W |W=W lin

0
(W −W lin

0 );yi

)
as the empir-124

ical loss function for training linearized network, by plugging (3) into (1).125

Langevin Diffusion. In terms of optimization algorithm, we focus on the Langevin diffusion126

algorithm [29] with per-dimensional noise variance σ2. Note that we aim to avoid gradient clipping127

while still proving KL privacy bounds. After initializing the model parameters W0 at time zero, the128

model parameters Wt at subsequent time t evolves as the below stochastic differential equation.129

dWt =−∇L(Wt;D)dt+
√
2σ2dBt . (4)

Initialization Distribution. The initialization of parameters W0 crucially affects the convergence of130

Langevin diffusion, as observed in prior literatures [46, 20, 19]. Moreover, when the network function131

depends on the initialization parameters (as in linearized network (3)), the stationary distribution of132

Langevin diffusion also depends on the initialization distribution (as discussed in Section 5). In this133

work, we investigate the following general class of Gaussian initialization distribution with (possibly134

depth-dependent) variance for the parameters in each layer. For any layer l = 1, · · · , L, we have that135

[W l]ij ∼ N (0, βl), for (i, j) ∈ [ml]× [ml−1] (5)

where β1, · · · , βL > 0 are the per-layer variance for Gaussian initialization. By choosing different136

variance, we recover many common initialization schemes in the literature, as summarized in Table 1.137

2.1 Our objective and methodology138

We aim to understand the relation between privacy, utility and over-parameterization (depth and width)139

for the Langevin diffusion algorithm (under different initializaiton distributions). To understand140

privacy, we prove a KL divergence upper bound for running Langevin diffusion on any two worst-case141

neighboring datasets D and D′ of size n that only differ in one record, denoted as (x,y) ∈ D and142

(x,y′) ∈ D′. For brevity, in later sections, we denote Wt (with distribution pt) and W ′
t (with143

distribution p′t) as the trained model parameters after running Langevin diffusion (4) for time T on D144

and D′ respectively. We make the following assumptions for privacy analysis in this paper.145

Assumption 2.1 (Bounded Data). We assume that all x in the data domain is bounded s.t. ∥x∥2 ≤ 1.146

To understand utility (under a given KL privacy budget), we aim to prove upper bounds for excess147

empirical risk and excess population risk given an arbitrarily fixed KL divergence privacy budget ε.148

Finally, we also investigate how trade-off between our KL privacy bound and risk bounds is affected149

by the network width and depth. For utility analysis, we additionally make the following fair and150

attainable assumptions on data and network regularity.151
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Assumption 2.2 (Data and network regularity [33, Assumption 2.1]). For any training data xi ∈ D,152

it satisfies that ∥xi∥2 = 1. Moreover, xi ∈ D are i.i.d. samples from a data distribution Px that153

satisfies
∫
∥x∥22dPx(x) = 1. We also assume that the network only has single output.154

Note that Assumption 2.2 is only required for utility analysis, and is not need for our privacy bound.155

3 KL Privacy for Training Fully Connected ReLU Neural Networks156

In this section, we perform the composition-based privacy analysis in KL divergence for Langevin157

Diffusion on deep ReLU neural networks, under Gaussian initialization distribution specified by158

Eq. (5). More specifically, we prove upper bound for the KL divergence between distribution of output159

model parameters when running Langevin diffusion on an arbitrary pair of neighboring datasets D160

and D′.161

Our first key insight is that by the joint convexity of KL divergence, it is possible to prove composition-162

based KL privacy bound under more relaxed condition regarding the sensitivity of gradient computa-163

tion (i.e., without gradient clipping).164

Theorem 3.1 (KL composition under possibly unbounded gradient difference). The KL divergence165

between running Langevin diffusion (4) for DNN (2) on neighboring datasets D and D′ satisfies166

KL(WT ,W
′
T ) ≤

1

2σ2

∫ T

0

E
[
∥∇L(Wt;D)−∇L(Wt;D′)∥22

]
dt . (6)

Proof sketch. We compute the partial derivative of KL divergence with regard to time t, and then167

compute integral to bound the KL divergence. During computing the limit of differentiation, we168

upper bound KL divergence at time t + η for small enough step-size with the divergence on path169

[t, t+η]. Then we use Girsanov’s theorem to compute the KL divergence between the path of coupled170

Langevin diffusion processes. The complete proof is in Appendix B.1.171

Theorem 3.1 is an extension of the standard additivity [45] of KL divergence (also known as chain172

rule [40]) for a finite sequence of distributions to continuous time processes with (possibly) unbounded173

drift difference. The key extension is that Theorem 3.1 does not require bounded sensitivity between174

Langevin Diffusion on neighboring datasets. Instead, it only requires finite second-order moment of175

drift difference (in the ℓ2-norm sense) between neighboring datasets D,D′. By using this extended176

KL composition Theorem 3.1, we prove KL privacy bound for running Langevin diffusion algorithm177

(without gradient clipping) on deep neural networks, by tracking the upper bound for ℓ2 norm of the178

gradient difference throughout training (under mild assumptions) as follows.179

Lemma 3.2 (Drift Difference in Noisy Training). Let MT be the subspace spanned by gradients180

{∇ℓ(fWt
(xi;yi) : (xi,yi) ∈ D, t ∈ [0, T ]} on each training data record throughout Langevin181

diffusion (Wt)t∈[0,T ]. Denote ∥·∥MT
as the ℓ2 norm of the projection of the input vector onto linear182

space MT . Suppose that ∃c , β > 0 s.t. for any W ,W ′ and x,y we have ∥∇ℓ(fW (x);y)) −183

∇ℓ(fW ′(x);y)∥2 < max{c , β∥W −W ′∥MT
}. Then over the randomness of the Brownian motion184

Bt and initialization distribution (5) in Langevin diffusion (Wt)t∈[0,T ], it satisfies that185 ∫ T

0

Ept

[
∥∇L(W ;D)−∇L(W ;D′)∥22

]
dt ≤ 2 · T · Ep0

[
∥∇L(W ;D)−∇L(W ;D′)∥22

]
︸ ︷︷ ︸

gradient difference at initialization

+ 2

(
e(2+β2)T − (2 + β2)T

2 + β2

)
·
(
Ep0

[
∥∇L(W ;D)∥22

]
+ σ2rank(MT ) + c2

)︸ ︷︷ ︸
gradient difference fluctuation during training

+ 2c2 · T︸ ︷︷ ︸
non-smoothness cost

.

(7)

Remark 3.3. The assumption ∥∇ℓ(fW (x);y))−∇ℓ(fW ′(x);y)∥2 < max{c , β∥W −W ′∥MT
} is186

similar to smoothness condition for the loss function, but is more relaxed as it allows non-smoothness187

at places where the gradient is bounded. Therefore, the assumption holds under ReLU activation.188

Remark 3.4 (Gradient difference at initialization). The first term and in our upper bound linearly189

scales with the difference between gradients on neighboring datasets D and D′ at initialization. Under190

different initializations, this gradient difference exhibits different dependency on the network depth191

and width, as we will prove theoretically in Lemma 4.1.192
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Remark 3.5 (Gradient difference fluctuation during training). The second term in our upper bound is193

to bound the change of gradient difference norm during training, and is therefore proportional to the194

the rank of a subspace MT spanned by gradients of all training data. Intuitively, this fluctuation is195

because Langevin diffusion adds per-dimensional noise with variance σ2, thus perturbing the training196

parameters away from the initialization at a rate of O(σ
√

rank(MT )) in expected ℓ2 distance.197

Growth of KL privacy bound with regard to training time T . The first term in the gradient difference198

bound Lemma 3.2 grows linearly with the training time T , while the second term grows exponentially199

with regard to T . Consequently, for learning tasks that requires a long training time to converge, the200

second term will become the dominating term and the KL privacy bound suffers from exponential201

growth with regard to the training time. Nevertheless, if the total amount of required training time202

(for convergence) is small enough e.g. T ≤ 1
2(2+β2) , then we have that e(2+β2)T−(2+β2)T

2+β2 < T and203

therefore the second term in the gradient difference upper bound accumulates at a lower than linear204

rate with increasing training time.205

Dependence of KL privacy bound on network overparameterization. Under a fixed training time T206

and noise scale σ2, Lemma 3.2 predicts that the KL divergence upper bound in Theorem 3.1 is depen-207

dent on the gradient difference and gradient norm at initialization, and the rank of gradient subspace208

rank(MT ) throughout training. We now discuss the how these two terms change under increasing209

width and depth, and whether there are possibilities to improve them under overparameterization.210

1. The gradient norm at initialization crucially depend on how the per-layer variance in the211

Gaussian initialization distribution scales with the network width and depth. Therefore, it is212

possible to improve the KL privacy bound by using initialization distributions that enable213

smaller gradient difference at initialization, as we will theoretically show in Section 4.214

2. Regarding the rank of gradient subspace rank(MT ): when the gradients along the training215

trajectory span the whole optimization space, rank(M) would equal the dimension of the216

learning problem. Consequently, the gradient fluctuation upper bound (and thus the KL217

privacy bound) worsens with increasing number of model parameters (overparameterization)218

in the worst-case. However, if the gradients are low-dimensional [39, 26, 37] or sparse [30],219

it is possible that rank(MT ) will be dimension-independent and thus enable better bound for220

gradient fluctuation (and KL privacy bound). We leave this as an interesting open problem.221

4 KL privacy bound for Linearized Network under overparameterization222

In this section, we restrict ourselves to the training of linearized networks as described in (3), and223

investigate the interplay between KL privacy and overparameterization (increasing width and depth).224

The analysis of DNN via linearization is a commonly used technique in both theory and practice.225

In theory, DNN can work in the lazy training regime [16] (also called linear regime), under which226

the linearized network well approximates the training dynamics for deep neural entwork [28] and227

has been well studied by NTK. In practice, linearized network can still achieve decent performance,228

which provides a good justification of linearized networks. [37, 34]. We hope our analysis for229

linearized network serve as an initial attempt that would open a door to theoretically understanding230

the relationship between overparameterization and privacy.231

To derive a composition-based KL privacy bound for training linearized network, we apply Theo-232

rem 3.1 which requires an upper bound for the norm of gradient difference between the training233

processes on neighboring datasets D and D′ at any time t. Note that the empirical risk function234

for training linearized models enjoys convexity, and therefore requires a relatively short amount of235

training time for convergence. Therefore intuitively, the gradient difference between neighboring236

datasets does not change a lot during training, thus allowing us to prove tighter upper bound for the237

gradient difference norm for linearized networks (than Lemma 3.2).238

In the following lemma, we prove that for linearized network, the gradient difference throughout239

training has a uniform upper bound that only depends on the network width, depth and initialization.240

Lemma 4.1 (Gradient Difference throughout training linearized network). Under Assumption 2.1,241

taking over the randomness of the random initialization and the Brownian motion in Langevin242
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diffusion, for any t ∈ [0, T ], it satisfies that243

E
[
∥∇L(Wt;D)− L(Wt;D′)∥2

]
≤ 4B

n2
, (8)

where n is the training dataset size, and B is a constant that only depends on the network width,244

depth and initialization distribution as follows.245

B := o

(
L−1∏
i=1

βimi

2

)
L∑

l=1

βL

βl
, (9)

where o is the number of output classes, {mi}Li=1 are the per-layer network widths, and {βi}Li=1 are246

the variances of Gaussian initialization at each layer.247

Lemma 4.1 provides an precise analytical upper bound for the gradient difference during training248

linearized network, by tracking the gradient distribution under fully connected feed-forward ReLU249

network with Gaussian weight matrices. The full proof is in Appendix C.1 and is heavily based on250

similar techniques for computing the gradient distribution in the NTK literature [2, 47]. By plugging251

Eq. (8) into Theorem 3.1, we have the following KL privacy bound for training linearized network.252

Corollary 4.2 (KL privacy bound for training linearized network). Under Assumption 2.1 and neural253

networks (3) initialized by Gaussian distribution with per-layer variance {βi}Li=1, running Langevin254

diffusion for linearized network with time T on neighboring datasets satisfies that255

KL(W lin
t ∥W ′lin

T ) ≤ 2BT

n2σ2
. (10)

where B is the constant that specifies the gradient norm upper bound, given by (9).256

Overparameterization affects privacy differently under different initialization. Corollary 4.2 and257

Lemma 4.1 suggest that the effect of network overparameterization on KL privacy bound crucially258

relies on how the per-layer Gaussian initialization variance βi is scaled with the per-layer network259

width mi and depth L. We summarize our KL privacy bound for linearized network under different260

width, depth and initialization schemes in Table 1, and elaborate the comparison below.261

(1) LeCun initialization uses small, width-independent variance for initializing the first layer β1 = 1
d262

(where d is the number of input features), and width-dependent variance β2 = · · · = βL = 1
m for263

initializing all the subsequent layers. Therefore, the second term
∑L

l=1
βL

βl
in the constant B (9)264

increases linearly with the width m and depth L. However, due to ml·βl

2 < 1 for all l = 2, · · · , L,265

the first product term
∏L−1

l=1
βlml

2 in constant B decays with the increasing depth. Therefore, by266

combining the two terms, we prove that the KL privacy bound worsens with increasing width, but267

improves with increasing depth (as long as the depth is large enough). Similarly, under Xavier268

initialization βl =
2

ml−1+ml
, we prove that the KL privacy bound (especially the constant B (9))269

improves with increasing depth as long as the depth is large enough.270

(2) NTK and He initializations user large per-layer variance βl =

{
2
ml

l = 1, · · · , L− 1
1
o l = L

(for271

NTK) and βl =
2

ml−1
(for He). Consequently, the gradient difference under NTK or He initialization272

is significantly larger than that under LeCun initialization. Specifically, the gradient norm constant273

B (9) grows linearly with the width m and the depth L under He and NTK initializations, thus274

suggesting a worsening of KL privacy bound under increasing width and depth.275

5 Utility guarantees for Training Linearized Network276

Our privacy analysis suggest that training linearized network under certain initialization schemes277

(such as LeCun initialization) enable significantly better privacy bounds under overparameterization278

by increasing depth. In this section, we further prove utility bounds for Langevin diffusion under279

initialization schemes, and investigate the effect of overparameterization on the privacy utility trade-280

off. In other words, we aim to understand whether there are any utility degradation for training281

linearized network when using the more privacy-preserving initialization schemes.282
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Convergence of training linearized network. We now prove convergence of excess empirical risk in283

training linearized network via Langevin diffusion. This is well-studied problem in the literature for284

noisy gradient descent. We extend the convergence theorem to continuous-time Langevin diffusion285

below, and investigate factors that affect the convergence under overparameterization.286

Proposition 5.1 (Extension of [36, Theorem 2] and [39, Theorem 3.1]). Let W lin
0 be a randomly287

initialized parameter vector by (5). Let the empirical NTK feature mapping matrix for dataset288

training D at initialization be M0 =
(
∇fW lin

0
(x1) · · · ∇fW lin

0
(xn)

)
. Let Llin

0 (W ;D) be the289

empirical loss for linearized network (3) expanded at initialization vector W lin
0 . Then running290

Langevin diffusion (4) under empirical loss Llin
0 (W ;D) and initialization W lin

0 for time T satisfies291

the following excess empirical risk bound292

E[L(W lin
T )]− E[L(W ∗

0 ;D)] ≤ 2R

T
+

1

2
σ2E[rank(M0)]

(
1 + log

2BT 2

R

)
(11)

where W ∗
0 is an (exact or approximate) solution for the ERM problem on Llin

0 (W ;D), and R =293

E[∥W lin
0 −W ∗

0 ∥2M0
] is the expected gap between initialization parameters W0 and solution W ∗

0 .294

Remark 5.2. The excess empirical risk bound Proposition 5.1 is smaller if data is low-rank, e.g.,295

image data, then rank(M0) is small. This is consistent with the prior dimension-independent private296

learning literature [26, 27, 30] and show benefit of low-dimensional gradients on private learning.297

Proposition 5.1 highlights that the excess empirical risk scales with the expected gap R between298

initialization and optima (which we refer as the lazy training distance), the rank of the gradient299

subspace rank rank(M0), and the constant B that specifies upper bound for expected gradient norm300

during training. Specifically, the smaller is the lazy training distance R, the better is the excess risk301

bound for Langevin diffusion given fixed training time T and noise variance σ2. We have discussed302

how overparameterization affects the the gradient norm constant B and the gradient subspace rank303

rank(M0) in Section 3. Therefore, we only still need to investigate how the lazy training distance R304

changes with the network width, depth and initialization, as follows.305

Lazy training distance R decreases with increasing depth. It is widely observed in the literature [16,306

48, 31] that under appropriate choices of initializations, gradient descent on fully connected neural307

network falls under a lazy training regime. That is, with high probability, there exists a (nearly)308

optimal solution for the ERM problem that is close to the initialization parameters in terms of l2309

distance. Moreover, this lazy training distance R is closely related to the smallest eigenvalue of the310

NTK matrix. In the following proposition, we compute a near optimal solution via the pseudo inverse311

of the NTK matrix, and prove that it has small distance to the initialization parameters via existing312

lower bounds for the smallest eigenvalue of the NTK matrix [33].313

Proposition 5.3 (Bounding lazy training distance via smallest eigenvalue of the NTK matrix). Under314

the data and network regularity Assumption 2.1, if the width m1 = · · · = mL−1 = Ω(n) is315

sufficiently large, then there exists an optimal solution W
1
n2

0 that satisfies Llin
0 (W

1
n2

0 ) ≤ 1
n2 and316

satisfies317

R̃ = E[∥W
1
n
0 −W0∥22] ≤


Õ( n

d·2L·(m(L−2)+1)
) for NTK initialization

Õ( n
2Lm(L−1)

) for He initialization
Õ( n

m(L−1) ) for LeCun initialization
(12)

318

We refer to R̃ as the approximate lazy training distance because W
1
n2

0 is only a nearly optimal319

solution for the ERM problem. Proposition 5.3 shows that this approximate lazy training distance320

improves with overparameterization (width and depth) under LeCun, He and NTK initializations.321

Privacy Excess empirical risk Tradeoff for training linearized network via Langevin diffusion. We322

now use the approximate lazy training distance R̃ to prove empirical risk bound, and combine it with323

our KL privacy bound Section 4 to show the privacy utility trade-off under overparameterization.324

Corollary 5.4 (Privacy utility trade-off for last iterate). Assume that the data and network regularity325

Assumption 2.2 holds. Assume that all the conditions and definition for constants in Proposition 5.1326

8



holds. Then by setting σ2 = 2BT
εn2 and T =

√
2εnR̃
B , we have that running Langevin diffusion for327

time T satisfies bound KL divergence ϵ, and has ecess empirical risk upper bounded by328

E[L(W lin
T )] ≤ O

 1

n2
+

√
BR̃

εn
log(εn)

 (13)

where B is the gradient norm constant Eq. (9), and R̃ is the approximate lazy training distance in329

Eq. (12). A summary of B and R̃ under different initializations is in Table 1.330

Corollary 5.4 suggests that the excess empirical risk worsens in the presence of a stronger privacy331

constraint, i.e., under a small privacy budget ε, thus contributing to a trade-off between privacy and332

utility. However, the excess empirical risk also scales with constants such as the approximate lazy333

training distance R̃ and the gradient norm constant B. These constants depend on network width,334

depth and initialization distributions, and therefore we prove privacy utility trade-offs for training335

linearized network that changes with overparameterization, as sumarized in Table 1.336

We would like to highlight that our privacy utility trade-off bound under LeCun and He initialization337

strictly improves with increasing width and depth as long as the data and network satisfy regularity338

Assumption 2.2 and the network width is large enough. To our best knowledge, this is the first time339

that a strictly improving privacy utility trade-off under overparameterization is shown in literature.340

This shows the benefits of our precise KL privacy analysis under overparameterization.341

Extension of privacy utility results to excess population risk. Our privacy utility trade-off results342

can be generalized to to excess population risk, by additionally bounding the generalization error343

with standard stability-based arguments [35, 24, 8]. We elaborate the details below.344

Proposition 5.5 (Extended excess population risk bound for training linearized network). Denote345

R0(W ) = E(x,y)∈pop[ℓ(fW0
(x) +

∂fW0
(x)

∂W0
(W − W0);y)] as the population risk of linearized346

network expanded at initialization vector W0 over population data distribution pop. Then under the347

conditions of Corollary 5.4, we have that for any dataset D of size n, the following excess population348

risk upper bound holds.349

E[R0(WT )]− E[L(W ∗
pop,0;D)] ≤ O

 1

n2
+

√
BR̃

εn
(log(εn) + ε)

 (14)

where the expectation is over the randomness of sampling the training dataset D ∼ popn from the350

data population and the random coins for the Langevin diffusion training algorithm, and W ∗
pop,0 =351

argminW R0(W ) is the optimal solution for the population risk minimization problem.352

Proposition 5.5 shows that the excess population risk bound is almost the same as excess empirical353

risk, except that there is an additional generalization term that scales with the privacy budget ε.354

Intuitively, this is because the generalization error is proportional to the stability of model prediction355

function under different training dataset, which is smaller when the KL privacy loss ε is small.356

6 Conclusion357

We prove new KL privacy bound for training fully connected ReLu network (and its linearized variant)358

using the Langevin diffusion algorithm, and investigate how privacy is affected by the network width,359

depth and initialization. Our results suggest that there is a complex interplay between privacy360

and overparameterization (width and depth) that crucially relies on what initialization distribution361

is used and the how much the gradient fluctuates during training. To this end, we show that for362

training a linearized variant of fully connected network with finite time, it is possible to prove a KL363

privacy bound that improves with depth, as long as the initialization distribution is set appropriately364

(such as LeCun). We also study the excess empirical and population risk bounds for linearized365

network, and prove that the privacy-utility trade-off similarly improves as depth increases under366

LeCun initialization. This shows the gain of our new privacy analysis for capturing the effect of367

overparameterization. We leave it as an important open problem as to whether our privacy utility368

trade-off results for linearized network could be generalized to deep neural networks.369
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A Symbols and definitions522

Vecorization Vec(·) denotes the transformation that takes an input matrix A = (aij)i∈[r],j∈[c] ∈523

Rr×c (with r rows and c columns) and outputs a rc-dimensional column vector: Vec(A) =524

(a1,1, · · · , ar,1, a1,2, · · · , ar,2, · · · , a1,c, · · · , ar,c)⊤.525

Distribution pt and p′t: we denote pt as the distribution of model parameters after running Langevin526

diffusion on dataset D with time t, and similarly denote p′t as the distribution of model parameters527

after running Langevin diffusion on dataset D′ with time t.528

Softmax function: softmax(y) = ey
[j]∑o

j=1 ey
[j] where o is the number of output classes.529

Neighboring datasets D and D′: two dataset with the same number of data records that differ in one530

record. We also denote the differing records as (x,y) ∈ D and (x′,y′) ∈ D′.531
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o: number of output classes for the neural network.532

B Deferred proofs for Section 3533

B.1 Deferred proofs for Theorem 3.1534

To prove the new composition theorem, we will use the Girsanov’s Theorem. Here we follow the535

presentation of [15, Theorem 6].536

Theorem B.1 (Implication of Girsanov’s theorem [15, Theorem 6]). Let (X̃t)t∈[0,η] and (Xt)t∈[0,η]537

be two continuous-time processes over Rr. Let PT be the probability measure that corresponds to the538

trajectory of (X̃t)t∈[0,η], and let QT be the probability measure that corresponds to the trajectory of539

(Xt)t∈[0,η]. Suppose that the process (X̃t)t∈[0,η] follows540

dX̃t = b̃tdt+ σtdB̃t,

where B̃ is a Brownian motion, and the process (Xt)t∈[0,η] follows541

dXt = btdt+ σtdBt,

where B is a Brownian motion. We assume that for each t > 0, σt is a r × r symmetric positive542

definite matrix. Then, provided that Novikov’s condition holds,543

EQT
exp

(
1

2

∫ η

0

∥σ−1
t (b̃t − bt)∥22dt

)
< ∞ , (15)

we have that544

dPT

dQT
= exp

(∫ η

0

σ−1
t (b̃t − bt)dBt −

1

2

∫ η

0

∥σ−1
t (b̃t − bt)∥22dt

)
.

Now we apply Girsanov’s theorem on the coupled Langevin diffusion processes on neighboring545

datasets, and obtain the following new composition theorem for KL divergence in the context of546

privacy.547

Theorem 3.1 (KL composition under possibly unbounded gradient difference). The KL divergence548

between running Langevin diffusion (4) for DNN (2) on neighboring datasets D and D′ satisfies549

KL(WT ,W
′
T ) ≤

1

2σ2

∫ T

0

E
[
∥∇L(Wt;D)−∇L(Wt;D′)∥22

]
dt . (16)

Proof. Denote pt as the distribution of model parameters after running Langevin diffusion on dataset550

D with time t, and similarly denote p′t as the distribution of model parameters after running Langevin551

diffusion on dataset D′ with time t. Then by definition,552

∂KL(pt, p
′
t)

∂t
= lim

η→0

KL(pt+η, p
′
t+η)−KL(pt, p

′
t)

η

≤ lim
η→0

KL(pt,t+η, p
′
t,t+η)−KL(pt, p

′
t)

η
, (17)

where the last inequality is by the data processing inequality for KL divergence [45, Theorem 9]553

(with the data processing operation given by (Wt,Wt+η) → Wt). Now we compute the term554

KL(pt:t+η, p
′
t:t+η) as follows.555

KL(pt,t+η, p
′
t,t+η) = Ept,t+η(Wt,Wt+η)

[
log

(
pt+η|t(Wt+η|Wt)pt(Wt)

p′t+η|t(Wt+η|Wt)p′t(Wt)

)]

= Ept,t+η(Wt,Wt+η)

[
log

(
pt+η|t(Wt+η|Wt)

p′t+η|t(Wt+η|Wt)

)]
+ Ept(Wt)

[
log

(
pt(Wt)

p′t(Wt)

)]
= Ept(Wt)

[
KL(pt+η|t, p

′
t+η|t)

]
+KL(pt, p

′
t) (18)
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Now we want to apply Girsanov’s theorem to the following langevin diffusion processes556

(Wt+s|t)s∈[0,η] and (W ′
t+s|t)s∈[0,η].557

dWt+s|t = −∇L(Wt+s;D)dt+
√
2σ2dBs

dW ′
t+s|t = −∇L(W ′

t+s;D′)dt+
√
2σ2dBs

where we have the boundary condition that Wt|t = W ′
t|t due to the conditioning at time t. Note that558

when η is small enough, we have that the Novikov’s condition in Eq. (15) holds because the exponent559

inside integration 1
2

∫ η

0
∥σ−1

t (b̃t − bt)∥22dt scales linearly with η and is small when η is small enough.560

Therefore, by applying Girsanov’s theorem, we have that561

KL(pt+η|t, p
′
t+η|t) ≤KL(pt:t+η|t, p

′
t:t+η|t)

=Ept:t+η|t

[∫ η

0

σ−1(b̃s − bs)dBs −
1

2

∫ T

0

∥σ−1(b̃s − bs)∥22ds

]

where b̃s − bs = −∇L(Wt+s;D) + ∇L(Wt+s;D′). By Itô integration with regard to standard562

Brownian motion, we have that563

KL(pt+η|t, p
′
t+η|t) ≤

1

2σ2
Ept:t+η|t

[∫ η

0

∥∇L(Wt+s;D)−∇L(Wt+s;D′)∥22 ds
]

(19)

By plugging Eq. (19) into Eq. (18), we have that564

KL(pt,t+η, p
′
t,t+η) ≤

1

2σ2
Ept:t+η

[∫ η

0

∥∇L(Wt+s;D)−∇L(Wt+s;D′)∥22 ds
]
+KL(pt, p

′
t)

(20)

By plugging Eq. (20) into Eq. (17), and by exchanging the order of expectation and integration, we565

have that566

∂KL(pt, p
′
t)

∂t
≤ 1

2σ2
lim
η→0

∫ η

0
Ept+s

[
∥∇L(Wt+s;D)−∇L(Wt+s;D′)∥22

]
ds

η

=
1

2σ2
Ept

[
∥∇L(Wt;D)−∇L(Wt;D′)∥22

]
(21)

Integrating Eq. (21) on t ∈ [0, T ] finishes the proof.567

B.2 Deferred proofs for Lemma 3.2568

Lemma 3.2. Let MT be the subspace spanned by gradients {∇ℓ(fWt
(xi;yi) : (xi,yi) ∈ D, t ∈569

[0, T ]} on each training data record throughout Langevin diffusion (Wt)t∈[0,T ]. Denote ∥·∥MT
as the570

ℓ2 norm of the projection of the input vector onto linear space MT . Suppose that ∃c , β > 0 s.t. for571

any W ,W ′ and x,y we have ∥∇ℓ(fW (x);y))−∇ℓ(fW ′(x);y)∥2 < max{c , β∥W −W ′∥MT
}.572

Then over the randomness of the Brownian motion Bt and initialization distribution (5) in Langevin573

diffusion (Wt)t∈[0,T ], it satisfies that574 ∫ T

0

Ept

[
∥∇L(W ;D)−∇L(W ;D′)∥22

]
dt ≤ 2 · T · Ep0

[
∥∇L(W ;D)−∇L(W ;D′)∥22

]
︸ ︷︷ ︸

gradient difference at initialization

+ 2

(
e(2+β2)T − (2 + β2)T

2 + β2

)
·
(
Ep0

[
∥∇L(W ;D)∥22

]
+ σ2rank(MT ) + c2

)︸ ︷︷ ︸
gradient difference fluctuation during training

+ 2c2 · T︸ ︷︷ ︸
non-smoothness cost

.

(22)

Proof. By definition of the neighboring datasets D and D′, we have that575

∥∇L(W ;D)−∇L(W ;D′)∥22 = ∥ℓ(fW (x);y))−∇ℓ(fW (x′);y′)∥22 (23)
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where (x,y) and (x′,y′) are the differing records between two datasets. By the assumption that576

∥∇ℓ(fW (x);y))−∇ℓ(fW ′(x);y)∥2 < max{c , β∥W −W ′∥MT
}, and by the Cauchy-Schwarz577

inequality, we have that578

∥∇ℓ(fWt
(x);y))−∇ℓ(fWt

(x′);y′)∥22 ≤2 ∥∇ℓ(fW0
(x);y))−∇ℓ(fW0

(x′);y′)∥22
+ 2β2∥Wt −W0∥2MT

+ 2c2 (24)

The first term ∥∇ℓ(fW0
(x);y))−∇ℓ(fW0

(x′);y′)∥22 is constant during training (as it only depends579

on the initialization). Therefore, we only need to bound the second term ∥Wt −W0∥2MT
. For brevity,580

we denote the term inside expectation as d(W ) = ∥W −W0∥2MT
. Then by definition we have that581

∂

∂t
Ept [d(W )] = lim

η→0

Ept+η
[d(W )]− Ept

[d(W )]

η
. (25)

Denote Γs as the following random operator on model parameters θ.582

Γs(W ) = θ − s∇L(W ;D) +
√
2σ2sZ

where Z ∼ N (0, I). We first claim that the following equation holds.583

lim
η→0

Ept+η [d(W )]− Ept [d(Γη(W ))]

η
= 0 (26)

This is by using Euler-Maruyama discretization method to approximate the solution Wt of584

SDE Eq. (4). More specifically, the approximation error Ept+η [d(W )] − Ept [d(Γη(W ))] is of585

size O(rη2), where r is the dimension of W .586

Therefore, by plugging Eq. (26) into Eq. (25), we have that587

∂

∂t
Ept

[d(W )] = lim
η→0

Ept
[d(Γη(W ))]− Ept

[d(W )]

η

Recall that ∇2d(W ) exists almost everywhere with regard to W ∼ pt. Therefore we could588

approximate the term Ept
[d(Γη(W );D,D′)] via its second-order Taylor expansion at W as follows.589

∂

∂t
Ept [d(W )] = lim

η→0

Ept
[⟨∇d(W ),−η∇L(W ;D) +

√
2σ2ηZ⟩+ σ2ηZ⊤∇2d(W )Z + o(η)]

η

=− Ept [⟨∇d(W ),∇L(W ;D)⟩] + σ2Ept [Tr
(
∇2d(W )

)
] (27)

By plugging d(W ) = ∥W −W0∥2MT
into the above equation, we have that590

∂

∂t
Ept

[∥W −W0∥2Mt
] ≤− 2Ept

[⟨W −W0,∇L(W ;D)⟩] + σ2rank(MT ) (28)

=− 2Ept [⟨W −W0,∇L(W0;D)⟩] + σ2rank(MT )

− 2Ept [⟨W −W0,∇L(W ;D)−∇L(W0;D)⟩]
≤E[∥∇L(W0;D)∥22] + Ept

[∥W −W0∥2Mt
] + σ2rank(MT ) (29)

+ Ept
[∥W −W0∥2MT

] + Ept
[∥∇L(W ;D)−∇L(W0;D)∥22] (30)

where the last inequality is by using the Cauchy-schwartz inequality. By plugging the assumption591

that ∥∇ℓ(fW (x);y))−∇ℓ(fW ′(x);y)∥2 < max{c , β∥W −W ′∥2} into the above inequality, we592

have that593

∂

∂t
Ept

[∥W −W0∥2MT
] ≤ (2 + β2)Ept

[∥W −W0∥2MT
] + E[∥∇L(W0;D)∥22] + c2 + σ2rank(MT )

(31)

By solving the above ordinary differential inequality on t ∈ [0, T ], we have that594

Ept
[∥W −W0∥2MT

] ≤ e(2+β2)t − 1

β2

(
E[∥∇L(W0;D)∥22] + σ2rank(MT ) + c2

)
(32)
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By plugging Eq. (32) into Eq. (24) and integrating over time t ∈ [0, T ], we have that595 ∫ T

0

Ept

[
∥∇L(W ;D)−∇L(W ;D′)∥22

]
dt ≤ 2T · Ep0

[
∥∇L(W ;D)−∇L(W ;D′)∥22

]
(33)

+ 2

(
e(2+β2)T − (2 + β2)T

2 + β2

)
·
(
Ep0

[
∥∇L(W ;D)∥22

]
+ σ2rank(MT ) + c2

)
+ 2c2T . (34)

596

C Deferred proofs for Section 4597

C.1 Bounding the gradient norm at initialization598

To bound the moment of ℓ2 norm of the gradient ∂f(x)
∂Wl

of network output function, we need the599

following (extended) lemmas from Zhu et al. [47].600

Lemma C.1 ([47, Lemma 1]). Let w ∼ N (0, σ2In), then for two fixed non-zero vectors h1,h2 ∈601

Rn whose correlation is unknown, define two random variables X = (w⊤h11{w⊤h2≥0})
2 and602

Y = s(w⊤h1)
2, where s ∼ Ber(1, 1/2) follows a Bernoulli distribution with 1 trial and 1

2 success603

rate, and s and w are independent random variables. Then X and Y have the same distribution.604

Lemma C.2 (Extension of [47, Lemma 2]). Given a fixed non-zero matrix H1 ∈ Rp×r and a fixed605

non-zero vector h2 ∈ Rp and , let W ∈ Rq×p be a random matrix with i.i.d. entries Wij ∼ N (0, β)606

and a matrix (or vector) V = ϕ′(Wh2)WH1 ∈ Rq×r, then, we have E[ ∥V ∥2
F

∥H1∥2
F
] = qβ

2 .607

Proof. According to the definition of V = ϕ′(Wh2)WH1 ∈ Rq×r, we have:608

∥V ∥2F =

q∑
i=1

r∑
j=1

(
Di,i⟨W [i;],H

[;j]
1 ⟩
)2

,

where Di,i = 1{⟨W [i],h2⟩≥0}, W [i;] is the i-th row of W , and H
[;j]
1 is the j-th column vector of H1.609

Therefore by Lemma C.1, with i.i.d. Bernoulli random variable ρ1, · · · , ρq ∼ Ber(1, 1/2), we have610

∥V ∥2F
d
=

q∑
i=1

r∑
j=1

ρi⟨W [i;],H
[;j]
1 ⟩2 =

q∑
i=1

r∑
j=1

ρiβ∥H [;j]
1 ∥22w̃2

ij .

where w̃ij = ⟨W [i;],H
[;j]
1 ⟩/

(√
β∥H [;j]

1 ∥22
)

. By the fact that W [i;] has i.i.d. Gaussian entries, for611

any fixed j, we have that w̃ij ∼ N (0, 1), i = 1, · · · , q independently. Therefore, we have612

E
[
∥V ∥2F

]
=

q∑
i=1

r∑
j=1

E[ρi]β∥H [;j]
1 ∥22E[w̃2

ij ] =
qβ

2
E[∥H1∥2F ] .

613

Now, we are ready to prove output gradient expectation at random initialization as follows.614

Lemma C.3 (Output Gradient Expectation Bound at Random Initialization). Fix any data record x,615

then over the randomness of the initialization distributions for W1, · · · ,WL, i.e., Wl ∼ N (0, βlI)616

for l = 1, · · · , L− 1, it satisfies that617

EW

[
∥ ∂f(x)

∂Vec(W )
∥2F
]
= ∥x∥22o

(
L−1∏
i=1

βimi

2

)
L∑

l=1

βL

βl
. (35)
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Proof. We use Vec(Wl) to denote the concatenation of all row vector of the parameter matrix Wl.618

By chain rule, for l = 1, · · · , L− 1, we have that619

∂f(x)

∂Vec(Wl)
=

∂hL(x)

∂hL−1(x)

(
L−1−l∏
i=1

∂hL−i(x)

∂hL−1−i(x)

)
∂hl

Vec(Wl)
(36)

= WL

(
L−1−l∏
i=1

σ′
L−iWL−i

)
σ′
l

h⊤
l−1 0 · · ·
...

...
...

0 0 h⊤
l−1


ml×mlml−1

. (37)

Similarly, for the L-th layer, we have that620

∂f(x)

∂Vec(WL)
=

h⊤
L−1 0 · · ·
...

...
...

0 0 h⊤
L−1


o×omL−1

. (38)

By properties of ReLU activation ϕ, we have ϕ′
L−i = diag[sgn(WL−ihL−1−i)], where sgn(x) =621 {

1 x > 0

0 x ≤ 0
operates coordinate-wise with regard to the input matrix. Therefore, we have that for622

l = 1, · · · , L− 1623

∂f(x)

∂Vec(Wl)
=WL

(
L−1−l∏
i=1

diag[sgn(WL−ihL−1−i)]WL−i

)
· diag[sgn(Wlhl−1)]

h⊤
l−1 0 · · ·
...

...
...

0 0 h⊤
l−1


ml×mlml−1

.

For notational simplicity, we introduce the notation of tl
′

l for l = 1, · · · , L − 1 and l ≤ l′ < L as624

follows.625

tl
′

l :=

(
L−1−l∏
i=L−l′

diag[sgn(WL−ihL−1−i)]WL−i

)
· diag[sgn(Wlhl−1)]

h⊤
l−1 0 · · ·
...

...
...

0 0 h⊤
l−1


ml×mlml−1

.

Then by definition, we have that626

EW

[
∥ ∂f(x)

∂Vec(Wl)
∥2F
]
= EW

[
∥WLt

L−1
l ∥2F

]
= EW

[
∥WLt

L−1
l ∥2F

∥tL−1
l ∥2F

·
∥tL−1

l ∥2F
∥tL−2

l ∥2F
· · ·

∥tl+1
l ∥2F
∥tll∥2F

· ∥tll∥2F

]

= EW1,··· ,Wl

[
∥tll∥2F · EWl+1

[
∥tl+1

l ∥2F
∥tll∥2F

· · ·EWL

[
∥WLt

L−1
l ∥2F

∥tL−1
l ∥2F

]]]
.

By rotational invariance of Gaussian column vectors, we prove that for any possible value of tL−1
l627

(which is completely determined by W1, · · · ,WL−1 and x), for any l = 1, · · · , L− 1, we have that628

EWL

[
∥WLt

L−1
l ∥2F

∥tL−1
l ∥2F

]
= EWL

[
∥WLe1∥22
∥e1∥22

]
= βLo . (39)

By Lemma C.2, for any l = 1, · · · , L− 2 and l ≤ l′ ≤ L− 2, we have that629

EWl+1

[
∥tl

′+1
l ∥2F
∥tl′l ∥2F

]
=

βl′+1

2
ml′+1 . (40)

We now bound the last term EW1,··· ,Wl

[
∥tll∥2F

]
for l = 1, · · · , L− 1. By definition, we have that630

EW1,··· ,Wl

[
∥tll∥2F

]
= EW1,··· ,Wl

[
ml∑
i=1

1{W [i;]
l hl−1≤0} · ∥hl−1∥22

]
=

ml

2
EW1,··· ,Wl−1

E[∥hl−1∥22] .

(41)
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To bound the term EW1,··· ,Wl
[∥hl−1∥22], note that by Lemma C.2, we have that for any l = 1, · · · , L−631

1632

EWl−1

[
∥hl−1(x)∥22
∥hl−2(x)∥22

]
=

βl−1

2
ml−1 . (42)

Therefore, for any l = 1, · · · , L, we have that633

EW1,··· ,Wl−1

[
∥hl−1(x)∥22

]
= EW1,··· ,Wl−1

[
∥hl−1(x)∥22
∥hl−2(x)∥22

· · · ∥h1(x)∥22
∥x∥22

]
· ∥x∥22 (43)

=

(
l−1∏
i=1

βi

2
mi

)
∥x∥22 . (44)

By plugging (44) into (41), we have that634

EW1,··· ,Wl

[
∥tll∥22

]
=

ml

2

(
l−1∏
i=1

βi

2
mi

)
∥x∥22 . (45)

By combining (39), (40) and (45), we have for any l = 1, · · · , L− 1635

EW

[
∥ ∂f(x)

∂Vec(Wl)
∥2F
]

=
ml

2

(
l−1∏
i=1

βi

2
mi

)
·

(
L−1∏
i=l+1

βi

2
mi

)
· βLo · ∥x∥22 =

βL

βl
∥x∥22o

(
L−1∏
i=1

βimi

2

)
.

On the other hand, by plugging Eq. (44) (under ℓ = L) into Eq. (38), we have that636

EW

[
∥ ∂f(x)

∂Vec(WL)
∥22
]
= o

(
L−1∏
i=1

βi

2
mi

)
∥x∥22

Therefore,637

EW

[
∥ ∂f(x)

∂Vec(W )
∥2F
]
=

L∑
l=1

∥∂f(x)
∂Wl

∥2F = ∥x∥22o

(
L−1∏
i=1

βimi

2

)
L∑

l=1

βL

βl
,

which suffices to prove Eq. (35).638

C.2 Deferred proof for Lemma 4.1639

Finally, we prove that the gradient difference between two training datasets under linearized network640

is bounded by a constant throughout training (which only depends on the network width, depth and641

initialization distribution).642

Lemma 4.1. Under Assumption 2.1, taking over the randomness of the random initialization and the643

Brownian motion in Langevin diffusion, for any t ∈ [0, T ], it satisfies that644

E
[
∥∇L(Wt;D)− L(Wt;D′)∥2

]
≤ 4B

n2
, (46)

where n is the training dataset size, and B is a constant that only depends on the network width,645

depth and initialization distribution as follows.646

B := o

(
L−1∏
i=1

βimi

2

)
L∑

l=1

βL

βl
, (47)

where o is the number of output classes, {mi}Li=1 are the per-layer network widths, and {βi}Li=1 are647

the variances of Gaussian initialization at each layer.648
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Proof. Denote W as the initialization parameters and denote W lin
t as the parameters for linearized649

network after training time t. Then the gradient difference under linearized network and cross-entropy650

loss function is as follows.651

∥∇L(Wt;D)−∇L(Wt;D′)∥2F

=

∥∥∥∥∇fW (x)⊤ (softmax(fWt
(x))− y)

n
− ∇fW (x′)⊤ (softmax(fWt

(x′))− y′)

n

∥∥∥∥2
F

≤ 2

n2

(
∥∇fW (x)∥2F + ∥∇fW (x′)∥2F

)
.

Plugging Lemma 4.1 into the above equation with data Assumption 2.1 suffice to prove the result.652

D Deferred proofs for Section 5653

D.1 Excess empirical risk for training linearized network (average iterate)654

To prove empirical risk bound for the last iterate of training linearized network, we will first need to655

prove the following intermediate result of excess empirical risk bound for average iterate.656

Lemma D.1 (Excess empirical risk for average iterate (Extension of [39, Theorem 3.1])). Let W lin
0657

be a randomly initialized parameter vector by (5). Let the empirical NTK feature matrix for dataset658

training D at initialization be M0 =
(
∇fW lin

0
(x1) · · · ∇fW lin

0
(xn)

)
. Let Llin

0 (W ;D) be the659

empirical loss for linearized network (3) expanded at initialization vector W lin
0 . Then running660

Langevin diffusion (4) under empirical loss Llin
0 (W ;D) and initialization W lin

0 for time T satisfies661

the following excess empirical risk bound.662

E[L(W̄ lin
T )]− E[L(W ∗

0 ;D)] ≤ R

2T
+

1

2
σ2E[rank(M0)]

where W̄ lin
T = 1

T

∫
W̄ lin

t dt is the average of all iterates, W ∗
0 is an (exact or approximate) solution663

for the ERM problem on Llin
0 (W ;D), and R = E[∥W lin

0 −W ∗
0 ∥2M0

] is the expected gap between664

initialization parameters W0 and solution W ∗
0 .665

Proof. Our proofs are heavily based on the idea in [39, Theorem 3.1] to work only in the parameter666

space spanned by the input feature vectors. And our proof serves as an extension of their bound to667

the continuous-time Langevin diffusion algorithm. We begin by using convexity of the empirical loss668

function Llin(W ;D) for linearized network to prove the following standard results669

Llin(W̄ lin
T ;D)− Llin(W ∗

0 ;D) ≤ ⟨W̄ lin
T −W ∗

0 ,∇Llin(W̄ lin
T ;D)⟩ (48)

Denote M0 =
(
∇fW lin

0
(x1) · · · ∇fW lin

0
(xn)

)
. By computing the gradient under cross entropy670

loss and linearized network, we have ∇Llin(W lin
T ;D) lies in the column space of M0. Denote ΠM0671

as the projection operator to the column space of M0, then (48) can be rewritten as672

Llin(W̄ lin
T ;D)− Llin(W ∗

0 ;D) ≤ ⟨ΠM0
(W̄ lin

T −W ∗
0 ),∇Llin(W̄ lin

T ;D)⟩. (49)

By taking expectation over training randomness and initialization distribution, we have673

E[L(W̄ lin
T )]− E[L(W ∗

0 ;D)] ≤ 1

T

∫ T

0

E
[
⟨ΠM0(W

lin
t −W ∗

0 ),∇Llin(W lin
t ;D)⟩

]
dt (50)

We now rewrite E
[
⟨ΠM0(W̄

lin
t −W ∗

0 ),∇Llin(W lin
t ;D)⟩

]
by computing ∂

∂tE[∥W
lin
t −W ∗

0 ∥2M0
],674

where ∥W lin
t −W ∗

0 ∥2M0
= ΠM0

(
W lin

t −W ∗
0

)⊤
ΠM0

(
W lin

t −W ∗
0

)
. By applying (27), we have675

∂

∂t
E[∥W lin

t −W ∗
0 ∥2M0

] = −2E[⟨ΠM0

(
W lin

t −W ∗
0

)
,∇Llin(W lin

t ;D)⟩] + σ2E[rank(M0)]

(51)
Therefore by plugging (51) into (50), we have that676

E[Llin(W ;D)− Llin(W ∗
0 ;D)] ≤ − 1

2T

∫ T

0

∂

∂t
E[∥Wt −W ∗

0 ∥2M0
]dt+

1

2
σ2E[rank(M0)] (52)

≤ 1

2T
E[∥W lin

0 −W ∗
0 ∥2M0

] +
1

2
σ2E[rank(M0)] (53)

677
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D.2 Deferred proof for Proposition 5.1678

We are now ready to prove the last iterate excess empirical risk bound for training linearized network.679

Proposition 5.1 (Excess empirical risk for training linearized network (last iterate)). Let W lin
0 be680

a randomly initialized parameter vector by (5). Let the empirical NTK feature mapping matrix for681

dataset training D at initialization be M0 =
(
∇fW lin

0
(x1) · · · ∇fW lin

0
(xn)

)
. Let Llin

0 (W ;D)682

be the empirical loss for linearized network (3) expanded at initialization vector W lin
0 . Then running683

Langevin diffusion (4) under empirical loss Llin
0 (W ;D) and initialization W lin

0 for time T satisfies684

the following excess empirical risk bound685

E[L(W lin
T )]− E[L(W ∗

0 ;D)] ≤ 2R

T
+

1

2
σ2E[rank(M0)]

(
1 + log

2BT 2

R

)
(54)

where W ∗
0 is an (exact or approximate) solution for the ERM problem on Llin

0 (W ;D), and R =686

E[∥W lin
0 −W ∗

0 ∥2M0
] is the expected gap between initialization parameters W0 and solution W ∗

0 .687

Proof. We first define the following potential function.688

Φ(t) =
1

T − t

∫ T

t

E[L(W lin
τ ;D)]dτ (55)

By definition we have that the boundary values are Φ(0) = 1
T

∫ T

0
E[L(W lin

τ ;D)]dτ and Φ(T ) =689

limt→T
1

T−t

∫ T

t
E[L(W lin

τ ;D)]dτ = E[L(W lin
T ;D)]. Since we have proved upper bound for Φ(0)690

in the excess empirical risk bound for the average iterate Appendix D.1, to analyze Φ(T ) the691

loss difference between last iterate and average iterate, we only need to prove upper bound for692

Φ(T )− Φ(0).693

By definition, we compute the partial derivative of the function Φ(t) with regard to time t as follows.694

∂

∂t
Φ(t) =

1

(T − t)2

∫ T

t

E[L(W lin
τ ;D)]dτ − 1

T − t
E[L(W lin

t ;D)]

=
1

(T − t)2

∫ T

t

E[L(W lin
τ ;D)− L(W lin

t ;D)]dτ

≤ 1

(T − t)2

∫ T

t

E[⟨∇L(W lin
τ ),ΠM0

(W lin
τ −W lin

t )⟩]dτ (56)

where the last inequality is by the convexity of loss function for linearized network. Now to control695

the intergral in (56), we use a similar argument to (51) as follows.696

∂

∂τ
E
[
∥W lin

τ −W lin
t ∥2M0

]
= −2E[⟨∇L(W lin

τ ),ΠM0
(W lin

τ −W lin
t )⟩] + σ2E[rank(M0)]

(57)

By plugging (57) into (56), we have that697

∂

∂t
Φ(t) ≤

∫ T

t
− ∂

∂τ E[∥W
lin
τ −W lin

t ∥2M0
] + σ2E[rank(M0)]dτ

2(T − t)2
≤ σ2E[rank(M0)]

2(T − t)
(58)

By intergrating the above equation over t ∈ [0, T −∆T ] where ∆ ∈ (0, 1) is a tuning parameter that698

we will determine later, we have that699

Φ(T −∆T ) ≤ Φ(0) + σ2E[rank(M0)] ln
1

∆
(59)

Now we proceed to bound Φ(T )− Φ(T −∆T ). By definition of Φ(t), we have that700

Φ(T )− Φ(T −∆T ) =
1

∆T

∫ T

T−∆T

E[L(W lin
T ;D)− L(W lin

τ ;D)]dτ

≤ 1

∆T

∫ T

T−∆T

E[⟨∇L(W lin
T ;D),ΠM0(W

lin
T −W lin

τ )⟩]dτ (60)
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where (60) is by convexity of empirical loss function and by that ∇Llin(W lin
T ;D) is in the linear701

space spanned by the network output gradient at initialization.702

By applying the Cauchy-Schwartz inequality, we have that for any α ∈ (0,+∞), the following703

inequality holds.704

Φ(T )−Φ(T −∆T ) ≤ 1

∆T

∫ T

T−∆T

1

α
E[∥∇L(W lin

T ;D)∥22 +
α

4
E[∥W lin

T −W lin
τ ∥2M0

]dτ (61)

≤ 1

α
max

τ∈[T−∆T,T ]
E[∥∇L(W lin

T ;D)∥22 +
α

4
max

τ∈[T−∆T,T ]
E[∥W lin

T −W lin
τ ∥2M0

] (62)

By Eq. (8), we have that when the data is normalized,705

E[∥∇L(W lin
T ;D)∥22 ≤ 2B (63)

where B = |Y|
(∏L−1

i=1
βimi

2

)∑L
l=1

βL

βl
. We now only need to bound E[∥W lin

T −W lin
τ ∥2M0

]. By706

similar argument as (57), for any t ≥ τ , we have that707

∂

∂t
E
[
∥W lin

t −W lin
τ ∥2M0

]
= −2E[⟨∇L(W lin

t ),ΠM0(W
lin
t −W lin

τ )⟩] + σ2E[rank(M0)]

≤ 1

γ
E[∥∇L(W lin

t )∥22] + γE[∥W lin
t −W lin

τ ∥2M0
] + σ2E[rank(M0)]

≤ γE[∥W lin
t −W lin

τ ∥2M0
] +

2B

γ
+ σ2E[rank(M0)]

This is a linear ODE and can be solve closed formly as follows for t ≥ τ .708

E
[
∥W lin

t −W lin
τ ∥2M0

]
≤ (

2B

γ2
+

σ2E[rank(M0)]

γ
)(eγ(t−τ) − 1)

Since the above equation holds for any τ ≤ t, by setting τ = T −∆T and t = T we have that709

max
τ∈[T−∆T,T ]

E[∥W lin
T −W lin

τ ∥2M0
] ≤ (

2B

γ2
+

σ2E[rank(M0)]

γ
)(eγ∆T − 1) (64)

≤ 4B(∆T )2 + 2σ2E[rank(M0)]∆T (65)

where (65) is by setting γ = 1
∆T and by e1 − 1 ≤ 2. By combining (62), (63) and (65), we have that710

Φ(T )− Φ(T −∆T ) ≤ 2B

α
+ αB(∆T )2 +

ασ2E[rank(M0)]∆T

2

=
3R

2T
+

σ2E[rank(M0)]

2
(66)

where the last equation (66) is by setting α = 2B
R T and ∆ = R

2BT 2 (note that here B and R are as711

given in the proposition statement). By combining (59) and (66) and using that ∆ = R
2BT 2 , we have712

E[L(W lin
T )] = Φ(T ) = Φ(T )− Φ(T −∆T ) + Φ(T −∆T )

≤ Φ(0) +
σ2E[rank(M0)]

2

(
1 + log

2BT 2

R

)
+

3R

2T

Observe that Φ(0) = E[L(W̄ lin
T )], therefore by using Lemma D.1 we have that713

E[L(W lin
T )] ≤ E[L(W ∗

0 ;D)] +
2R

T
+

σ2E[rank(M0)]

2

(
1 + log

2BT 2

R

)
714
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D.3 Deferred proof for Proposition 5.3715

Proposition 5.3 (Bounding lazy training distance via smallest eigenvalue of the NTK matrix). Under716

the data and network regularity Assumption 2.1, if the width m1 = · · · = mL−1 = Ω(n) is717

sufficiently large, then there exists an optimal solution W
1
n2

0 that satisfies Llin
0 (W

1
n2

0 ) ≤ 1
n2 and718

satisfies719

R̃ = E[∥W
1
n
0 −W0∥22] ≤


Õ( n

d·2L·(m(L−2)+1)
) for NTK initialization

Õ( n
2Lm(L−1)

) for He initialization
Õ( n

m(L−1) ) for LeCun initialization
(67)

Proof. Given arbitrary initialization parameters W0, we first construct an solution W
1
n2

0 that is nearly720

optimal for the ERM problem over Llin
0 (W ). Specifically, let W

1
n2

0 have the following expression.721

W
1
n2

0 −W0 = M†
0

2 lnn · y1 − fW0
(x1)

...
2 lnn · yn − fW0

(xn)

 (68)

where M0 =

∇fW0(x1)
⊤

...
∇fW0

(xn)
⊤

 is the NTK feature matrix at initialization and † denotes the722

pseudo-inverse. By random Gaussian initialization, and by the data regularity assumption As-723

sumption 2.2, we have that rank(M0) = n with probability one, therefore M†
0 = M⊤

0 (M0M
⊤
0 )−1724

and


f
W

1
n2
0

(x1)

...
f
W

1
n2
0

(xn)

 =

2 lnn · y1
...

2 lnn · yn

 with probability one. By further using the definition of cross-725

entropy loss for the single-output setting, we have that the solution W
1
n2

0 satisfies the following726

inequality.727

Llin
0 (W

1
n2

0 ) = log(1 + exp(−2 lnn)) <
1

n2
(69)

We now only need to prove that the solution W
1
n2

0 is close to the initialization parameters W0 in728

expected ℓ2 norm. By applying the holder inequality on (68), we have that729

R̃ = E[∥W
1
n2

0 −W0∥22] ≤ E

∥M†
0∥22 ·

∥∥∥∥∥∥∥
2 lnn · y1 − fW0(x1)

...
2 lnn · yn − fW0

(xn)


∥∥∥∥∥∥∥
2

2

 (70)

≤ E

 1

λmin(M0M⊤
0 )

·

∥∥∥∥∥∥∥
2 lnn · y1 − fW0(x1)

...
2 lnn · yn − fW0

(xn)


∥∥∥∥∥∥∥
2

2

 (71)

We now prove bounds for the two terms on the right hand side separately. For the first term, when730

the width is sufficiently large m = Ω(n), by existing bound for the smallest eigenvalue of the NTK731

matrix M0M
⊤
0 in [33, Theorem 4.1], we have that with high probability732

1

λmin(M0M⊤
0 )

≤ O

 1(
d
∏L−1

l=1 ml

)
·
(∏L

l=1 βl

)
·
(∑L

l=2 β
−1
l

)
 (72)
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For the second term, by Cauchy-Schwarz inequality, we have that733

E


∥∥∥∥∥∥∥
2 lnn · y1 − fW0(x1)

...
2 lnn · yn − fW0

(xn)


∥∥∥∥∥∥∥
2

2

 ≤ 2 · (2 lnn)2
n∑

i=1

y2i + 2

n∑
i=1

E[∥fW0
(x1)∥22]

= 8n(lnn)2 + 2

n∑
i=1

E[∥fW0
(x1)∥22]

By further using Eq. (44), we have that734

E


∥∥∥∥∥∥∥
2 lnn · y1 − fW0(x1)

...
2 lnn · yn − fW0

(xn)


∥∥∥∥∥∥∥
2

2

 = O

(
n(lnn)2 + n

L∏
i=1

βimi

2

)
(73)

Therefore, by plugging Eq. (72) and Eq. (73) into Eq. (71), and by considering input dimension d as735

const, we have that736

R̃ = O

 n(lnn)2 + n
∏L

i=1
βimi

2(
d
∏L−1

l=1 βlml

)
· βL ·

(∑L
l=2 β

−1
l

)


By plugging the choice of initialization variance β1, · · · , βL for NTK, He and LeCun initialization737

into the above equation, for single output network with L ≥ 2, we have that738

R̃ =


Õ( n

d·2L·(m(L−2)+1)
) for NTK initialization

Õ( n
2Lm(L−1)

) for He initialization
Õ( n

m(L−1) ) for LeCun initialization

739

D.4 Deferred proof for Corollary 5.4740

Corollary 5.4 (Privacy utility trade-off for last iterate). Assume that the data and network regularity741

Assumption 2.2 holds. Assume that all the conditions and definition for constants in Proposition 5.1742

holds. Then by setting σ2 = 2BT
εn2 and T =

√
2εnR̃
B , we have that running Langevin diffusion for743

time T satisfies bound KL divergence ϵ, and has empirical excess risk upper bounded by744

E[L(W lin
T )] ≤ O

 1

n2
+

√
BR̃

εn
log(εn)

 (74)

where B is the gradient norm constant Eq. (9), and R̃ is the approximate lazy training distance in745

Eq. (12). A summary of B and R̃ under different initializations is in Table 1.746

Proof. By setting W ∗
0 = W

1
n2

0 in Proposition 5.3, we have that747

E[L(W lin
T )]− E[L(W

1
n2

0 ;D)] ≤ 2R̃

T
+

σ2E[rank(M0)]

2

(
1 + log

2BT 2

R̃

)
By Proposition 5.3, we have that E[L(W

1
n2

0 ;D)] ≤ 1
n2 , therefore748

E[L(W lin
T )] ≤ 1

n2
+

2R̃

T
+

σ2E[rank(M0)]

2

(
1 + log

2BT 2

R̃

)
(75)

By plugging σ2 = 2BT
εn2 and T =

√
2εnR̃
B into (75), and by rank(M0) ≤ n, we have that749

E[L(W lin
T )] ≤ 1

n2
+

√
2BR̃

εn
(2 + log(4εn)) (76)

750
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D.5 Deferred proofs for Proposition 5.5751

We will first need to prove following lemma to bound the uniform stability for the model parameters752

during training linearized network.753

Lemma D.2 (Uniform stability for training linearized network). Assume that the data and network754

regularity Assumption 2.2 holds. Then it satisfies that755

E
[
∥WT −W ′

T ∥2
]
≤ 2B

n2
T 2 (77)

where B = |Y|
(∏L−1

i=1
βimi

2

)∑L
l=1

βL

βl
is the constant defined in (37) for network output gradient756

norm bound at initialization.757

Proof. By definition, and by coupling the choice of Gaussian noise in the two Langevin diffusion758

processes (Wt)t∈[0,T ] and (W ′
t )t∈[0,T ], we have that759

∂E
[
∥Wt −W ′

t∥2
]

∂t
= lim

η→0

E[∥Wt+η −W ′
t+η∥2]− E[∥Wt −W ′

t∥2]
η

= lim
η→0

E[∥Wt − η∇L(Wt;D)−W ′
t + η∇L(W ′

t ;D′)∥2]− E[∥Wt −W ′
t∥2]

η

= lim
η→0

η2E[∥∇L(Wt;D)−∇L(W ′
t ;D′)∥2]− 2ηE[⟨∇L(Wt;D)−∇L(W ′

t ;D′),Wt −W ′
t ⟩]

η

=− 2E[⟨∇L(Wt;D)−∇L(W ′
t ;D′),Wt −W ′

t ⟩] ≤ 2

√
2B

n2
· E [∥WT −W ′

T ∥2]

where the last inequality is by holder’s inequality and by using Lemma 4.1. By solving the ordinary760

differential equation with boundary condition E
[
∥W0 −W ′

0∥2
]
= 0, we have that761

E
[
∥WT −W ′

T ∥2
]
≤ 2B

n2
T 2 (78)

762

We are now ready to prove our excess population risk bound for training linearized network.763

Proposition 5.5. Denote R0(W ) = E(x,y)∈pop[ℓ(fW0
(x) +

∂fW0
(x)

∂W0
(W −W0);y)] as the popula-764

tion risk of linearized network expanded at initialization vector W0 over population data distribution765

pop. Then under the conditions of Corollary 5.4, we have that for any dataset D of size n, the766

following excess population risk upper bound holds.767

E[R0(WT )]− E[L(W ∗
pop,0;D)] ≤ O

 1

n2
+

√
BR̃

εn
(log(εn) + ε)

 (79)

where the expectation is over the randomness of sampling the training dataset D ∼ popn from the768

data population and the random coins for the Langevin diffusion training algorithm, and W ∗
pop,0 =769

argminW R0(W ) is the optimal solution for the population risk minimization problem.770

Proof. By the uniform stability method [24, Theorem 2.2], we have the following generalization771

error upper bound holds.772

αgen = |E[R0(WT )]− ED∼popn [L(WT ;D)]| ≤ max
z,D,D′

E
[
ℓ(fWT

(xz);yz)− ℓ(fW ′
T
(xz);yz)

]
(80)

where z = (xz,yz) is an arbitrary data point in the population data distribution pop. By convexity,773

we further have the following bound for the uniform stability.774

ℓ(fWT
(xz);yz)− ℓ(fW ′

T
(xz);yz) ≤ ∇ℓ(fWT

(xz);yz)
⊤(WT −W ′

T ) (81)

≤
√
∥∇ℓ(fWT

(xz);yz)∥2∥WT −W ′
T ∥2 (82)
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By Eq. (37) and Lemma D.2, we further have that775

E[ℓ(fWT
(xz);yz)− ℓ(fW ′

T
(xz);yz)] ≤

√
2B ·

√
2B

n2
T 2 =

2B

n
T (83)

Therefore, by plugging the above equation into (80), we have that the generalization error satisfies776

αgen = |ED∼popn [L(WT ;D)]− E[R(WT )]| ≤
2BT

n
≤ 2

√
2εBR

n
(84)

where the last inequality is by plugging our choice of T =
√

2εnR
B into the equation. On the other777

hand, by Proposition 5.1, we have that the empirical risk is upper bounded as follows.778

ED∼popn [L(WT ;D)] ≤O

√BR̃

εn
log(εn)


≤E[L(W ∗

pop,0;D)] +O

√BR̃

εn
log(εn)

 (85)

Combining the generalization error term (84) and the excess empirical risk term (85) suffice to prove779

the equation in the statement.780

E Discussion on extending our results to Noisy GD with constant step-size781

In this section, we discuss how to extend our privacy analyses to noisy GD with constant step-size.782

Specifically, we only need to extend the KL composition theorem under possibly unbounded gradient783

difference, i.e., Theorem 3.1, to the noisy GD algorithm.784

Theorem E.1 (KL composition for noisy GD under possibly unbounded gradient difference). Let785

the iterative update in noisy GD algorithm be defined by: W(k+1) = W(k) − η∇L(W(k);D) +786 √
2ησ2Zk, where Zk ∼ N (0, I). Then the KL divergence between running noisy GD for DNN (2)787

on neighboring datasets D and D′ satisfies788

KL(W(K),W
′
(K)) ≤

1

2σ2

K−1∑
k=0

η · E
[∥∥∇L(W(k);D)−∇L(W(k);D′)

∥∥2
2

]
. (86)

Proof. Denote p(k) as the distribution of model parameters after running noisy GD on dataset D with789

k steps, and similarly denote p′(k) as the distribution of model parameters after running noisy GD on790

dataset D′ with k steps. Then by the data processing inequality for KL divergence [45, Theorem 9]791

(with the data processing operation given by (W(k),W(k+1)) → W(k)), we have that792

KL(p(k+1), p
′
(k+1)) ≤ KL(p(k),(k+1), p

′
(k),(k+1)), (87)

where p(k),(k+1) denotes the joint distribution of (W(k),W(k+1)), and p′(k),(k+1) denotes the joint793

distribution of (W ′
(k),W

′
(k+1)). Now we expand the term KL(p(k),(k+1), p

′
(k),(k+1)) by the Bayes794

rule as follows.795

KL(p(k),(k+1), p
′
(k),(k+1)) (88)

=Ep(k),(k+1)(W(k),W(k+1))

[
log

(
p(k+1)|(k)(W(k+1)|W(k))p(k)(W(k))

p′(k+1)|(k)(W(k+1)|W(k))p
′
(k)(W(k))

)]

=Ep(k),(k+1)(W(k),W(k+1))

[
log

(
p(k+1)|(k)(W(k+1)|W(k))

p′(k+1)|(k)(Wt+η|Wt)

)]
+ Ep(k)(W(k))

[
log

(
p(k)(Wt)

p′(k)(W(k))

)]
=Ep(k)(W(k))

[
KL(p(k+1)|(k), p

′
(k+1)|(k))

]
+KL(p(k), p

′
(k)) (89)
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Observe that p(k+1)|(k), p
′
(k+1)|(k) are two Gaussian distributions with per-dimensional variance σ2,796

due to the conditioning on the same model parameters W(k) at iteration k. Therefore, by computing797

the KL divergence between two multivariate Gaussians, we have that798

KL(p(k),(k+1), p
′
(k),(k+1)) =

1

2σ2
· η ·

∥∥∇L(W(k);D)−∇L(W(k);D′)
∥∥2
2

(90)

Therefore, by plugging Eq. (90) into Eq. (89) and Eq. (87), we have that799

KL(p(k+1), p
′
(k+1)) ≤

η

2σ2
E
[∥∥∇L(W(k);D)−∇L(W(k);D′)

∥∥2
2

]
+KL(p(k), p

′
(k)) (91)

By summing (91) over k = 0, · · · ,K−1 and observing that KL(p(0), p
′
(0)) = 0 (as the initialization800

distribution is the same between noisy GD on D and D′), we finish the proof for Eq. (86).801
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