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A Model Details

We implement FE and FD with convolutional layers with kernel size > 1 with detailed specification
below. All convolutional layers are followed by LeakyReLU activation.

FA is a self-attention module that takes I
(t)
ne as the input and learns functions Q,K :

RCfea×H′×W ′ → RCfea/8×H′W ′
, V : RCfea×H′×W ′ → RCfea×H′W ′

and a scalar parameter
γ to map I(t)ne to I(t)gl . Inspired by [9, 8], I(t)gl = γ ∗ vsoftmax(kT q) + I

(t)
ne , where q = Q(I

(t)
ne ), k =

K(I
(t)
ne ), v = V (I

(t)
ne ), Each entry β(x′,y′),(x,y) in kT q indicates the extent of attention required from

(x, y) when extracting features for (x′, y′). Note that softmax(kT q)v needs to be reshaped into
RCfea×H′×W ′

before the addition.

We provide two versions of the image feature mapper. In version "EAD", we use two 3 × 3
convolutional layers with stride = 2 in FE , a single self-attention module in FA and two 3 × 3
transposed convolutional layers with stride = 2 in FD. In version "EA", we use one linear layer to
map the channels from dimension C to Cfea and three 3× 3 convolutional layers with stride = 1 in
FE , a single self-attention module in FA and an identity function in FD. A skip connection is also
added between the linear layer in FE and the output of FA in "EA".

Style injection is used in all fully-connected layers in Gp and LeakyReLU is also applied after each
fully-connected layer except for the layers that map to the output dimension.

A.1 Training and Inference by Patch

Since HR image data can be high dimensional, it may not be feasible to process the entire H ×W
at once especially for the computationally intensive modules like matrix multiplication in the self-
attention layer. Hence we utilize the benefit of the spatially bounded image coordinate grid and the
conditional independent generation in GP to perform patch-based training and inference.

Without processing the original H ×W image, the model instead takes a H ′′ ×W ′′ patch, whose
coordinate grid can be represented as P = {(x, y, t)|h ≤ x ≤ h+H ′′, w ≤ y ≤ w +W ′′} where
(h,w, t) is the top-left corner of the patch, as its input. H ′′|H and W ′′|W . F treats the patch as a
complete image and calculates I(t)fea(x, y) for (x, y) ∈ P . While efo still learns the Fourier feature for
(x, y, t), we grid sample the corresponding parameters in eco so that eco still maintains the original
H ×W dimension. Since the calculation in GP is conditionally independent among pixels given
I
(t)
fea and E(x, y, t), the calculation of GP (E(x, y, t), F (I

(t)
cat), z) remains unchanged.

At training time, we randomly crop a H ′′ ×W ′′ patch as the input; at inference time, we use the
same z to generate all patches in the same image to maintain style consistency, and a sliding window
technique described in Algorithm 1 to mitigate borderline artifacts.
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Algorithm 1: Sliding Window Generation
Input: G: Generator, S: patch size, H, W: size of the original image, λs: patch weight

Result: ˆ
I
(t)
hr ∈ RC×H×W

Sq = S/4;
for i in {0, ..., H/S-1} do

for j in {0, ..., W/S-1} do
ˆ
I
(t)
hr (X) := G(X, z|I(t)lr , I

(t′)
hr ) where

X = {(x, y)|iS ≤ x ≤ (i+ 1)S, jS ≤ y ≤ (j + 1)S}
end

end
for i in {0, ..., H/S-1} do

for j in {0, ..., W/S-2} do
ˆ

I
(t)
temp(X

′) = G(X ′, z|I(t)lr , I
(t′)
hr ) where

X ′ = {(x, y)|iS ≤ x ≤ (i+ 1)S, (j + 1)S − 2Sq ≤ y ≤ (j + 1)S + 2Sq}
ˆ
I
(t)
hr (X

′′)+ = λs
ˆ

I
(t)
temp(X

′′) where
X ′′ = {(x, y)|iS ≤ x ≤ (i+ 1)S, (j + 1)S − Sq ≤ y ≤ (j + 1)S + Sq}
ˆ
I
(t)
hr (X

′′)/ = (1 + λs)
end

end
for i in {0, ..., H/S-2} do

for j in {0, ..., W/S-1} do
ˆ

I
(t)
temp(X

′) = G(X ′, z|I(t)lr , I
(t′)
hr ) where

X ′ = {(x, y)|(i+ 1)S − 2Sq ≤ x ≤ (i+ 1)S + 2Sq, jS ≤ y ≤ (j + 1)S}
ˆ
I
(t)
hr (X

′′)+ = λs
ˆ

I
(t)
temp(X

′′) where
X ′′ = {(x, y)|(i+ 1)S − Sq ≤ x ≤ (i+ 1)S + Sq, jS ≤ y ≤ (j + 1)S}
ˆ
I
(t)
hr (X

′′)/ = (1 + λs)
end

end

B Implementation Details

We choose H =W = 256, C = 3 (the concatenated RGB bands of the input images), Cfea = 256,
m = 3, n = 14 and and λ = 100 for all of our experiments. We use non-saturating conditional GAN
loss for G and R1 penalty for D, which has the same network structure as the discriminator in [7, 1].
We train all models using Adam optimizer with learning rate 2× 10−3, β0 = 0, β1 = 0.99, ε = 10−8

on NVIDIA Titan XP GPUs. We train each model to convergence which takes around 4-5 days on
1 NVIDIA Titan XP GPU. EAD models can sample 10 images per second and EA64 models can
sample 1500 images in around 19 minutes (1.3 image/s). The difference in inference times results
from the inference by patch technique described in Appendix A.1.

In our Texas housing experiment, we use time unit u = 2 and denote the images from 2016 as t = 0
and the images from 2018 as t = 2. In our fMoW-Sentinel2 crop field experiment, we use u = 365
and denote the starting date of Sentinel-2 imagery, 2015-06-23, as t = 0. The temporal coordinates
are then normalized with chosen time unit. We implement our code based on the official PyTorch
implementation of CIPS [1].

We use the same backbone network structures for cGAN Fusion and Pix2Pix with 6-channel input
I
(t)
cat. Because neither SRGAN nor DBPN provides 10× SR, we resize the LR images to 32× 32 and

perform 8× enlargement.

Pixel values are re-scaled to [0, 1] during evaluation. We use [4]’s implementation for SSIM, FSIM
and LPIPS, and implement PSNR based on [2]’s implementation.
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C Datasets

C.1 Texas Housing Dataset

We collect geo-coordinates for residential houses effectively built between 2014 and 2017 in Texas
from the CoreLogic tax and deed database. To make data extraction more efficient, we use DBSCAN
[5] to spatially cluster the geo-locations of the houses, and choose four clusters around major
metropolitan areas in Texas (Austin/San Antonio, Dallas, Houston, and Waco) which encapsulate
most of the datapoints obtained from the CoreLogic database. We then find the latitude and longitude
coordinates that bound each cluster and extract rectangles for both NAIP and Sentinel-2 from Google
Earth Engine (GEE) [6] so we can run fast local extraction. The Sentinel-2 rectangles are cloud
filtered using the Sentinel-2 Cloud Probability image collection1, and the NAIP rectangles are cloud
filtered by its data collection process. We choose to obtain images from year 2016 and 2018, which is
the range of mutual availability of NAIP and Sentinel-2 in Texas. NAIP coverage of Texas ranges
from August to September for both years, so we acquire the corresponding Sentinel-2 image from the
same time range.

We then extract 4 images for each house (NAIP in 2016, NAIP in 2018, Sentinel-2 in 2016, and
Sentinel-2 in 2018). NAIP images have a resolution of 1 meter per pixel, Sentinel-2 images are 10
meters per pixel, and we acquire the RGB bands from both devices. Our dataset consists of 286717
houses and their surrounding neighborhoods. We reserve 14101 houses from 20 randomly selected
zip codes as the testing set and use the remaining 272616 houses from the other 759 zip codes as the
training set. In total, there are 1146868 multi-resolution images collected from different sensors for
our experiment. Table 1 shows a distribution of houses by year and also by region. Figure 1 shows an
example of a house captured using this process with NAIP and Sentinel-2.

For both NAIP and Sentinel-2 images, we export from GEE’s image pyramid at scale 1, which is
equivalent to applying geo-referenced nearest neighbor resampling to the Sentinel-2 images in order
to obtain images with the same dimensions as NAIP. Each neighborhood has radius of 0.001 degrees.
The resulting images from both devices have dimensions of around 256× 256.

(a) Low resolution image (Sentinel-2) (b) High resolution image (NAIP)

Figure 1: Sentinel-2 and NAIP image pair example.

Table 1: Distribution of collected houses by year and region.

Years Austin Dallas Houston Waco Total
2014 19630 24625 20327 2035 66617
2015 21673 27797 20347 2100 71917
2016 20327 30329 17741 2299 70696
2017 23997 32777 18312 2401 77487
Total 85627 115528 76727 8835 286717

Sentinel-2 data is provided courtesy of "Copernicus Sentinel data 2015-2020" as outlined by the Eu-
ropean Space Agency (ESA), and NAIP data is provided courtesy of U.S. Department of Agriculture

1Guidance for cloud filtering using the Sentinel-2 Cloud Probability dataset is available here.
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(USDA) Farm Production and Conservation - Business Center, Geospatial Enterprise Operations. We
have removed all personally identifiable information from our curated dataset.

C.2 fMoW-Sentinel2 Crop Field Dataset

We derive this dataset from the crop field category of Functional Map of the World (fMoW) dataset [3].
We take RGB images from the fMoW crop field object category due to a high likelihood of changes
over time compared to other object classes in the fMoW dataset. We pair each fMoW image (0.3m to
1m GSD) with a corresponding lower resolution Sentinel-2 RGB image (10m GSD) captured at the
same location and within a 20 day range centered around the fMoW image capture time. We select
the least cloudy image from available images within the 20 day capture range using the Sentinel-2
Cloud Probability dataset2. We prune locations with fewer than 2 timestamps, yielding 1752 locations
and a total of 4898 fMoW-Sentinel2 pairs. Each location contains between 2-15 timestamps spanning
from 2015 to 2017. We reserve 237 locations as the testing set and the remaining 1515 locations
as the training set. We resize images to 256 × 256 using nearest neighbour interpolation during
preprocessing. Figure 2 shows an example of an image pair after data collection and preprocessing.

(a) Low resolution image (Sentinel-2) (b) High resolution image (fMoW)

Figure 2: Sentinel-2 and fMoW image pair example.

Sentinel-2 data is provided courtesy of "Copernicus Sentinel data 2015-2020" as outlined by the
European Space Agency (ESA), and fMoW images are used under the "Functional Map of the World
Challenge Public License"3. The dataset does not contain personally identifiable information.

2The Sentinel-2 Cloud Probability dataset can be found here.
3The Functional Map of the World Challenge Public License can be found here.
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D Human Evaluation

We categorize models into three groups: image-to-image translation models, super-resolution models
and our models. For human evaluation experiments, we primarily compare cGAN Fusion, DBPN
and our model (EAD) because they achieve the best quantitative metrics in each model category. We
conduct all human evaluation under the setting of t′ > t on the Texas housing dataset.

D.1 Building and Swimming Pool Count

We measure the object reconstruction performance of images at two scales through a task where
workers count the number of buildings and swimming pools in a satellite image.

Experiment setup 200 locations are randomly sampled from the test set, and the corresponding
images are collected from the following datasets/models: ground truth HR image I(t)hr from 2016,
HR image I(t

′)
hr from 2018 (HR t′), cGAN Fusion, DBPN and our model (EAD). 10 images and one

vigilance test image are packed into each Human Intelligence Task (HIT) and 3 assignments are
requested for each HIT, allowing for comparison of results from different workers.

Instructions full text "Please only participate in this HIT if you have normal color vision. The HIT
should take approximately 5 minutes to complete. There are 11 trials in the HIT, and each should take
15-30 seconds. You are shown a satellite image that may be real or computer generated. Please count
the number of buildings and the number of swimming pools in the image. Please only count buildings
and swimming pools that are fully contained within the image, not noticeably clipped off by the
edges of the image. Objects that are just barely clipped off (less than 5%) may be counted. Objects in
generated satellite images may look ambiguous. Give your best guess count in these cases. This can
be subjective so follow your instincts! You will complete a short practice session (approximately 1
minute) before starting the main task."

Vigilance Tests Each HIT contains a vigilance image for which object counts are sufficiently
unambiguous. HITs that fail the vigilance test are automatically rejected.

Worker qualification Workers are required to have no less than 97% HIT approval rate and no less
than 5000 total approved HITs to qualify for our experiment. Worker uniqueness is used to prevent
the same workers from completing more than 3 total HITs for this experiment.

Compensation Workers are awarded $0.80 upon completion of a HIT, which has an expected
completion time of 6 minutes, yielding an estimated hourly wage of $8. We deploy a total of 300
HITs, resulting in a total cost of $240 for this experiment, not including additional fees.

(a) Instructions (b) Example Trial

Figure 3: Instructions and example trial for the building and swimming pool count task.
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D.2 Similarity to Ground Truth

We measure both structural information accuracy and perceived realism of generated images through
a task in which workers select the generated satellite image they observe to best match a real ground
truth image.

Experiment setup 400 locations are randomly sampled from Texas housing dataset test set, and the
corresponding images are collected from the following datasets/models: ground truth HR image I(t)hr
from 2016, cGAN Fusion, DBPN and our model (EAD). 20 sets of images and two sets of vigilance
test images are packed into each HIT and 1 assignment is requested for each HIT.

Instructions full text "Please only participate in this HIT if you have normal color vision. The
HIT should take 6-7 minutes to complete. There are 22 trials in the HIT, and each should take
12-15 seconds. You are shown a real satellite image and three computer generated satellite images.
Please select the generated image that you feel best matches the real image based on image accuracy
and realism. Image accuracy refers to the degree to which ground level structural information (e.g.
buildings, trees, roads) matches the real image. Image realism refers to the degree that the generated
image looks like a real satellite image. You will complete a short practice session (less than 1 minute)
before starting the main task."

Vigilance Tests Each HIT contains a similarity trial for which the best matching image is sufficiently
unambiguous. HITs that fail the vigilance test are automatically rejected.

Worker qualification Workers are required to have no less than 97% HIT approval rate and no less
than 5000 total approved HITs to qualify for our experiment. Worker uniqueness is used to prevent
the same workers from completing more than 1 HIT for this experiment.

Compensation Workers are awarded $1.00 upon completion of a HIT, which has an expected
completion time of 6 minutes, yielding an estimated hourly wage of $10. We deploy a total of 20
HITs, resulting in a total cost of $20 for this experiment, not including additional fees.

(a) Instructions (b) Example Trial

Figure 4: Instructions and example trial for the similarity to ground truth task.

D.3 Image Realism

We measure the perceived realism of generated images through a task in which workers select the
generated satellite image they observe to look the most realistic. Workers are provided with real
satellite images to examine in the beginning of the task.

Experiment setup 400 locations are randomly sampled from Texas housing test set, and the
corresponding images are collected from the following models: cGAN Fusion, DBPN and our model
(EAD). 20 sets of images and two sets of vigilance test images are packed into each HIT and 1
assignment is requested for each HIT.

Instructions full text "Please only participate in this HIT if you have normal color vision. The
HIT should take 6-7 minutes to complete. There are 22 trials in the HIT, and each should take 15
seconds. You are shown three computer generated satellite images. Please select the generated image
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that most resembles a high quality real satellite image. Please pay attention to the details of objects.
You will complete a short practice session (approximately 1 minute) before starting the main task."

Vigilance Tests Each HIT contains a realism trial for which the most realistic satellite image is
sufficiently unambiguous. HITs that fail the vigilance test are automatically rejected.

Worker qualification Workers are required to have no less than 97% HIT approval rate and no less
than 5000 total approved HITs to qualify for our experiment. Worker uniqueness is used to prevent
the same workers from completing more than 1 HIT for this experiment.

Compensation Workers are awarded $1.00 upon completion of a HIT, which has an expected
completion time of 6 minutes, yielding an estimated hourly wage of $10. We deploy a total of 20
HITs, resulting in a total cost of $20 for this experiment, not including additional fees.

(a) Instructions (b) Example Trial

Figure 5: Instructions and example trial for the image realism task.

D.4 Additional Statistical Results

Figure 6 shows box plots of differences between mean object counts in each location for images
generated by each model compared to the ground truth images. We use IQR = Q3 −Q1 and plot
non-outliers in [Q1 − 1.5× IQR,Q3 + 1.5× IQR]. We remind the reader that object counts for
ground truth images are also generated by human workers through the same experiment. Compared
to our model, cGAN Fusion yields greater variation in object count difference and has a tendency to
hallucinate swimming pools. Images generated by DBPN often yield under-counted buildings and
swimming pools, likely due to image blurriness and signal limitations from LR input. We note that
building counts obtained from the HR image at a future time t′ are frequently higher than building
counts obtained from the HR image at a past time t, sometimes significantly so. This can be attributed
to the rapidly changing environments and the presence of new house constructions in our dataset.
Count differences derived from images generated by our model exhibit smaller variance and less data
skew when measured against counts derived from the ground truth images.

Ours cGan Fusion DBPN HR t'
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(a) Difference in Building Counts
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(b) Difference in Pool Counts

Figure 6: Box plots of differences in mean object count for each dataset/model compared to the mean
object counts yielded by the ground truth images.

7



E Additional Generation Results

Figure 7: Additional samples from all models on the Texas housing dataset with setting t′ > t.
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Figure 8: Additional samples from all models on the Texas housing dataset with setting t′ < t.

Figure 9: Additional samples from all models on the fMoW-Sentinel2 crop field dataset.
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F Additional Ablation Study

In this section, we perform an additional ablation study with qualitative examples and quantitative
analysis.

Model Configurations Figure 11 shows an example of samples from different configurations of
our model mentioned in Section 5.4. From the samples in Figure 11, we observe that although our
model still produces convincing results without GP , it suffers from the same high saturation visual
artifacts as Pix2Pix and cGAN Fusion. Without deep network structures in F , while faithful to the LR
image, our model fails to generate realistic results. Without FE and FD, our model shows obvious
checkerboard artifacts. After removing FA, our model generates inconsistent shapes for objects in
the image.

Temporal Encoding We conduct an ablation study on learning the time dimension in E using
"EA64" on the fMoW-Sentinel2 crop field dataset. Figure 10 demonstrates a comparison of all
metrics between models with and without learning the time component in E. We group all possible
values of |t′ − t| in the test set with bin width of 90 days, and plot the mean of each bin and error
bars with 75% confidence level.

As we observe in the figure, the performance of EA64 with time embeddings shows advantages in
most metrics as the time difference between capture dates of the target and reference HR images
increases, which suggests benefits in real life settings where HR imagery is often captured with long
visiting cycles.

Using permutation test with differences between means to test the statistical significance, we verify
our observation with the null hypothesis H0 : f(Xw) ≤ f(Xwo) where f is a choice of metrics
where higher values indicate better models. Here f can be SSIM, PSNR, FSIM or -LPIPS compared
to the ground truth. Xw and Xwo represent the generated images with and without learning the time
dimension respectively. FSIM and LPIPS achieve p-values 0.002 and 0 respectively for the null
hypothesis. PSNR achieves p-value=0.09 when |t’-t|>300 days, which shows that the advantage of
the time-embedded model increases when the difference between t′ and t increases.

(a) SSIM Results (b) PSNR Results

(c) FSIM Results (d) LPIPS Results

Figure 10: Ablation study on learning the time dimension in our model (EA64) using fMoW-Sentinel2
crop field dataset.
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Table 2: Quantitative results of ablation study on learning the temporal information on the fMoW-
Sentinel2 crop field dataset. "w/ t" represent EA64 model with time dimension in E, and "w/o
t" represent the same model without time dimension in E. As shown here, adding the temporal
dimension substantially benefits model performance.

Model SSIM↑ PSNR↑ FSIM↑ LPIPS↓
w/o t 0.3844 16.8075 0.6774 0.5380
w/ t 0.3905 16.8879 0.6827 0.5197

We also report average quantitative results for both models and observe that the model with temporal
information outperforms in all metrics on the fMoW-Sentinel2 crop field dataset. Hence we can
conclude that learning the time dimension is crucial for our model performance.

Patch Size We also investigate a setting of "EA" with patch size 32 denoted as "EA32", with
quantitative results presented in Table 3. The model performance is degraded due to the reduction of
the global view of FA. We hypothesize that increasing the patch size can benefit the performance.
However, further study is required as it is not feasible to train patch sizes that are significantly larger
than 64 on our devices.

Table 3: Ablation study on the patch sizes for patch-based generation on the Texas housing dataset.
+(S) denotes using size S patches during training and inference.

Model FE FA FD GP SSIM↑ PSNR↑ FSIM↑ LPIPS↓
EA32 +(32) +(32) - + 0.5767 20.8409 0.7480 0.4254
EA64 +(64) +(64) - + 0.5954 21.2050 0.7586 0.4053

Input Source Here we provide an experiment using our model with (1) two additional LR image
inputs from different time steps (Sentinel-2 images from 2017 and 2019) and (2) no HR reference
input (as in standard SR approaches) in the Texas housing dataset.

We do not observe improvements from the "Multiple LR" setting, which agrees with our claim that
given a LR image at the target time, other LR views from different time steps (in the past or future)
provide little or no additional information. As shown for the "No HR t’" setting in the table below,
our approach also has clear advantages over the standard SR setting (with no HR reference input).
It is also worth noting that the LR images in our experiments are from real LR devices, which is
different from synthetic LR images created by downsampling used in many SR benchmarks. Leading
standard SR methods such as DBPN and SRGAN do not perform well as shown in the experiments
in Section 5.

Table 4: Ablation study on different input choices on the Texas housing dataset. "Multiple LR"
represents the setting that uses more than one LR images from different time steps as inputs, and "No
HR t’" represents the setting that uses no HR reference image from a different time and only takes
the LR image as the input, as in the standard SR approaches. Our approach outperforms both models
with the EAD configuration.

Model t’ > t t’ < t
SSIM↑ PSNR↑ FSIM↑ LPIPS↓ SSIM↑ PSNR↑ FSIM↑ LPIPS↓

Multiple LR 0.6266 22.0939 0.7814 0.3873 0.5023 19.5255 0.7198 0.4428
No HR t’ 0.4731 19.9537 0.7047 0.4991 0.3535 17.4470 0.6453 0.5400

Ours 0.6470 22.4906 0.7904 0.3695 0.5225 19.7675 0.7280 0.4275

Our method can also be easily extended to include additional bands such as NIR by changing the
number of input channels. We choose RGB bands in this work because they are commonly available
in remote sensing devices and they are sufficient for our target tasks. Thus we see our results as a
lower bound of what can be achieved, and enhancements using additional bands are left to future
study.
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Figure 11: Samples from all different configurations of our model on the Texas housing dataset with
setting t′ > t.
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G Failure Cases

In this section, we analyze failure cases of our model. Figure 12 is an example where we observe
unsatisfactory generation quality from our model. In some edge cases, such as extreme snow reflection
in the LR input image, our model is unable to successfully reconstruct an accurate image of the
ground truth. In this case, our EAD setting does not obtain sufficient color accuracy. Our EA64
setting is able to generate more accurate color details for the 2017-01-05 image, but it synthesizes
obvious checkerboard artifacts and is therefore less realistic to human perception.

Figure 12: Failure cases when using fMoW-Sentinel2 crop field dataset with input HR captured on
2016-09-29. With this edge case LR input (extreme snow reflection), our EAD model fails to generate
accurate color and our EA64 model exhibits obvious checkerboard artifacts.
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